1
|
Franco-Acevedo A, Comes J, Mack JJ, Valenzuela NM. New insights into maladaptive vascular responses to donor specific HLA antibodies in organ transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1146040. [PMID: 38993843 PMCID: PMC11235244 DOI: 10.3389/frtra.2023.1146040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 07/13/2024]
Abstract
Transplant vasculopathy (TV) causes thickening of donor blood vessels in transplanted organs, and is a significant cause of graft loss and mortality in allograft recipients. It is known that patients with repeated acute rejection and/or donor specific antibodies are predisposed to TV. Nevertheless, the exact molecular mechanisms by which alloimmune injury culminates in this disease have not been fully delineated. As a result of this incomplete knowledge, there is currently a lack of effective therapies for this disease. The immediate intracellular signaling and the acute effects elicited by anti-donor HLA antibodies are well-described and continuing to be revealed in deeper detail. Further, advances in rejection diagnostics, including intragraft gene expression, provide clues to the inflammatory changes within allografts. However, mechanisms linking these events with long-term outcomes, particularly the maladaptive vascular remodeling seen in transplant vasculopathy, are still being delineated. New evidence demonstrates alterations in non-coding RNA profiles and the occurrence of endothelial to mesenchymal transition (EndMT) during acute antibody-mediated graft injury. EndMT is also readily apparent in numerous settings of non-transplant intimal hyperplasia, and lessons can be learned from advances in those fields. This review will provide an update on these recent developments and remaining questions in our understanding of HLA antibody-induced vascular damage, framed within a broader consideration of manifestations and implications across transplanted organ types.
Collapse
Affiliation(s)
- Adriana Franco-Acevedo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Johanna Comes
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Julia J Mack
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA, United States
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Ravindranath MH, El Hilali F, Amato-Menker CJ, El Hilali H, Selvan SR, Filippone EJ. Role of HLA-I Structural Variants and the Polyreactive Antibodies They Generate in Immune Homeostasis. Antibodies (Basel) 2022; 11:antib11030058. [PMID: 36134954 PMCID: PMC9495617 DOI: 10.3390/antib11030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Cell-surface HLA-I molecules consisting of β2-microglobulin (β2m) associated heavy chains (HCs), referred to as Face-1, primarily present peptides to CD8+ T-cells. HCs consist of three α-domains, with selected amino acid sequences shared by all alleles of all six isoforms. The cell-surface HLA undergoes changes upon activation by pathological conditions with the expression of β2m-free HCs (Face-2) resulting in exposure of β2m-masked sequences shared by almost all alleles and the generation of HLA-polyreactive antibodies (Abs) against them. Face-2 may homodimerize or heterodimerize with the same (Face-3) or different alleles (Face-4) preventing exposure of shared epitopes. Non-allo immunized males naturally carry HLA-polyreactive Abs. The therapeutic intravenous immunoglobulin (IVIg) purified from plasma of thousands of donors contains HLA-polyreactive Abs, admixed with non-HLA Abs. Purified HLA-polyreactive monoclonal Abs (TFL-006/007) generated in mice after immunizing with Face-2 are documented to be immunoregulatory by suppressing or activating different human lymphocytes, much better than IVIg. Our objectives are (a) to elucidate the complexity of the HLA-I structural variants, and their Abs that bind to both shared and uncommon epitopes on different variants, and (b) to examine the roles of those Abs against HLA-variants in maintaining immune homeostasis. These may enable the development of personalized therapeutic strategies for various pathological conditions.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Emeritus Research Scientist, Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
- Correspondence:
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibn Zohr University, Agadir 80000, Morocco
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Hajar El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibn Zohr University, Agadir 80000, Morocco
| | - Senthamil R. Selvan
- Division of Immunology and Hematology Devices, OHT 7: Office of In Vitro Diagnostics, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA
| |
Collapse
|
3
|
Muntjewerff EM, Meesters LD, van den Bogaart G, Revelo NH. Reverse Signaling by MHC-I Molecules in Immune and Non-Immune Cell Types. Front Immunol 2020; 11:605958. [PMID: 33384693 PMCID: PMC7770133 DOI: 10.3389/fimmu.2020.605958] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Major histocompatibility complex (MHC) molecules are well-known for their role in antigen (cross-) presentation, thereby functioning as key players in the communication between immune cells, for example dendritic cells (DCs) and T cells, or immune cells and their targets, such as T cells and virus-infected or tumor cells. However, much less appreciated is the fact that MHC molecules can also act as signaling receptors. In this process, here referred to as reverse MHC class I (MHC-I) signaling, ligation of MHC molecules can lead to signal-transduction and cell regulatory effects in the antigen presenting cell. In the case of MHC-I, reverse signaling can have several outcomes, including apoptosis, migration, induced or reduced proliferation and cytotoxicity towards target cells. Here, we provide an overview of studies showing the signaling pathways and cell outcomes upon MHC-I stimulation in various immune and non-immune cells. Signaling molecules like RAC-alpha serine/threonine-protein kinase (Akt1), extracellular signal-regulated kinases 1/2 (ERK1/2), and nuclear factor-κB (NF-κB) were common signaling molecules activated upon MHC-I ligation in multiple cell types. For endothelial and smooth muscle cells, the in vivo relevance of reverse MHC-I signaling has been established, namely in the context of adverse effects after tissue transplantation. For other cell types, the role of reverse MHC-I signaling is less clear, since aspects like the in vivo relevance, natural MHC-I ligands and the extended downstream pathways are not fully known.The existing evidence, however, suggests that reverse MHC-I signaling is involved in the regulation of the defense against bacterial and viral infections and against malignancies. Thereby, reverse MHC-I signaling is a potential target for therapies against viral and bacterial infections, cancer immunotherapies and management of organ transplantation outcomes.
Collapse
Affiliation(s)
- Elke M Muntjewerff
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luca D Meesters
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Molecular Microbiology and Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
4
|
Kramer CSM, Franke‐van Dijk MEI, Bakker KH, Uyar‐Mercankaya M, Karahan GE, Roelen DL, Claas FHJ, Heidt S. Generation and reactivity analysis of human recombinant monoclonal antibodies directed against epitopes on HLA-DR. Am J Transplant 2020; 20:3341-3353. [PMID: 32342632 PMCID: PMC7754395 DOI: 10.1111/ajt.15950] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/25/2023]
Abstract
In kidney transplantation, eplet mismatches between donor and recipient have been associated with de novo donor-specific antibody development. Eplets are theoretically defined configurations of polymorphic amino acids and require experimental verification to establish whether they can be bound by alloantibodies. Human HLA-specific monoclonal antibodies (mAbs) have been instrumental for this purpose but are largely lacking for HLA class II. In this study, we isolated single HLA-DR-specific memory B cells from peripheral blood of immunized individuals (n = 3) using HLA class II tetramers to generate recombinant human HLA-DR antigen-reactive mAbs (n = 5). Comparison of the amino acid composition of the reactive HLA alleles in relation to the antibody reactivity patterns led to identification of 3 configurations, 70Q 73A, 31F 32Y 37Y, and 14K 25Q recognized, respectively, by HLA-DRB1*01:01, HLA-DRB1*04:01, and HLA-DRB1*07:01 antigen-reactive mAbs. The first 2 correspond to eplets 70QA and 31FYY and can now be considered antibody verified. The latter indicates that eplet 25Q needs to be redefined before being considered as antibody verified. Generation and reactivity analysis of human HLA-DR mAbs allowed for identification of amino acid configurations corresponding to known eplets, whereas the other patterns may be used to redefine eplets with similar, but not identical predicted amino acid composition.
