1
|
Lee S, Khrestian C, Laurita D, Juzbasich D, Wallick D, Waldo A. Validation of a new species for studying postoperative atrial fibrillation: Swine sterile pericarditis model. Pacing Clin Electrophysiol 2023; 46:1003-1009. [PMID: 37377345 DOI: 10.1111/pace.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The canine sterile pericarditis model associated with atrial inflammation is an experimental counterpart of postoperative atrial fibrillation (POAF). However, the use of canines for research is restricted by ethics committees in many countries, and social acceptance is declining. OBJECTIVE To validate the feasibility of the swine sterile pericarditis model as an experimental counterpart to study POAF. METHODS Seven domestic pigs (35-60 kg) underwent initial pericarditis surgery. On two or more postoperative days in the closed-chest state, we performed electrophysiological measurements of pacing threshold and atrial effective refractory period (AERP) while pacing from the right atrial appendage (RAA) and the posterior left atrium (PLA). The inducibility of POAF (>5 min) by burst pacing was determined in both the conscious and anesthetized closed-chest state. These data were compared to previously published canine sterile pericarditis data for validation. RESULTS The pacing threshold increased from day 1 to day 3 (2 ± 0.1 to 3.3 ± 0.6 mA in the RAA, 2.5 ± 0.1 to 4.8 ± 0.2 mA in the PLA). Also, the AERP increased from day 1 to day 3 (118 ± 8 to 157 ± 16 ms in the RAA; 98 ± 4 to 124 ± 2 ms in the PLA, both p < .05). Induction of sustained POAF occurred in 43% (POAF CL range 74-124 ms). All electrophysiologic data from the swine model were consistent with the canine model with respect to (1) the range of both pacing threshold and AERP; (2) the progressive increase in threshold and AERP over time; (3) a 40%-50% incidence of POAF. CONCLUSION A newly developed swine sterile pericarditis model demonstrated electrophysiologic properties consistent with the canine model and patients after open heart surgery.
Collapse
Affiliation(s)
- Seungyup Lee
- Departments of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Celeen Khrestian
- Departments of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Daniel Laurita
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dragan Juzbasich
- Departments of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Don Wallick
- Departments of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Albert Waldo
- Departments of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Dobrev D, Heijman J, Hiram R, Li N, Nattel S. Inflammatory signalling in atrial cardiomyocytes: a novel unifying principle in atrial fibrillation pathophysiology. Nat Rev Cardiol 2023; 20:145-167. [PMID: 36109633 PMCID: PMC9477170 DOI: 10.1038/s41569-022-00759-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 02/08/2023]
Abstract
Inflammation has been implicated in atrial fibrillation (AF), a very common and clinically significant cardiac rhythm disturbance, but its precise role remains poorly understood. Work performed over the past 5 years suggests that atrial cardiomyocytes have inflammatory signalling machinery - in particular, components of the NLRP3 (NACHT-, LRR- and pyrin domain-containing 3) inflammasome - that is activated in animal models and patients with AF. Furthermore, work in animal models suggests that NLRP3 inflammasome activation in atrial cardiomyocytes might be a sufficient and necessary condition for AF occurrence. In this Review, we evaluate the evidence for the role and pathophysiological significance of cardiomyocyte NLRP3 signalling in AF. We first summarize the evidence for a role of inflammation in AF and review the biochemical properties of the NLRP3 inflammasome, as defined primarily in studies of classic inflammation. We then briefly consider the broader evidence for a role of inflammatory signalling in heart disease, particularly conditions that predispose individuals to develop AF. We provide a detailed discussion of the available information about atrial cardiomyocyte NLRP3 inflammasome signalling in AF and related conditions and evaluate the possibility that similar signalling might be important in non-myocyte cardiac cells. We then review the evidence on the role of active resolution of inflammation and its potential importance in suppressing AF-related inflammatory signalling. Finally, we consider the therapeutic potential and broader implications of this new knowledge and highlight crucial questions to be addressed in future research.
Collapse
Affiliation(s)
- Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Roddy Hiram
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Na Li
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany.
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada.
- IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Ranolazine: An Old Drug with Emerging Potential; Lessons from Pre-Clinical and Clinical Investigations for Possible Repositioning. Pharmaceuticals (Basel) 2021; 15:ph15010031. [PMID: 35056088 PMCID: PMC8777683 DOI: 10.3390/ph15010031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic heart disease is a significant public health problem with high mortality and morbidity. Extensive scientific investigations from basic sciences to clinics revealed multilevel alterations from metabolic imbalance, altered electrophysiology, and defective Ca2+/Na+ homeostasis leading to lethal arrhythmias. Despite the recent identification of numerous molecular targets with potential therapeutic interest, a pragmatic observation on the current pharmacological R&D output confirms the lack of new therapeutic offers to patients. By contrast, from recent trials, molecules initially developed for other fields of application have shown cardiovascular benefits, as illustrated with some anti-diabetic agents, regardless of the presence or absence of diabetes, emphasizing the clear advantage of “old” drug repositioning. Ranolazine is approved as an antianginal agent and has a favorable overall safety profile. This drug, developed initially as a metabolic modulator, was also identified as an inhibitor of the cardiac late Na+ current, although it also blocks other ionic currents, including the hERG/Ikr K+ current. The latter actions have been involved in this drug’s antiarrhythmic effects, both on supraventricular and ventricular arrhythmias (VA). However, despite initial enthusiasm and promising development in the cardiovascular field, ranolazine is only authorized as a second-line treatment in patients with chronic angina pectoris, notwithstanding its antiarrhythmic properties. A plausible reason for this is the apparent difficulty in linking the clinical benefits to the multiple molecular actions of this drug. Here, we review ranolazine’s experimental and clinical knowledge on cardiac metabolism and arrhythmias. We also highlight advances in understanding novel effects on neurons, the vascular system, skeletal muscles, blood sugar control, and cancer, which may open the way to reposition this “old” drug alone or in combination with other medications.
Collapse
|
4
|
Ton AT, Nguyen W, Sweat K, Miron Y, Hernandez E, Wong T, Geft V, Macias A, Espinoza A, Truong K, Rasoul L, Stafford A, Cotta T, Mai C, Indersmitten T, Page G, Miller PE, Ghetti A, Abi-Gerges N. Arrhythmogenic and antiarrhythmic actions of late sustained sodium current in the adult human heart. Sci Rep 2021; 11:12014. [PMID: 34103608 PMCID: PMC8187365 DOI: 10.1038/s41598-021-91528-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Late sodium current (late INa) inhibition has been proposed to suppress the incidence of arrhythmias generated by pathological states or induced by drugs. However, the role of late INa in the human heart is still poorly understood. We therefore investigated the role of this conductance in arrhythmias using adult primary cardiomyocytes and tissues from donor hearts. Potentiation of late INa with ATX-II (anemonia sulcata toxin II) and E-4031 (selective blocker of the hERG channel) slowed the kinetics of action potential repolarization, impaired Ca2+ homeostasis, increased contractility, and increased the manifestation of arrhythmia markers. These effects could be reversed by late INa inhibitors, ranolazine and GS-967. We also report that atrial tissues from donor hearts affected by atrial fibrillation exhibit arrhythmia markers in the absence of drug treatment and inhibition of late INa with GS-967 leads to a significant reduction in arrhythmic behaviour. These findings reveal a critical role for the late INa in cardiac arrhythmias and suggest that inhibition of this conductance could provide an effective therapeutic strategy. Finally, this study highlights the utility of human ex-vivo heart models for advancing cardiac translational sciences.
