1
|
Yang J, Tang Q, Zeng Y. Melatonin: Potential avenue for treating iron overload disorders. Ageing Res Rev 2022; 81:101717. [PMID: 35961513 DOI: 10.1016/j.arr.2022.101717] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 02/08/2023]
Abstract
Iron overload as a highly risk factor, can be found in almost all human chronic and common diseases. Iron chelators are often used to treat iron overload; however, patient adherence to these chelators is poor due to obvious side effects and other disadvantages. Numerous studies have shown that melatonin has a high iron chelation ability and direct free radical scavenging activity, and can inhibit the lipid peroxidation process caused by iron overload. Therefore, melatonin may become potential complementary therapy for iron overload-related disorders due to its iron chelating and antioxidant activities. Here, the research progress of iron overload is reviewed and the therapeutic potential of melatonin in the treatment of iron overload is analyzed. In addition, studies related to the protective effects of melatonin on oxidative damage induced by iron overload are discussed. This review provides a foundation for preventing and treating iron homeostasis disorders with melatonin.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qinghua Tang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Lucas D, Frachon I, Barnier A, Edy P, Tissot V, Dewitte JD, Lodde B. Pneumopathie atypique chez un soudeur : sidérose pulmonaire ? Rev Mal Respir 2022; 39:170-174. [DOI: 10.1016/j.rmr.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
|
3
|
Banks DE, Morris MJ. Inhalational Constrictive Bronchiolitis: The Evolution of our Understanding of this Disease. Lung 2021; 199:327-334. [PMID: 34415399 DOI: 10.1007/s00408-021-00466-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
The case definition of inhalational constrictive bronchiolitis (CB) has changed over the generations. We identify changes in the description of this illness over time associated with different exposures and present the natural history of CB in a case attributed to military burn pit exposure. The initial descriptions of this disease began with nitric acid spills and silage exposures. In these events, there was an acute exposure, typically a short-term resolution of the adverse respiratory events, and then a progression, leading to disability or a respiratory death. The life-saving role of corticosteroid therapy in this situation was recognized. War gas exposures of World War I and then Saddam Hussein's use of sulfur mustard gas in the Iran-Iraq War followed. More recently the findings associated with diacetyl exposure in commercial popcorn workers remained consistent with previously described presentations, but then the clinical presentation in troops returning from deployment to Southwest Asia was very different, yet with the same histologic findings. We recognize unreconciled disparities in the clinical, physiologic, and imaging presentation in those with inhalational bronchiolitis and acknowledge this as perhaps one of the difficult diagnoses in respiratory medicine.
Collapse
Affiliation(s)
- Daniel E Banks
- Orlando Veterans Administration Medical Center, Room 4H811, 13800 Veterans Way, Orlando, FL, 32827, USA.
| | - Michael J Morris
- Pulmonary and Critical Care Service, Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, TX, USA
| |
Collapse
|
4
|
Huang C, Liang Y, Zeng X, Yang X, Xu D, Gou X, Sathiaseelan R, Senavirathna LK, Wang P, Liu L. Long Noncoding RNA FENDRR Exhibits Antifibrotic Activity in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2020; 62:440-453. [PMID: 31697569 PMCID: PMC7110975 DOI: 10.1165/rcmb.2018-0293oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/07/2019] [Indexed: 01/01/2023] Open
Abstract
Abnormal activation of lung fibroblasts contributes to the initiation and progression of idiopathic pulmonary fibrosis (IPF). The objective of the present study was to investigate the role of fetal-lethal noncoding developmental regulatory RNA (FENDRR) in the activation of lung fibroblasts. Dysregulated long noncoding RNAs in IPF lungs were identified by next-generation sequencing analysis from the two online datasets. FENDRR expression in lung tissues from patients with IPF and mice with bleomycin-induced pulmonary fibrosis was determined by quantitative real-time PCR. IRP1 (iron-responsive element-binding protein 1), a protein partner of FENDRR, was identified by RNA pulldown-coupled mass spectrometric analysis and confirmed by RNA immunoprecipitation. The interaction region between FENDRR and IRP1 was determined by cross-linking immunoprecipitation. The in vivo role of FENDRR in pulmonary fibrosis was studied using adenovirus-mediated gene transfer in mice. The expression of FENDRR was downregulated in fibrotic human and mouse lungs as well as in primary lung fibroblasts isolated from bleomycin-treated mice. TGF-β1 (transforming growth factor-β1)-SMAD3 signaling inhibited FENDRR expression in lung fibroblasts. FENDRR was preferentially localized in the cytoplasm of adult lung fibroblasts and bound IRP1, suggesting its role in iron metabolism. FENDRR reduced pulmonary fibrosis by inhibiting fibroblast activation by reducing iron concentration and acting as a competing endogenous RNA of the profibrotic microRNA-214. Adenovirus-mediated FENDRR gene transfer in the mouse lung attenuated bleomycin-induced lung fibrosis and improved lung function. Our data suggest that FENDRR is an antifibrotic long noncoding RNA and a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Xiangming Zeng
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Xuxu Gou
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Roshini Sathiaseelan
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Lakmini Kumari Senavirathna
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Pengcheng Wang
- Department of Immunology and Microbiology, Medical School of Jinan University, Guangdong, China
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, and
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| |
Collapse
|
5
|
|