Collapse
Affiliation(s)
- Cynthia S. M. Kramer
- Department of Immunohematology and Blood TransfusionLeiden University Medical CentreLeidenThe Netherlands
| | | | - Kim H. Bakker
- Department of Immunohematology and Blood TransfusionLeiden University Medical CentreLeidenThe Netherlands
| | - Merve Uyar‐Mercankaya
- Department of Immunohematology and Blood TransfusionLeiden University Medical CentreLeidenThe Netherlands
| | - Gonca E. Karahan
- Department of Immunohematology and Blood TransfusionLeiden University Medical CentreLeidenThe Netherlands
| | - Dave L. Roelen
- Department of Immunohematology and Blood TransfusionLeiden University Medical CentreLeidenThe Netherlands
| | - Frans H. J. Claas
- Department of Immunohematology and Blood TransfusionLeiden University Medical CentreLeidenThe Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood TransfusionLeiden University Medical CentreLeidenThe Netherlands
| |
Collapse
|
5
|
Kummer L, Zaradzki M, Vijayan V, Arif R, Weigand MA, Immenschuh S, Wagner AH, Larmann J. Vascular Signaling in Allogenic Solid Organ Transplantation - The Role of Endothelial Cells. Front Physiol 2020; 11:443. [PMID: 32457653 PMCID: PMC7227440 DOI: 10.3389/fphys.2020.00443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Graft rejection remains the major obstacle after vascularized solid organ transplantation. Endothelial cells, which form the interface between the transplanted graft and the host’s immunity, are the first target for host immune cells. During acute cellular rejection endothelial cells are directly attacked by HLA I and II-recognizing NK cells, macrophages, and T cells, and activation of the complement system leads to endothelial cell lysis. The established forms of immunosuppressive therapy provide effective treatment options, but the treatment of chronic rejection of solid organs remains challenging. Chronic rejection is mainly based on production of donor-specific antibodies that induce endothelial cell activation—a condition which phenotypically resembles chronic inflammation. Activated endothelial cells produce chemokines, and expression of adhesion molecules increases. Due to this pro-inflammatory microenvironment, leukocytes are recruited and transmigrate from the bloodstream across the endothelial monolayer into the vessel wall. This mononuclear infiltrate is a hallmark of transplant vasculopathy. Furthermore, expression profiles of different cytokines serve as clinical markers for the patient’s outcome. Besides their effects on immune cells, activated endothelial cells support the migration and proliferation of vascular smooth muscle cells. In turn, muscle cell recruitment leads to neointima formation followed by reduction in organ perfusion and eventually results in tissue injury. Activation of endothelial cells involves antibody ligation to the surface of endothelial cells. Subsequently, intracellular signaling pathways are initiated. These signaling cascades may serve as targets to prevent or treat adverse effects in antibody-activated endothelial cells. Preventive or therapeutic strategies for chronic rejection can be investigated in sophisticated mouse models of transplant vasculopathy, mimicking interactions between immune cells and endothelium.
Collapse
Affiliation(s)
- Laura Kummer
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcin Zaradzki
- Institute of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Rawa Arif
- Institute of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jan Larmann
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Kramer CSM, Franke-van Dijk MEI, Priddey AJ, Pongrácz T, Gnudi E, Car H, Karahan GE, van Beelen E, Zilvold-van den Oever CCC, Rademaker HJ, de Haan N, Wuhrer M, Kosmoliaptsis V, Parren PWHI, Mulder A, Roelen DL, Claas FHJ, Heidt S. Recombinant human monoclonal HLA antibodies of different IgG subclasses recognising the same epitope: Excellent tools to study differential effects of donor-specific antibodies. HLA 2019; 94:415-424. [PMID: 31403241 PMCID: PMC6851673 DOI: 10.1111/tan.13664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/11/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
In the field of transplantation, the humoural immune response against mismatched HLA antigens of the donor is associated with inferior graft survival, but not in every patient. Donor‐specific HLA antibodies (DSA) of different immunoglobulin G (IgG) subclasses may have differential effects on the transplanted organ. Recombinant technology allows for the generation of IgG subclasses of a human monoclonal antibody (mAb), while retaining its epitope specificity. In order to enable studies on the biological function of IgG subclass HLA antibodies, we used recombinant technology to generate recombinant human HLA mAbs from established heterohybridomas. We generated all four IgG subclasses of a human HLA class I and class II mAb and showed that the different subclasses had a comparable affinity, normal human Fc glycosylation, and retained HLA epitope specificity. For both mAbs, the IgG1 and IgG3 isotypes were capable of binding complement component 3d (C3d) and efficient in complement‐dependent cell lysis against their specific targets, while the IgG2 and IgG4 subclasses were not able to induce cytotoxicity. Considering the fact that the antibody‐binding site and properties remained unaffected, these IgG subclass HLA mAbs are excellent tools to study the function of individual IgG subclass HLA class I and class II‐specific antibodies in a controlled fashion.
Collapse
Affiliation(s)
- Cynthia S M Kramer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marry E I Franke-van Dijk
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tamás Pongrácz
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Gnudi
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Helena Car
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonca E Karahan
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Els van Beelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Noortje de Haan
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Paul W H I Parren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.,Lava Therapeutics, 's-Hertogenbosch, The Netherlands
| | - Arend Mulder
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Dave L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Understanding the Correlation Between DSA, Complement Activation, and Antibody-Mediated Rejection in Heart Transplant Recipients. Transplantation 2019; 102:e431-e438. [PMID: 29916988 DOI: 10.1097/tp.0000000000002333] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Donor-specific HLA antibodies (DSA) are associated with increased rates of rejection and of graft failure in cardiac transplantation. The goal of this study was to determine the association of preformed and posttransplant development of newly detected DSA (ndDSA) with antibody-mediated rejection (AMR) and characterize the clinical relevance of complement-activating DSA in heart allograft recipients. METHODS The study included 128 adult and 48 pediatric heart transplant patients transplanted between 2010 and 2013. Routine posttransplant HLA antibody testing was performed by IgG single-antigen bead test. The C3d single-antigen bead assay was used to identify complement-activating antibodies. Rejection was diagnosed using International Society for Heart and Lung Transplantation criteria. RESULTS In this study, 22 patients were transplanted with preexisting DSA, and 43 patients developed ndDSA posttransplant. Pretransplant (P < 0.05) and posttransplant (P < 0.001) ndDSA were associated with higher incidence of AMR. Patients with C3d + DSA had significantly higher incidence of AMR compared with patients with no DSA (P < 0.001) or patients with C3d-DSA (P = 0.02). Nine (36%) of 25 patients with AMR developed transplant coronary artery disease compared with 17 (15.9%) of 107 patients without AMR (P < 0.05). Among the 47 patients who received ventricular assistant device (VAD), 7 of 9 VAD+ patients with preformed DSA experienced AMR compared with 7 of 38 VAD+ patients without preformed DSA, indicating presensitization to donor HLA significantly increased the risk of AMR (P < 0.01). CONCLUSIONS Preformed and posttransplant ndDSA were associated with AMR. C3d + DSA correlates with complement deposition on the graft and higher risk of AMR which may permit the application of personalized immunotherapy targeting the complement pathway.