Collapse
Affiliation(s)
- Anh Tuan Ton
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - William Nguyen
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Katrina Sweat
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Yannick Miron
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Eduardo Hernandez
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tiara Wong
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Valentyna Geft
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Andrew Macias
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Ana Espinoza
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Ky Truong
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Lana Rasoul
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Alexa Stafford
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tamara Cotta
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Christina Mai
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tim Indersmitten
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Guy Page
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Paul E Miller
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Andre Ghetti
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Najah Abi-Gerges
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA.
| |
Collapse
|
5
|
Aidonidis I, Simopoulos V, Dipla K, Hatziefthimiou A, Stamatiou R, Skoularigis I, Molyvdas PA. Effects of Ranolazine and its Combination with Amiodarone on Rapid Pacing-induced Reentrant Atrial Tachycardia in Rabbits. J Innov Card Rhythm Manag 2021; 12:4421-4427. [PMID: 33777481 PMCID: PMC7987427 DOI: 10.19102/icrm.2021.120304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Ranolazine (RAN) has previously been shown to lower the onset of cholinergic atrial fibrillation in intact animals; however, its efficacy in the setting of atrial tachycardia (AT) is unknown. The purpose of this study was to investigate the effects of RAN alone or in combination with amiodarone (AMIO) on rapid pacing-evoked right AT in rabbit hearts. Right atrial monophasic action potentials (MAPs) were recorded in 11 anesthetized rabbits, using combination MAP pacing catheters. Vulnerability to AT was tested by employing consecutive trains of rapid burst pacing prior to and after 2.4 mg/kg of RAN alone delivered intravenously and then in combination with 3 mg/kg of AMIO as a 15-minute infusion. Primary endpoints were postdrug AT reproducibility as well as cycle length (CL) and tachycardia duration. MAP duration at 75% repolarization and the effective refractory period (ERP) were assessed during programmed pacing to calculate the atrial postrepolarization refractoriness (aPRR = ERP – MAPD75%). AT was elicited in eight out of 11 rabbits; only these animals were included for further investigation. RAN did not abolish the inducibility of AT in any experiment; however, it prolonged its CL (baseline vs. RAN: 120 ± 16 ms vs. 138 ± 18 ms; p = 0.053). Supplemental AMIO further increased the AT CL (baseline vs. RAN + AMIO: 120 ± 16 ms vs. 152 ± 23 ms; p = 0.006), without affecting arrhythmia reinducibility. Slowing of the tachycardia after RAN or RAN + AMIO was associated with spontaneous termination of the arrhythmia. RAN prolonged the aPRR significantly, while AMIO in addition to RAN potentiated this effect. Neither RAN alone nor its combination with AMIO abolished the elicitation of AT in this model. However, both agents synergistically prolonged the aPRR, resulting in the slowing of AT and promoting spontaneous termination of the arrhythmia.
Collapse
Affiliation(s)
- Isaac Aidonidis
- Department of Physiology, University of Thessaly, School of Medicine, Larissa, Greece
| | - Vassileios Simopoulos
- Department of Cardiac and Thoracic Surgery, University Hospital of Larissa, School of Medicine, University of Thessaly, Thessaly, Greece
| | - Konstantina Dipla
- Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Rodopi Stamatiou
- Department of Physiology, University of Thessaly, School of Medicine, Larissa, Greece
| | - Ioannis Skoularigis
- Department of Cardiology, University Hospital of Larissa Medical School, University of Thessaly, Larissa, Greece
| | | |
Collapse
|
6
|
Saljic A, Jespersen T, Buhl R. Anti-arrhythmic investigations in large animal models of atrial fibrillation. Br J Pharmacol 2021; 179:838-858. [PMID: 33624840 DOI: 10.1111/bph.15417] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) constitutes an increasing health problem in the aging population. Animal models reflecting human phenotypes are needed to understand the mechanisms of AF, as well as to test new pharmacological interventions. In recent years, a number of large animal models, primarily pigs, goats, dog and horses have been used in AF research. These animals can to a certain extent recapitulate the human pathophysiological characteristics and serve as valuable tools in investigating new pharmacological interventions for treating AF. This review focuses on anti-arrhythmic investigations in large animals. Initially, spontaneous AF in small and large mammals is discussed. This is followed by a short presentation of frequently used methods for inducing short- and long-term AF. The major focus of the review is on anti-arrhythmic compounds either frequently used in the human clinic (ranolazine, flecainide, vernakalant and amiodarone) or being promising new AF medicine candidates (IK,Ach , ISK,Ca and IK2P blockers).