Collapse
|
8
|
HLA Class I and Class II-Induced Intracellular Signaling and Molecular Associations in Primary Human Endothelial Cells. Methods Mol Biol 2019. [PMID: 28994032 DOI: 10.1007/7651_2017_79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The signaling capacity of HLA molecules in vascular cells has been well established. Intracellular signaling and association with the coreceptor integrin β4 has been well-studied for HLA class I. However, little is known regarding HLA class II intracellular signaling in human endothelial cells. Investigation of HLA class II has been challenging due to the loss of HLA class II expression in cultured primary cells. Herein, we describe methods for inducing expression of endogenous alleles and loci of HLA class II molecules, as well as for studying intracellular signaling. This includes siRNA knockdown of proteins and coimmunoprecipitation of putative coreceptors for HLA in primary human aortic endothelial cells.
Collapse
|
9
|
Kubo K, Kawato Y, Nakamura K, Nakajima Y, Nakagawa TY, Hanaoka K, Oshima S, Fukahori H, Inami M, Morokata T, Higashi Y. Effective suppression of donor specific antibody production by Cathepsin S inhibitors in a mouse transplantation model. Eur J Pharmacol 2018; 838:145-152. [DOI: 10.1016/j.ejphar.2018.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/16/2018] [Accepted: 09/05/2018] [Indexed: 02/03/2023]
|
10
|
Salehi S, Sosa RA, Jin YP, Kageyama S, Fishbein MC, Rozengurt E, Kupiec-Weglinski JW, Reed EF. Outside-in HLA class I signaling regulates ICAM-1 clustering and endothelial cell-monocyte interactions via mTOR in transplant antibody-mediated rejection. Am J Transplant 2018; 18:1096-1109. [PMID: 29045076 PMCID: PMC5904014 DOI: 10.1111/ajt.14544] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 01/25/2023]
Abstract
Antibody-mediated rejection (AMR) resulting in transplant allograft vasculopathy (TAV) is the major obstacle for long-term survival of solid organ transplants. AMR is caused by donor-specific antibodies to HLA, which contribute to TAV by initiating outside-in signaling transduction pathways that elicit monocyte recruitment to activated endothelium. Mechanistic target of rapamycin (mTOR) inhibitors can attenuate TAV; therefore, we sought to understand the mechanistic underpinnings of mTOR signaling in HLA class I Ab-mediated endothelial cell activation and monocyte recruitment. We used an in vitro model to assess monocyte binding to HLA I Ab-activated endothelial cells and found mTOR inhibition reduced ezrin/radixin/moesin (ERM) phosphorylation, intercellular adhesion molecule 1 (ICAM-1) clustering, and monocyte firm adhesion to HLA I Ab-activated endothelium. Further, in a mouse model of AMR, in which C57BL/6. RAG1-/- recipients of BALB/c cardiac allografts were passively transferred with donor-specific MHC I antibodies, mTOR inhibition significantly reduced vascular injury, ERM phosphorylation, and macrophage infiltration of the allograft. Taken together, these studies indicate mTOR inhibition suppresses ERM phosphorylation in endothelial cells, which impedes ICAM-1 clustering in response to HLA class I Ab and prevents macrophage infiltration into cardiac allografts. These findings indicate a novel therapeutic application for mTOR inhibitors to disrupt endothelial cell-monocyte interactions during AMR.
Collapse
Affiliation(s)
- Sahar Salehi
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rebecca A. Sosa
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shoichi Kageyama
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enrique Rozengurt
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Surgery, University of California, Los Angeles, CA, USA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
|
12
|
Complement-Mediated Enhancement of Monocyte Adhesion to Endothelial Cells by HLA Antibodies, and Blockade by a Specific Inhibitor of the Classical Complement Cascade, TNT003. Transplantation 2017. [PMID: 28640789 PMCID: PMC5482566 DOI: 10.1097/tp.0000000000001486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. Valenzuela et al show that HLA antibody binding to human endothelial cells in vitro, triggered complement C3a and C5a deposition that mediated monocyte recruitment, and the salutary effects of inhibiting the classical complement pathway with an anti-C1s antibody. Supplemental digital content is available in the text.
Collapse
|
13
|
Valenzuela NM, Reed EF. Antibody-mediated rejection across solid organ transplants: manifestations, mechanisms, and therapies. J Clin Invest 2017; 127:2492-2504. [PMID: 28604384 DOI: 10.1172/jci90597] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Solid organ transplantation is a curative therapy for hundreds of thousands of patients with end-stage organ failure. However, long-term outcomes have not improved, and nearly half of transplant recipients will lose their allografts by 10 years after transplant. One of the major challenges facing clinical transplantation is antibody-mediated rejection (AMR) caused by anti-donor HLA antibodies. AMR is highly associated with graft loss, but unfortunately there are few efficacious therapies to prevent and reverse AMR. This Review describes the clinical and histological manifestations of AMR, and discusses the immunopathological mechanisms contributing to antibody-mediated allograft injury as well as current and emerging therapies.
Collapse
|
14
|
Mehra NK, Baranwal AK. Clinical and immunological relevance of antibodies in solid organ transplantation. Int J Immunogenet 2016; 43:351-368. [DOI: 10.1111/iji.12294] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/10/2016] [Accepted: 10/16/2016] [Indexed: 12/22/2022]
Affiliation(s)
- N. K. Mehra
- National Chair and Former Dean (Research); All India Institute of Medical Sciences; New Delhi India
| | - A. K. Baranwal
- Department of Transplant Immunology and Immunogenetics; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
15
|
Valenzuela NM, Hickey MJ, Reed EF. Antibody Subclass Repertoire and Graft Outcome Following Solid Organ Transplantation. Front Immunol 2016; 7:433. [PMID: 27822209 PMCID: PMC5075576 DOI: 10.3389/fimmu.2016.00433] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022] Open
Abstract
Long-term outcomes in solid organ transplantation are constrained by the development of donor-specific alloantibodies (DSA) against human leukocyte antigen (HLA) and other targets, which elicit antibody-mediated rejection (ABMR). However, antibody-mediated graft injury represents a broad continuum, from extensive complement activation and tissue damage compromising the function of the transplanted organ, to histological manifestations of endothelial cell injury and mononuclear cell infiltration but without concurrent allograft dysfunction. In addition, while transplant recipients with DSA as a whole fare worse than those without, a substantial minority of patients with DSA do not experience poorer graft outcome. Taken together, these observations suggest that not all DSA are equally pathogenic. Antibody effector functions are controlled by a number of factors, including antibody concentration, antigen availability, and antibody isotype/subclass. Antibody isotype is specified by many integrated signals, including the antigen itself as well as from antigen-presenting cells or helper T cells. To date, a number of studies have described the repertoire of IgG subclasses directed against HLA in pretransplant patients and evaluated the clinical impact of different DSA IgG subclasses on allograft outcome. This review will summarize what is known about the repertoire of antibodies to HLA and non-HLA targets in transplantation, focusing on the distribution of IgG subclasses, as well as the general biology, etiology, and mechanisms of injury of different humoral factors.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- UCLA Immunogenetics Center, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michelle J Hickey
- UCLA Immunogenetics Center, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elaine F Reed
- UCLA Immunogenetics Center, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Ren K, Lu X, Yao N, Chen Y, Yang A, Chen H, Zhang J, Wu S, Shi X, Wang C, Sun X. Focal adhesion kinase overexpression and its impact on human osteosarcoma. Oncotarget 2016; 6:31085-103. [PMID: 26393679 PMCID: PMC4741590 DOI: 10.18632/oncotarget.5044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 08/24/2015] [Indexed: 11/25/2022] Open
Abstract
Focal adhesion kinase (FAK) has been implicated in tumorigenesis in various malignancies. We sought to examine the expression patterns of FAK and the activated form, phosphorylated FAK (pFAK), in human osteosarcoma and to investigate the correlation of FAK expression with clinicopathologic parameters and prognosis. In addition, the functional consequence of manipulating the FAK protein level was investigated in human osteosarcoma cell lines. Immunohistochemical staining was used to detect FAK and pFAK in pathologic archived materials from 113 patients with primary osteosarcoma. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognoses. The role of FAK in the cytological behavior of MG63 and 143B human osteosarcoma cell lines was studied via FAK protein knock down with siRNA. Cell proliferation, migration, invasiveness and apoptosis were assessed using the CCK8, Transwell and Annexin V/PI staining methods. Both FAK and pFAK were overexpressed in osteosarcoma. There were significant differences in overall survival between the FAK-/pFAK- and FAK+/pFAK- groups (P = 0.016), the FAK+/pFAK- and FAK+/pFAK+ groups (P = 0.012) and the FAK-/pFAK- and FAK+/pFAK+ groups (P < 0.001). There were similar differences in metastasis-free survival between groups. The Cox proportional hazards analysis showed that the FAK expression profile was an independent indicator of both overall and metastasis-free survival. SiRNA-based knockdown of FAK not only dramatically reduced the migration and invasion of MG63 and 143B cells, but also had a distinct effect on osteosarcoma cell proliferation and apoptosis. These results collectively suggest that FAK overexpression and phosphorylation might predict more aggressive biologic behavior in osteosarcoma and may be an independent predictor of poor prognosis.
Collapse
Affiliation(s)
- Ke Ren
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, Jiangsu Province, P.R.China.,Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Xiao Lu
- Center Laboratory of Cancer Center, The Jingdu Hospital of Nanjing, Nanjing 210002, Jiangsu Province, P.R.China
| | - Nan Yao
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Yong Chen
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Aizhen Yang
- Center Laboratory of Cancer Center, The Jingdu Hospital of Nanjing, Nanjing 210002, Jiangsu Province, P.R.China
| | - Hui Chen
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Sujia Wu
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Xin Shi
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Chen Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Xiaoliang Sun
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, Jiangsu Province, P.R.China
| |
Collapse
|
17
|
Montero RM, Sacks SH, Smith RA. Complement-here, there and everywhere, but what about the transplanted organ? Semin Immunol 2016; 28:250-9. [PMID: 27179705 DOI: 10.1016/j.smim.2016.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
The part of the innate immune system that communicates and effectively primes the adaptive immune system was termed "complement" by Ehrlich to reflect its complementarity to antibodies having previously been described as "alexine" (i.e protective component of serum) by Buchner and Bordet. It has been established that complement is not solely produced systemically but may have origin in different tissues where it can influence organ specific functions that may affect the outcome of transplanted organs. This review looks at the role of complement in particular to kidney transplantation. We look at current literature to determine whether blockade of the peripheral or central compartments of complement production may prevent ischaemic reperfusion injury or rejection in the transplanted organ. We also review new therapeutics that have been developed to inhibit components of the complement cascade with varying degrees of success leading to an increase in our understanding of the multiple triggers of this complex system. In addition, we consider whether biomarkers in this field are effective markers of disease or treatment.
Collapse
Affiliation(s)
- R M Montero
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom
| | - S H Sacks
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom.
| | - R A Smith
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom
| |
Collapse
|
18
|
Levine DJ, Glanville AR, Aboyoun C, Belperio J, Benden C, Berry GJ, Hachem R, Hayes D, Neil D, Reinsmoen NL, Snyder LD, Sweet S, Tyan D, Verleden G, Westall G, Yusen RD, Zamora M, Zeevi A. Antibody-mediated rejection of the lung: A consensus report of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2016; 35:397-406. [PMID: 27044531 DOI: 10.1016/j.healun.2016.01.1223] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 12/22/2022] Open
Abstract
Antibody-mediated rejection (AMR) is a recognized cause of allograft dysfunction in lung transplant recipients. Unlike AMR in other solid-organ transplant recipients, there are no standardized diagnostic criteria or an agreed-upon definition. Hence, a working group was created by the International Society for Heart and Lung Transplantation with the aim of determining criteria for pulmonary AMR and establishing a definition. Diagnostic criteria and a working consensus definition were established. Key diagnostic criteria include the presence of antibodies directed toward donor human leukocyte antigens and characteristic lung histology with or without evidence of complement 4d within the graft. Exclusion of other causes of allograft dysfunction increases confidence in the diagnosis but is not essential. Pulmonary AMR may be clinical (allograft dysfunction which can be asymptomatic) or sub-clinical (normal allograft function). This consensus definition will have clinical, therapeutic and research implications.