Collapse
Affiliation(s)
- Arnela Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
7
|
Electrophysiological effects of ranolazine in a goat model of lone atrial fibrillation. Heart Rhythm 2020; 18:615-622. [PMID: 33232809 DOI: 10.1016/j.hrthm.2020.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is still an unmet need for pharmacologic treatment of atrial fibrillation (AF) with few effects on ventricular electrophysiology. Ranolazine is an antiarrhythmic drug reported to have strong atrial selectivity. OBJECTIVE The purpose of this study was to investigate the electrophysiological effects of ranolazine in atria with AF-induced electrical remodeling in a model of lone AF in awake goats. METHODS Electrode patches were implanted on the atrial epicardium of 8 Dutch milk goats. Experiments were performed at baseline and after 2 and 14 days of electrically maintained AF. Several electrophysiological parameters and AF episode duration were measured during infusion of vehicle and different doses of ranolazine (target plasma levels 4, 8, and 16 μM, respectively). RESULTS The highest dose of ranolazine significantly prolonged atrial effective refractory period and decreased atrial conduction velocity at baseline and after 2 days of AF. After 2 weeks of AF, ranolazine prolonged the p5 and p50 of AF cycle length distribution in a dose-dependent manner but was not effective in restoring sinus rhythm. No adverse ventricular arrhythmic events (eg, premature ventricular beats or signs of hemodynamic instability) were observed during infusion of ranolazine at any point in the study. CONCLUSION The lowest investigated dose of ranolazine, which is expected to block both late INa and atrial peak INa, had no effect on the investigated electrophysiological parameters. The highest dose affected both atrial and ventricular electrophysiological parameters at different stages of AF-induced remodeling but was not efficacious in cardioverting AF to sinus rhythm in a goat model of lone AF.
Collapse
|
8
|
Systematic review of pre-clinical therapies for post-operative atrial fibrillation. PLoS One 2020; 15:e0241643. [PMID: 33147274 PMCID: PMC7641461 DOI: 10.1371/journal.pone.0241643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/16/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Post-operative atrial fibrillation (POAF) is a frequent cardiothoracic surgery complication that increases hospital stay, mortality and costs. Despite decades of research, there has been no systematic overview and meta-analysis of preclinical therapies for POAF in animal models. METHODS We performed a systematic search of MEDLINE and EMBASE from their inception through September 2020 to determine the effect of preclinical POAF therapies on primary efficacy outcomes using a prospectively registered protocol (CRD42019155649). Bias was assessed using the SYRCLE tool and CAMARADES checklist. RESULTS Within the 26 studies that fulfilled our inclusion criteria, we identified 4 prevention strategies including biological (n = 5), dietary (n = 2), substrate modification (n = 2), and pharmacological (n = 17) interventions targeting atrial substrate, cellular electrophysiology or inflammation. Only one study altered more than 1 pathophysiological mechanism. 73% comprised multiple doses of systemic therapies. Large animal models were used in 81% of the studies. Preclinical therapies altogether attenuated atrial fibrosis (SMD -2.09; 95% confidence interval [CI] -2.95 to -1.22; p < 0.00001; I2 = 47%), AF inducibility (RR 0.40; 95% CI 0.21 to 0.79; p = 0.008; I2 = 39%), and AF duration (SMD -2.19; 95% CI -3.05 to -1.32; p < 0.00001; I2 = 50%). However, all the criteria needed to evaluate the risk of bias was unclear for many outcomes and only few interventions were independently validated by more than 1 research group. CONCLUSION Treatments with therapies targeting atrial substrate, cellular electrophysiology or inflammation reduced POAF in preclinical animal models compared to controls. Improving the quality of outcome reporting, independently validating promising approaches and targeting complimentary drivers of POAF are promising means to improve the clinical translation of novel therapies for this highly prevalent and clinically meaningful disease.