Collapse
Affiliation(s)
- Deborah J Levine
- Pulmonary Disease and Critical Care Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Allan R Glanville
- The Lung Transplant Unit, St. Vincent's Hospital, Sydney, New South Wales, Australia.
| | - Christina Aboyoun
- The Lung Transplant Unit, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - John Belperio
- Pulmonary Disease and Critical Care Medicine, University of California, Los Angeles, California, USA
| | - Christian Benden
- Division of Pulmonary Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Gerald J Berry
- Division of Pathology, Stanford University Medical Center, Palo Alto, California, USA
| | - Ramsey Hachem
- Division of Pulmonology, Washington University, St. Louis, Missouri, USA
| | - Don Hayes
- Department of Pulmonology, The Ohio State University, Columbus, Ohio, USA
| | - Desley Neil
- Department of Pathology, Queen Elizabeth Hospital, Birmingham, UK
| | - Nancy L Reinsmoen
- Department of Immunology, Cedars-Sinai Hospital, Los Angeles, California, USA
| | - Laurie D Snyder
- Department of Pulmonology, Duke University, Durham, North Carolina, USA
| | - Stuart Sweet
- Division of Pulmonology, Washington University, St. Louis, Missouri, USA
| | - Dolly Tyan
- Division of Pathology, Stanford University Medical Center, Palo Alto, California, USA
| | - Geert Verleden
- Department of Pulmonology, University Hospitals Leuven, Leuven, Belgium
| | - Glen Westall
- Department of Pulmonology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Roger D Yusen
- Division of Pulmonology, Washington University, St. Louis, Missouri, USA
| | - Martin Zamora
- Department of Pulmonology, University of Colorado, Denver, Colorado, USA
| | - Adriana Zeevi
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennyslvania, USA
| |
Collapse
|
19
|
Trayssac M, Galvani S, Augé N, Sabbadini R, Calise D, Mucher E, Sallusto F, Thomsen M, Salvayre R, Nègre-Salvayre A. Role of Sphingosine-1-Phosphate in Transplant Vasculopathy Evoked by Anti-HLA Antibody. Am J Transplant 2015; 15:2050-61. [PMID: 25930666 DOI: 10.1111/ajt.13264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/04/2015] [Accepted: 02/11/2015] [Indexed: 01/25/2023]
Abstract
Transplant vasculopathy (TV) represents the main cause of late graft failure and limits the long-term success of organ transplantation. Cellular and humoral immune responses contribute to the pathogenesis of the concentric and diffuse intimal hyperplasia of arteries of the grafted organ. We recently reported that the mitogenic signaling, evoked in human vascular smooth muscle cells (hmSMC) by the anti-HLA class I monoclonal antibody W6/32, implicates neutral sphingomyelinase-2, suggesting a role for sphingolipids in intimal hyperplasia of TV. Here, we investigated whether the mitogenic sphingolipid, sphingosine-1-phosphate (S1P), is involved in intimal hyperplasia elicited by W6/32. Studies were done on cultured hmSMC and on an in vivo model of TV, consisting of human mesenteric arteries grafted into SCID/beige mice, injected weekly with W6/32. hmSMC migration and DNA synthesis elicited by W6/32 were inhibited by the sphingosine kinase-1 (SK1) inhibitor dimethylsphingosine, the anti-S1P antibody Sphingomab and the S1PR1/R3 inhibitor VPC23019. W6/32 stimulated SK1 activity, while siRNA silencing SK1, S1PR1 and S1PR3 inhibited hmSMC migration. In vivo, Sphingomab significantly reduced the intimal thickening induced by W6/32. These data emphasize the role of S1P in intimal hyperplasia elicited by the humoral immune response, and open perspectives for preventing TV with S1P inhibitors.
Collapse
Affiliation(s)
- M Trayssac
- INSERM UMR-1048, Toulouse, France.,Biochemistry Department, University of Toulouse, Faculty of Medicine, Toulouse, France
| | - S Galvani
- INSERM UMR-1048, Toulouse, France.,Biochemistry Department, University of Toulouse, Faculty of Medicine, Toulouse, France
| | - N Augé
- INSERM UMR-1048, Toulouse, France
| | - R Sabbadini
- Lpath, Inc., and Department of Biology, San Diego State University, San Diego, CA
| | - D Calise
- INSERM UMR-1048, Toulouse, France
| | - E Mucher
- INSERM UMR-1048, Toulouse, France.,Biochemistry Department, University of Toulouse, Faculty of Medicine, Toulouse, France
| | - F Sallusto
- CHU Rangueil, Department of Nephrology, Toulouse, France
| | - M Thomsen
- INSERM UMR-1048, Toulouse, France.,INSERM UMR-1027, Toulouse, France
| | - R Salvayre
- INSERM UMR-1048, Toulouse, France.,Biochemistry Department, University of Toulouse, Faculty of Medicine, Toulouse, France
| | | |
Collapse
|
20
|
Valenzuela NM, Trinh KR, Mulder A, Morrison SL, Reed EF. Monocyte recruitment by HLA IgG-activated endothelium: the relationship between IgG subclass and FcγRIIa polymorphisms. Am J Transplant 2015; 15:1502-18. [PMID: 25648976 PMCID: PMC4439339 DOI: 10.1111/ajt.13174] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/01/2014] [Accepted: 12/15/2014] [Indexed: 01/25/2023]
Abstract
It is currently unclear which donor specific HLA antibodies confer the highest risk of antibody-mediated rejection (AMR) and allograft loss. In this study, we hypothesized that two distinct features (HLA IgG subclass and Fcγ receptor [FcγR] polymorphisms) which vary from patient to patient, influence the process of monocyte trafficking to and macrophage accumulation in the allograft during AMR in an interrelated fashion. Here, we investigated the contribution of human IgG subclass and FcγR polymorphisms in monocyte recruitment in vitro by primary human aortic endothelium activated with chimeric anti-HLA I human IgG1 and IgG2. Both subclasses triggered monocyte adhesion to endothelial cells, via a two-step process. First, HLA I crosslinking by antibodies stimulated upregulation of P-selectin on endothelium irrespective of IgG subclass. P-selectin-induced monocyte adhesion was enhanced by secondary interactions of IgG with FcγRs, which was highly dependent upon subclass. IgG1 was more potent than IgG2 through differential engagement of FcγRs. Monocytes homozygous for FcγRIIa-H131 adhered more readily to HLA antibody-activated endothelium compared with FcγRIIa-R131 homozygous. Finally, direct modification of HLA I antibodies with immunomodulatory enzymes EndoS and IdeS dampened recruitment by eliminating antibody-FcγR binding, an approach that may have clinical utility in reducing AMR and other forms of antibody-induced inflammation.
Collapse
Affiliation(s)
- Nicole M. Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - K. Ryan Trinh
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Sherie L. Morrison
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
21
|
Valenzuela NM, Reed EF. Antibodies to HLA Molecules Mimic Agonistic Stimulation to Trigger Vascular Cell Changes and Induce Allograft Injury. CURRENT TRANSPLANTATION REPORTS 2015; 2:222-232. [PMID: 28344919 DOI: 10.1007/s40472-015-0065-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen (HLA)-induced signaling in endothelial and smooth muscle cells causes dramatic cytoskeletal rearrangement, increased survival, motility, proliferation, adhesion molecule and chemokine expression, and adhesion of leukocytes. These mechanisms are directly related to endothelial activation, neointimal proliferation, and intragraft accumulation of leukocytes during antibody-mediated rejection (AMR) and chronic rejection. Clustering of HLA by ligands in trans, such as in antigen-presenting cells at the immune synapse, triggers physiological functions analogous to HLA antibody-induced signaling in vascular cells. Emerging evidence has revealed previously unknown functions for HLA beyond antigen presentation, including association with coreceptors in cis to permit signal transduction, and modulation of intracellular signaling downstream of other receptors that may be relevant to HLA signaling in the graft vasculature. We discuss the literature regarding HLA-induced signaling in vascular endothelial and smooth muscle cells, as well as under endogenous biological conditions, and how such signaling relates to functional changes and pathological mechanisms during graft injury.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, 1000 Veteran Ave Room 1-520, Los Angeles, CA 90095, USA
| | - Elaine F Reed
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, 1000 Veteran Ave Room 1-520, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
The perfect storm: HLA antibodies, complement, FcγRs, and endothelium in transplant rejection. Trends Mol Med 2015; 21:319-29. [PMID: 25801125 DOI: 10.1016/j.molmed.2015.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 02/07/2023]
Abstract
The pathophysiology of antibody-mediated rejection (AMR) in solid organ transplants is multifaceted and predominantly caused by antibodies directed against polymorphic donor human leukocyte antigens (HLAs). Despite the clearly detrimental impact of HLA antibodies (HLA-Abs) on graft function and survival, the prevention, diagnosis, and treatment of AMR remain a challenge. The histological manifestations of AMR reflect the signatures of HLA-Ab-triggered injury, specifically endothelial changes, recipient leukocytic infiltrate, and complement deposition. We review the interconnected mechanisms of HLA-Ab-mediated injury that might synergize in a 'perfect storm' of inflammation. Characterization of antibody features that are critical for effector functions may help to identify HLA-Abs that are more likely to cause rejection. We also highlight recent advances that may pave the way for new, more effective therapies.
Collapse
|
23
|
Tsai EW, Reed EF. MHC class I signaling: new functional perspectives for an old molecule. ACTA ACUST UNITED AC 2015; 83:375-81. [PMID: 24828054 DOI: 10.1111/tan.12381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Donor-specific antibodies are associated with refractory rejection episodes and poor allograft outcomes in solid organ transplantation. Our understanding of antibody-mediated allograft injury is expanding beyond complement deposition. In fact, unique mechanisms of alloantibodies are advancing our knowledge about transplant vasculopathy and antibody-mediated rejection. These include direct effects on the endothelium, resulting in the recruitment of leukocytes, chemokine and cytokine production, and stimulation of innate and adaptive alloresponses. These effects will be the focus of the following review.
Collapse
Affiliation(s)
- E W Tsai
- Mattel Children's Hospital UCLA, Division of Pediatric Nephrology, Los Angeles, CA, USA
| | | |
Collapse
|
24
|
Li F, Wei J, Valenzuela NM, Lai C, Zhang Q, Gjertson D, Fishbein MC, Kobashigawa JA, Deng M, Reed EF. Phosphorylated S6 kinase and S6 ribosomal protein are diagnostic markers of antibody-mediated rejection in heart allografts. J Heart Lung Transplant 2014; 34:580-587. [PMID: 25511749 DOI: 10.1016/j.healun.2014.09.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 08/22/2014] [Accepted: 09/30/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Anti-MHC Class I alloantibodies have been implicated in the processes of acute and chronic rejection. These antibodies (Ab) bind to endothelial cells (EC) and transduce signals leading to the activation of cell survival and proliferation pathways, including Src, FAK and mTOR, as well as downstream targets ERK, S6 kinase (S6K) and S6 ribosomal protein (S6RP). We tested the hypothesis that phosphorylation of S6K, S6RP and ERK in capillary endothelium may serve as an adjunct diagnostic tool for antibody-mediated rejection (AMR) in heart allografts. METHODS Diagnosis of AMR was based on histology or immunoperoxidase staining of paraffin-embedded tissue, consistent with 2013 ISHLT criteria. Diagnosis of acute cellular rejection (ACR) was based on ISHLT criteria. Endomyocardial biopsies from 67 heart transplant recipients diagnosed with acute rejection [33 with pAMR, 18 with ACR (15 with Grade 1R, 3 with Grade ≥2R), 16 with pAMR and ACR (13 with 1R and 3 with ≥2R)] and 40 age- and gender-matched recipients without rejection were tested for the presence of phosphorylated forms of ERK, S6RP and S6K by immunohistochemistry. RESULTS Immunostaining of endomyocardial biopsies with evidence of pAMR showed a significant increase in expression of p-S6K and p-S6RP in capillary EC compared with controls. A weaker association was observed between pAMR and p-ERK. CONCLUSIONS Biopsies diagnosed with pAMR often showed phosphorylation of S6K and S6RP, indicating that staining for p-S6K and p-S6RP is useful for the diagnosis of AMR. Our findings support a role for antibody-mediated HLA signaling in the process of graft injury.
Collapse
Affiliation(s)
- Fang Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Jennifer Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Chi Lai
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Qiuheng Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - David Gjertson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Jon A Kobashigawa
- Heart Transplant Program, Cedars-Sinai Heart Institute, 127 S. San Vicente Blvd, Third Floor Cardiology A3107, los Angeles, CA 90048
| | - Mario Deng
- UCLA Cardiovascular Center, Ronald Reagan UCLA Medical Center, UCLA Medical Center, Los Angeles, CA 90095, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
25
|
Touzot M, Obada EN, Beaudreuil S, François H, Durrbach A. Complement modulation in solid-organ transplantation. Transplant Rev (Orlando) 2014; 28:119-25. [PMID: 24996770 DOI: 10.1016/j.trre.2014.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/08/2014] [Indexed: 01/18/2023]
Abstract
The complement system is a major constituent of the innate immune system. It has a critical role in defense against pathogens but dysregulation of complement activation may lead to tissue injury and modulate the adaptive immune response. In organ transplantation, local complement activation is involved in hyper-acute rejection and antibody-mediated rejection. This last decade, interest in complement activation has increased due to new insights into the pathophysiology of antibody-mediated rejection, but also since the availability of news drugs that target terminal complement activation. In this review, we discuss our current understanding of how local complement activation induces acute and chronic graft injury, and review recent advances in clinical trials that block complement activation using the anti-C5 monoclonal antibody, eculizumab. Finally, we discuss how complement-targeted therapy may be integrated into our current immunosuppressive regimen and what type of patient will benefit most from this therapy.