Collapse
|
9
|
Aidonidis I, Simopoulos V, Stravela S, Dipla K, Stamatiou R, Hatziefthimiou A, Molyvdas PA. Ranolazine depresses conduction of rapid atrial depolarizations in a beating rabbit heart model. J Interv Card Electrophysiol 2020; 62:153-159. [PMID: 32996039 DOI: 10.1007/s10840-020-00865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/04/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Previous clinical studies have shown that ranolazine (RAN) added to amiodarone (AMIO) might accelerate the termination of recent-onset atrial fibrillation. This study was undertaken to delineate possible mechanisms that contribute to the enhancement of the antiarrhythmic efficacy of RAN-AMIO coadministration. METHODS Ten rabbits were anesthetized and two monophasic action potential (MAP) catheters were sequentially inserted into the right atrium. One MAP electrode was used to pace and record; the other electrode was used only for recording MAP from an adjacent atrial region. Intraatrial conduction time (IACT), 2:1 intraatrial conduction block (IACB), and atrial post-repolarization refractoriness (aPRR) were consecutively determined by high-rate atrial burst pacing and programmed stimulation, respectively. All parameters were evaluated during baseline and following AMIO (3 mg/kg iv) or AMIO+RAN (2.4 mg/kg iv bolus +0.134 mg/kg/min maintenance infusion). RESULTS The IACT remained unchanged post AMIO compared with baseline (37.6 ± 3.8 vs 36.4 ± 2.4 ms), whereas the addition of RAN to AMIO significantly prolonged IACT (50.4 ± 3.6 ms, p < .001). The pacing cycle length producing 2:1 IACB was 101.2 ± 21.7 ms at baseline , 117.5 ± 15 ms after AMIO (p = 0.265), and 150 ± 14 ms after AMIO+RAN (p < .001). Baseline aPRR was longer following AMIO treatment (35 ± 5 vs 50 ± 9 ms, p < .01) but remarkably prolonged with RAN supplementation (105 ± 11 ms, p < .001). CONCLUSIONS RAN significantly prolonged the propagation time of rapid atrial depolarizations and potentiated the AMIO-induced moderate increases in aPRR. These mechanisms possibly contribute to the earlier termination of atrial fibrillation when RAN is co-administered with AMIO.
Collapse
Affiliation(s)
- I Aidonidis
- Department of Physiology, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| | - V Simopoulos
- Department of Cardiac & Thoracic Surgery, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - S Stravela
- Department of Cardiac & Thoracic Surgery, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - K Dipla
- Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - R Stamatiou
- Department of Physiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - A Hatziefthimiou
- Department of Physiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - P-A Molyvdas
- Department of Physiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
10
|
Simopoulos V, Hevas A, Hatziefthimiou A, Dipla K, Skoularigis I, Tsilimingas N, Aidonidis I. Amiodarone plus Ranolazine for Conversion of Post-Cardiac Surgery Atrial Fibrillation: Enhanced Effectiveness in Reduced Versus Preserved Ejection Fraction Patients. Cardiovasc Drugs Ther 2019; 32:559-565. [PMID: 30255400 DOI: 10.1007/s10557-018-6832-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Ranolazine (RAN) added to amiodarone (AMIO) has been shown to accelerate termination of postoperative atrial fibrillation (POAF) following coronary artery bypass surgery in patients without heart failure (HF). This study aimed to investigate if treatment efficacy with AMIO or AMIO + RAN differs between patients with concomitant HF with reduced or preserved ejection fraction (HFrEF or HFpEF). METHODS Patients with POAF and HFrEF (n = 511, 446 males; 65 ± 9 years) and with HFpEF (n = 301, 257 males; 66 ± 10 years) were enrolled. Onset of AF occurred 2.15 ± 1.0 days after cardiac surgery, and patients within each group were randomly assigned to receive either AMIO monotherapy (300 mg in 30 min + 1125 mg in 36 h iv) or AMIO+RAN combination (500 mg po + 375 mg, after 6 h and 375 mg twice daily thereafter). Primary endpoint was the time to conversion of POAF within 36 h after initiation of treatment. RESULTS AMIO restored sinus rhythm earlier in HFrEF vs. in HFpEF patients (24.3 ± 4.6 vs. 26.8 ± 2.8 h, p < 0.0001). AMIO + RAN converted POAF faster than AMIO alone in both HFrEF and HFpEF groups, with conversion times 10.4 ± 4.5 h in HFrEF and 12.2 ± 1.1 h in HFpEF patients (p < 0.0001). Left atrial diameter was significantly greater in HFrEF vs. HFpEF patients (48.2 ± 2.6 vs. 35.2 ± 2.9 mm, p < 0.0001). No serious adverse drug effects were observed during AF or after restoration to sinus rhythm in any of the patients enrolled. CONCLUSION AMIO alone or in combination with RAN converted POAF faster in patients with reduced EF than in those with preserved EF. Thus, AMIO + RAN seems to be a valuable alternative treatment for terminating POAF in HFrEF patients.