Collapse
Affiliation(s)
- Maxime Touzot
- Nephrology Department, IFRNT, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale INSERM U1014, Villejuif, France
| | | | - Severine Beaudreuil
- Nephrology Department, IFRNT, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale INSERM U1014, Villejuif, France
| | - Hélène François
- Nephrology Department, IFRNT, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale INSERM U1014, Villejuif, France
| | - Antoine Durrbach
- Nephrology Department, IFRNT, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale INSERM U1014, Villejuif, France.
| |
Collapse
|
26
|
Thammanichanond D, Mongkolsuk T, Rattanasiri S, Kantachuvesiri S, Worawichawong S, Jirasiritham S, Kitpoka P. Significance of C1q-fixing Donor-Specific Antibodies After Kidney Transplantation. Transplant Proc 2014; 46:368-71. [DOI: 10.1016/j.transproceed.2013.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/07/2013] [Indexed: 01/21/2023]
|
27
|
Zachary AA, Leffell MS. Desensitization for solid organ and hematopoietic stem cell transplantation. Immunol Rev 2014; 258:183-207. [PMID: 24517434 PMCID: PMC4237559 DOI: 10.1111/imr.12150] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 12/25/2022]
Abstract
Desensitization protocols are being used worldwide to enable kidney transplantation across immunologic barriers, i.e. antibody to donor HLA or ABO antigens, which were once thought to be absolute contraindications to transplantation. Desensitization protocols are also being applied to permit transplantation of HLA mismatched hematopoietic stem cells to patients with antibody to donor HLA, to enhance the opportunity for transplantation of non-renal organs, and to treat antibody-mediated rejection. Although desensitization for organ transplantation carries an increased risk of antibody-mediated rejection, ultimately these transplants extend and enhance the quality of life for solid organ recipients, and desensitization that permits transplantation of hematopoietic stem cells is life saving for patients with limited donor options. Complex patient factors and variability in treatment protocols have made it difficult to identify, precisely, the mechanisms underlying the downregulation of donor-specific antibodies. The mechanisms underlying desensitization may differ among the various protocols in use, although there are likely to be some common features. However, it is likely that desensitization achieves a sort of immune detente by first reducing the immunologic barrier and then by creating an environment in which an autoregulatory process restricts the immune response to the allograft.
Collapse
Affiliation(s)
- Andrea A Zachary
- Department of Medicine, Division of Immunogenetics and Transplantation Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
28
|
Antibody-mediated graft injury: complement-dependent and complement-independent mechanisms. Curr Opin Organ Transplant 2014; 19:33-40. [PMID: 24316758 DOI: 10.1097/mot.0000000000000040] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Antibody-mediated rejection (AMR) is emerging as the leading cause of chronic rejection and allograft failure. Traditionally, the mechanisms of graft injury mediated by donor-specific antibodies beyond complement activation were not well appreciated. However, an evolving paradigm of Fc-independent antibody functions, along with clinical recognition of C4d-negative AMR, has increased awareness of the action of antibodies leading to endothelial activation and dysfunction. RECENT FINDINGS Herein, we address current clinical trends, including the signature of microvascular inflammation in biopsies of grafts undergoing AMR, the prevalence of antibodies to human leukocyte antigen class II DQ locus (HLA-DQ) and non-HLA targets, and the functional characterization of HLA immunoglobulin G (IgG) subclasses and complement-fixing capacity. We also discuss recent experimental evidence revealing new mechanisms of endothelial and smooth muscle cell activation by HLA antibodies, which may contribute to vascular inflammation and chronic rejection. Finally, we touch upon novel discoveries of the interplay between antibodies, the complement system, and CD4 T-cell-mediated alloimmunity. SUMMARY The current literature suggests that, although complement-fixing antibodies may have some prognostic value for graft outcome, complement-independent mechanisms of graft injury are increasingly relevant. Therapeutic strategies, which target endothelial activation induced by antibodies may ameliorate vascular inflammation and mononuclear cell infiltration characteristic of AMR.
Collapse
|
29
|
Valenzuela NM, Reed EF. Antibodies in transplantation: the effects of HLA and non-HLA antibody binding and mechanisms of injury. Methods Mol Biol 2014; 1034:41-70. [PMID: 23775730 DOI: 10.1007/978-1-62703-493-7_2] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Until recently, allograft rejection was thought to be mediated primarily by alloreactive T cells. Consequently, immunosuppressive approaches focused on inhibition of T cell activation. While short-term graft survival has significantly improved and rejection rates have dropped, acute rejection has not been eliminated and chronic rejection remains the major threat to long-term graft survival. Increased attention to humoral immunity in experimental systems and in the clinic has revealed that donor specific antibodies (DSA) can mediate and promote acute and chronic rejection. Herein, we detail the effects of alloantibody, particularly HLA antibody, binding to graft vascular and other cells, and briefly summarize the experimental methods used to assess such outcomes.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
30
|
Valenzuela NM, Mulder A, Reed EF. HLA class I antibodies trigger increased adherence of monocytes to endothelial cells by eliciting an increase in endothelial P-selectin and, depending on subclass, by engaging FcγRs. THE JOURNAL OF IMMUNOLOGY 2013; 190:6635-50. [PMID: 23690477 DOI: 10.4049/jimmunol.1201434] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ab-mediated rejection (AMR) of solid organ transplants is characterized by intragraft macrophages. It is incompletely understood how donor-specific Ab binding to graft endothelium promotes monocyte adhesion, and what, if any, contribution is made by the Fc region of the Ab. We investigated the mechanisms underlying monocyte recruitment by HLA class I (HLA I) Ab-activated endothelium. We used a panel of murine mAbs of different subclasses to crosslink HLA I on human aortic, venous, and microvascular endothelial cells and measured the binding of human monocytic cell lines and peripheral blood monocytes. Both anti-HLA I murine (m)IgG1 and mIgG2a induced endothelial P-selectin, which was required for monocyte adhesion to endothelium irrespective of subclass. mIgG2a but not mIgG1 could bind human FcγRs. Accordingly, HLA I mIgG2a but not mIgG1 treatment of endothelial cells significantly augmented recruitment, predominantly through FcγRI, and, to a lesser extent, FcγRIIa. Moreover, HLA I mIgG2a promoted firm adhesion of monocytes to ICAM-1 through Mac-1, which may explain the prominence of monocytes during AMR. We confirmed these observations using human HLA allele-specific mAbs and IgG purified from transplant patient sera. HLA I Abs universally elicit endothelial exocytosis leading to monocyte adherence, implying that P-selectin is a putative therapeutic target to prevent macrophage infiltration during AMR. Importantly, the subclass of donor-specific Ab may influence its pathogenesis. These results imply that human IgG1 and human IgG3 should have a greater capacity to trigger monocyte infiltration into the graft than IgG2 or IgG4 due to enhancement by FcγR interactions.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
31
|
Valenzuela NM, Hong L, Shen XD, Gao F, Young SH, Rozengurt E, Kupiec-Weglinski J, Fishbein MC, Reed EF. Blockade of p-selectin is sufficient to reduce MHC I antibody-elicited monocyte recruitment in vitro and in vivo. Am J Transplant 2013; 13:299-311. [PMID: 23279566 PMCID: PMC3563267 DOI: 10.1111/ajt.12016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/19/2012] [Accepted: 10/24/2012] [Indexed: 01/25/2023]
Abstract
Donor-specific HLA antibodies significantly lower allograft survival, but as yet there are no satisfactory therapies for prevention of antibody-mediated rejection. Intracapillary macrophage infiltration is a hallmark of antibody-mediated rejection, and macrophages are important in both acute and chronic rejection. The purpose of this study was to investigate the Fc-independent effect of HLA I antibodies on endothelial cell activation, leading to monocyte recruitment. We used an in vitro model to assess monocyte binding to endothelial cells in response to HLA I antibodies. We confirmed our results in a mouse model of antibody-mediated rejection, in which B6.RAG1(-/-) recipients of BALB/c cardiac allografts were passively transferred with donor-specific MHC I antibodies. Our findings demonstrate that HLA I antibodies rapidly increase intracellular calcium and endothelial presentation of P-selectin, which supports monocyte binding. In the experimental model, donor-specific MHC I antibodies significantly increased macrophage accumulation in the allograft. Concurrent administration of rPSGL-1-Ig abolished antibody-induced monocyte infiltration in the allograft, but had little effect on antibody-induced endothelial injury. Our data suggest that antagonism of P-selectin may ameliorate accumulation of macrophages in the allograft during antibody-mediated rejection.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Longsheng Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Xiu-Da Shen
- Department of Surgery, University of California, Los Angeles, CA 90095
| | - Feng Gao
- Department of Surgery, University of California, Los Angeles, CA 90095
| | - Steven H. Young
- Division of Digestive Diseases, Department of Medicine, Center for Ulcer Research and Education, Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, Center for Ulcer Research and Education, Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
,University of California Los Angeles (UCLA) Immunogenetics Center
,Correspondence should be addressed to: Immunogenetics Center Department of Pathology and Laboratory Medicine David Geffen School of Medicine University of California Los Angeles 1000 Veteran Ave Los Angeles, CA 90095 Phone: 310-794-4943, Fax: 310-206-3216
| |
Collapse
|
32
|
Mechanisms of human smooth muscle cell proliferation and transplant vasculopathy induced by HLA class I antibodies: In vitro and in vivo studies. Hum Immunol 2012; 73:1253-60. [DOI: 10.1016/j.humimm.2012.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/04/2012] [Accepted: 06/29/2012] [Indexed: 11/17/2022]
|
33
|
Abstract
Over the past decade, several studies have suggested that the complement system has an active role in both acute and chronic allograft rejection. These studies have been facilitated by improved techniques to detect antibody-mediated organ rejection, including immunohistological staining for C4d deposition in the allograft and solid-phase assays that identify donor-specific alloantibodies (DSAs) in the serum of transplant recipients. Studies with eculizumab, a humanized monoclonal antibody directed against complement component C5, have shown that activation of the terminal complement pathway is necessary for the development of acute antibody-mediated rejection in recipients of living-donor kidney allografts who have high levels of DSAs. The extent to which complement activation drives chronic antibody-mediated injury leading to organ rejection is less clear. In chronic antibody-mediated injury, early complement activation might facilitate chemotaxis of inflammatory cells into the allograft in a process that later becomes somewhat independent of DSA levels and complement factors. In this Review, we discuss the different roles that the complement system might have in antibody-mediated allograft rejection, with specific emphasis on renal transplantation.
Collapse
|
34
|
Zhang X, Valenzuela NM, Reed EF. HLA class I antibody-mediated endothelial and smooth muscle cell activation. Curr Opin Organ Transplant 2012; 17:446-51. [PMID: 22710387 PMCID: PMC3880156 DOI: 10.1097/mot.0b013e328355f1c2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Advances in immunosuppression and patient management have successfully improved 1-year transplant outcome. Unfortunately, antibody-mediated rejection is a major barrier to long-term graft survival. This study summarizes the effects of antibodies on endothelial cell and smooth muscle cell (SMC) migration, proliferation and leukocyte recruitment, emphasizing the intracellular signaling pathways that orchestrate these distinct functional outcomes. RECENT FINDINGS Several studies have provided further insight into the effects of human leukocyte antigen (HLA) class I antibodies on vascular cells. We found that HLA I molecules partner with integrin β4 to transduce proliferative signaling, and identified proteins that associate with the cytoskeleton after HLA class I crosslinking. Natural killer cells have been strongly implicated in a murine model of donor-specific major histocompatibility complex I antibody-triggered neointimal thickening. A recently developed human arterial graft model revealed the role of matrix metalloproteinases in SMC mitogenesis by HLA class I antibodies. Using a donor transgenic for HLA-A2, Fukami et al. investigated the mechanisms of accommodation induced by low titers of HLA class I antibodies. SUMMARY Ligation of HLA class I molecules with antibodies leads to the activation of intracellular signals in endothelial cells and SMCs, which in turn promote actin cytoskeletal remodeling, survival, proliferation, and recruitment of leukocytes.
Collapse
Affiliation(s)
- Xiaohai Zhang
- Department of Pathology, UCLA Immunogenetics Center, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
35
|
Zhang X, Reed EF. HLA class I: an unexpected role in integrin β4 signaling in endothelial cells. Hum Immunol 2012; 73:1239-44. [PMID: 22789625 DOI: 10.1016/j.humimm.2012.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 06/11/2012] [Accepted: 06/29/2012] [Indexed: 12/31/2022]
Abstract
The production of anti-donor antibodies to HLA class I and class II antigens following transplantation is associated with development of transplant vasculopathy and graft loss. Antibodies against HLA class I (HLA-I) molecules are thought to contribute to transplant vasculopathy by triggering signals that elicit the activation and proliferation of endothelial cells. The proximal molecular events that regulate HLA-I dependent signal transduction are not well understood. We demonstrated a mutual dependency between HLA-I and integrin β4 to stimulate signal transduction and cell proliferation. Similarly, we found that integrin β4-mediated cell migration was dependent upon its interactions with HLA-I molecules. Since integrin β4 has been implicated in angiogenesis and tumor formation, associations between integrin β4 and HLA-I may play an important role in cancer. Further characterization of interactions between HLA-I and integrin β4 may lead to the development of therapeutic strategies for the treatment and prevention of chronic allograft rejection and cancer.
Collapse
Affiliation(s)
- Xiaohai Zhang
- UCLA Immunogenetics Center, Department of Pathology, David Geffen School of Medicine, University of California, 1000 Veteran Ave., Los Angeles, CA 90095, United States.
| | | |
Collapse
|