Collapse
Affiliation(s)
- Vasilios Simopoulos
- Department of Thoracic & Cardiovascular Surgery, University Hospital of Larissa, Larissa, Greece
| | - Athanasios Hevas
- Department of Thoracic & Cardiovascular Surgery, University Hospital of Larissa, Larissa, Greece
| | - Apostolia Hatziefthimiou
- Department of Physiology, School of Medicine, University of Thessaly, Larissa Medical School, 41500, Larissa, Greece
| | - Konstantina Dipla
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Skoularigis
- Department of Cardiology, University General Hospital of Larissa, Larissa, Greece
| | - Nikolaos Tsilimingas
- Department of Thoracic & Cardiovascular Surgery, University Hospital of Larissa, Larissa, Greece
| | - Isaac Aidonidis
- Department of Physiology, School of Medicine, University of Thessaly, Larissa Medical School, 41500, Larissa, Greece.
| |
Collapse
|
11
|
|
12
|
Antiarrhythmic Effects of Combining Dofetilide and Ranolazine in a Model of Acutely Induced Atrial Fibrillation in Horses. J Cardiovasc Pharmacol 2019; 71:26-35. [PMID: 29068807 PMCID: PMC5768216 DOI: 10.1097/fjc.0000000000000541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is Available in the Text. Background: Antiarrhythmic compounds against atrial fibrillation (AF) often have reduced efficacy and may display cardiac and/or noncardiac toxicity. Efficacy can be improved by combining 2 compounds with distinct mechanisms, and it may be possible to use lower doses of each compound, thereby reducing the likelihood of adverse side effects. The purpose of this study was to investigate whether the effective doses of dofetilide and ranolazine can be reduced if the drugs are combined. Methods: Dofetilide, ranolazine, and a combination of these were administered in 4 incremental dosing regimens to horses with acutely pacing-induced AF. Time to cardioversion, atrial effective refractory period, and AF vulnerability and duration were assessed. Results: Of 8 horses, 6 cardioverted to sinus rhythm after infusion with a combination of 0.889 μg/kg dofetilide and 0.104 mg/kg ranolazine. Two horses cardioverted with 0.104 mg/kg ranolazine alone, and 3 cardioverted with 0.889 μg/kg dofetilide alone. The combination therapy decreased AF vulnerability (P < 0.05) and AF duration (P < 0.05). No change in atrial effective refractory period was detected with any of the drugs. Conclusions: The combination of dofetilide and ranolazine showed increased antiarrhythmic effects on acutely induced AF in horses, affecting time to cardioversion, AF vulnerability, and AF duration.
Collapse
|
13
|
Bazoukis G, Tse G, Letsas KP, Thomopoulos C, Naka KK, Korantzopoulos P, Bazoukis X, Michelongona P, Papadatos SS, Vlachos K, Liu T, Efremidis M, Baranchuk A, Stavrakis S, Tsioufis C. Impact of ranolazine on ventricular arrhythmias - A systematic review. J Arrhythm 2018; 34:124-128. [PMID: 29657587 PMCID: PMC5891418 DOI: 10.1002/joa3.12031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Ranolazine is a new medication for the treatment of refractory angina. However, except its anti-anginal properties, it has been found to act as an anti-arrhythmic. The aim of our systematic review is to present the existing data about the impact of ranolazine in ventricular arrhythmias. We searched MEDLINE and Cochrane databases as well clinicaltrials.gov until September 1, 2017 to find all studies (clinical trials, observational studies, case reports/series) reported data about the impact of ranolazine in ventricular arrhythmias. Our search revealed 14 studies (3 clinical trials, 2 observational studies, 8 case reports, 1 case series). These data reported a beneficial impact of ranolazine in ventricular tachycardia/fibrillation, premature ventricular beats, and ICD interventions in different clinical settings. The existing data highlight the anti-arrhythmic properties of ranolazine in ventricular arrhythmias.
Collapse
Affiliation(s)
- George Bazoukis
- Department of Cardiology Catheterization Laboratory Evangelismos General Hospital of Athens Athens Greece
| | - Gary Tse
- Department of Medicine and Therapeutics Faculty of Medicine Chinese University of Hong Kong Hong Kong China.,Li Ka Shing Institute of Health Sciences Faculty of Medicine Chinese University of Hong Kong Hong Kong China
| | - Konstantinos P Letsas
- Department of Cardiology Catheterization Laboratory Evangelismos General Hospital of Athens Athens Greece
| | | | - Katerina K Naka
- Second Department of Cardiology School of Medicine University of Ioannina Ioannina Greece
| | | | - Xenophon Bazoukis
- Department of Cardiology General Hospital of Ioannina, "G Hatzikosta" Ioannina Greece
| | - Paschalia Michelongona
- Department of Cardiology Catheterization Laboratory Evangelismos General Hospital of Athens Athens Greece
| | - Stamatis S Papadatos
- Faculty Department of Internal Medicine Athens School of Medicine Sotiria General Hospital National and Kapodistrian University of Athens Athens Greece
| | - Konstantinos Vlachos
- Department of Cardiology Catheterization Laboratory Evangelismos General Hospital of Athens Athens Greece
| | - Tong Liu
- Department of Cardiology Tianjin Institute of Cardiology Second Hospital of Tianjin Medical University Tianjin China
| | - Michael Efremidis
- Department of Cardiology Catheterization Laboratory Evangelismos General Hospital of Athens Athens Greece
| | - Adrian Baranchuk
- Division of Cardiology, Electrophysiology and Pacing Kingston General Hospital Queen's University Kingston ON Canada
| | - Stavros Stavrakis
- University of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Costas Tsioufis
- First Cardiology Clinic Hippokration Hospital University of Athens Athens Greece
| |
Collapse
|
14
|
|
15
|
TSANAXIDIS NIKOS, AIDONIDIS ISAAC, HATZIEFTHIMIOU APOSTOLIA, DASKALOPOULOU STELLAS, GIAMOUZIS GRIGORIOS, TRIPOSKIADIS FILIPPOS, SKOULARIGIS IOANNIS. Ranolazine Added to Amiodarone Facilitates Earlier Conversion of Atrial Fibrillation Compared to Amiodarone-Only Therapy. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2017; 40:372-378. [DOI: 10.1111/pace.13048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 01/05/2023]
Affiliation(s)
- NIKOS TSANAXIDIS
- Department of Cardiology at University Hospital of Larissa; Larissa Greece
| | - ISAAC AIDONIDIS
- Department of Physiology, Medical School of Larissa; University of Thessaly; Larissa Greece
| | | | - STELLA S. DASKALOPOULOU
- Division of Internal Medicine and Experimental Medicine, Department of Medicine; McGill University Health Centre; Canada
| | | | | | | |
Collapse
|
16
|
Gong M, Zhang Z, Fragakis N, Korantzopoulos P, Letsas KP, Li G, Yan GX, Liu T. Role of ranolazine in the prevention and treatment of atrial fibrillation: A meta-analysis of randomized clinical trials. Heart Rhythm 2016; 14:3-11. [PMID: 27746384 DOI: 10.1016/j.hrthm.2016.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Randomized controlled trials (RCTs) on the use of ranolazine (RN) for prevention and cardioversion of atrial fibrillation (AF) have yielded conflicting results. OBJECTIVE The purpose of this study was to conduct a meta-analysis of RCTs to examine the potential role of RN in the prevention and cardioversion of AF. METHODS PubMed and EMBASE were searched until June 2016. Of 484 initially identified studies, 8 RCTs were finally analyzed. RESULTS The analysis of RCTs showed that RN significantly reduced the incidence of AF compared to the control group in various clinical settings, such as after cardiac surgery, in acute coronary syndromes, and post-electrical cardioversion of AF (relative risk [RR] 0.67, 95% confidence interval [CI] 0.52-0.87, Z = 3.06, P = .002). Furthermore, a higher conversion rate of AF from the combined use of RN and amiodarone compared to amiodarone alone (RR 1.23, 95% CI 1.08-1.40, Z = 3.07, P = .002) was clear, with conversion time significantly shorter in RN plus amiodarone compared to the amiodarone group (weighted mean difference [WMD] = -10.38 hours, 95% CI -18.18 to -2.57, Z = 2.61, P = .009). CONCLUSION Our meta-analysis suggests that RN may be effective in AF prevention, whereas it potentiates and accelerates the conversion effect of amiodarone of recent-onset AF. Larger RCTs with long-term follow-up in diverse clinical settings are needed to further clarify the impact of RN on AF therapy.
Collapse
Affiliation(s)
- Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Nikolaos Fragakis
- Third Cardiology Department, Hippokrateion Hospital, Aristotle University, Medical School, Thessaloniki, Greece
| | | | - Konstantinos P Letsas
- Second Department of Cardiology, Laboratory of Cardiac Electrophysiology, "Evangelismos" General Hospital of Athens, Athens, Greece
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Gan-Xin Yan
- Lankenau Institute for Medical Research and Lankenau Medical Center, Wynnewood, Pennsylvania,; Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China.
| |
Collapse
|
17
|
Zou D, Geng N, Chen Y, Ren L, Liu X, Wan J, Guo S, Wang S. Ranolazine improves oxidative stress and mitochondrial function in the atrium of acetylcholine-CaCl2 induced atrial fibrillation rats. Life Sci 2016; 156:7-14. [DOI: 10.1016/j.lfs.2016.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 05/08/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
|
18
|
Shenasa M, Assadi H, Heidary S, Shenasa H. Ranolazine: Electrophysiologic Effect, Efficacy, and Safety in Patients with Cardiac Arrhythmias. Card Electrophysiol Clin 2016; 8:467-479. [PMID: 27261835 DOI: 10.1016/j.ccep.2016.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ranolazine is currently approved as an antianginal agent in patients with chronic angina (class IIA). Ranolazine exhibits antiarrhythmic effects that are related to its multichannel blocking effect, predominantly inhibition of late sodium (late INa) current and the rapid potassium rectifier current (IKr), as well as ICa, late ICa, and INa-Ca. It also suppresses the early and delayed after depolarizations. Ranolazine is effective in the suppression of atrial and ventricular arrhythmias (off-label use) without significant proarrhythmic effect. Currently, ongoing trials are evaluating the efficacy and safety of ranolazine in patients with cardiac arrhythmias; preliminary results suggest that ranolazine, when used alone or in combination with dronedarone, is safe and effective in reducing atrial fibrillation. Ranolazine is not currently approved by the US Food and Drug Administration as an antiarrhythmic agent.
Collapse
Affiliation(s)
- Mohammad Shenasa
- Heart and Rhythm Medical Group, Department of Cardiovascular Services, O'Connor Hospital, 105 North Bascom Avenue, San Jose, CA 95128, USA.
| | - Hamid Assadi
- Heart and Rhythm Medical Group, Department of Cardiovascular Services, O'Connor Hospital, 105 North Bascom Avenue, San Jose, CA 95128, USA
| | - Shahriar Heidary
- Heart and Rhythm Medical Group, Department of Cardiovascular Services, O'Connor Hospital, 105 North Bascom Avenue, San Jose, CA 95128, USA
| | - Hossein Shenasa
- Heart and Rhythm Medical Group, Department of Cardiovascular Services, O'Connor Hospital, 105 North Bascom Avenue, San Jose, CA 95128, USA
| |
Collapse
|
19
|
|