1
|
Abstract
This chapter describes the methods of isolation of mouse periosteal progenitor cells. There are three basic methods utilized. The bone grafting method was developed utilizing the fracture healing process to expand the progenitor populations. Bone capping methods requires enzymatic digestion and purification of cells from the native periosteum, while the Egression/Explant method requires the least manipulation with placement of cortical bone fragments with attached periosteum in a culture dish. Various cell surface antibodies have been employed over the years to characterize periosteum derived progenitor cells, but the most consistent minimal criteria was recommended by the International Society for Cellular Therapy. Confirmation of the multipotent status of these isolated cells can be achieved by differentiation into the three basic mesodermal lineages in vitro.
Collapse
|
2
|
Endothelial Progenitor Cell CD34 + and CD133 + Concentrations and Soluble HLA-G Concentrations During Pregnancy and in Cord Blood in Undifferentiated Connective Tissue Diseases Compared to Controls. Reprod Sci 2020; 28:1382-1389. [PMID: 33237511 DOI: 10.1007/s43032-020-00405-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
The objective of this study is to evaluate endothelial progenitor cells (EPCs) CD34+ CD133- and CD34+ CD133+ and soluble HLA-G (sHLA-G) concentrations among undifferentiated connective tissue disease (UCTD) subjects, compared to controls, during pregnancy and in cord blood. This is a case-control study including 29 controls and 29 UCTDs. CD34+ CD133-, CD34+ CD133+, and sHLA-G concentrations were detected in maternal plasma and in cord blood. This study was approved by the Medical-Ethical Committee of our Institution (Current Research Project N. 901-rcr2017i-23 of IRCCS Foundation Policlinico San Matteo of Pavia). Circulating CD34+ CD133- and CD34+ CD133+ counts and sHLA-G (soluble human leucocyte antigen G) concentrations in maternal peripherical blood were higher in UCTD compared to those in controls in first and third trimester of pregnancy and at delivery (p < 0.001). Maternal CD34+ CD133- and CD34+ CD133+ counts were strongly and significantly correlated in UCTD (Spearman's rho = 0.79, p < 0.0001) but not in controls (Spearman's rho = 0.10, p = 0.35). Cord blood CD34+ CD133- and CD34+ CD133+ median counts and median sHLA-G concentrations were higher among UCTD subjects than in controls (p < 0.001). Cord blood CD34+ and CD133+ counts were inversely and significantly correlated with sHLA-G concentrations among UCTDs, but not in controls. Early UCTD is characterized by increased EPC levels in maternal plasma and in cord blood and higher levels of sHLA-G, compared to controls. Data suggest that fetoplacental unit plays an independent role in the EPC response to a systemic autoimmune disease.
Collapse
|
3
|
Naserian S, Abdelgawad ME, Afshar Bakshloo M, Ha G, Arouche N, Cohen JL, Salomon BL, Uzan G. The TNF/TNFR2 signaling pathway is a key regulatory factor in endothelial progenitor cell immunosuppressive effect. Cell Commun Signal 2020; 18:94. [PMID: 32546175 PMCID: PMC7298859 DOI: 10.1186/s12964-020-00564-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background Endothelial progenitor cells (EPCs) are non-differentiated endothelial cells (ECs) present in blood circulation that are involved in neo-vascularization and correction of damaged endothelial sites. Since EPCs from patients with vascular disorders are impaired and inefficient, allogenic sources from adult or cord blood are considered as good alternatives. However, due to the reaction of immune system against allogenic cells which usually lead to their elimination, we focused on the exact role of EPCs on immune cells, particularly, T cells which are the most important cells applied in immune rejection. TNFα is one of the main activators of EPCs that recognizes two distinct receptors. TNFR1 is expressed ubiquitously and its interaction with TNFα leads to differentiation and apoptosis, whereas, TNFR2 is expressed predominantly on ECs, immune cells and neural cells and is involved in cell survival and proliferation. Interestingly, it has been shown that different immunosuppressive cells express TNFR2 and this is directly related to their immunosuppressive efficiency. However, little is known about immunological profile and function of TNFR2 in EPCs. Methods Using different in-vitro combinations, we performed co-cultures of ECs and T cells to investigate the immunological effect of EPCs on T cells. We interrupted in the TNFα/TNFR2 axis either by blocking the receptor using TNFR2 antagonist or blocking the ligand using T cells derived from TNFα KO mice. Results We demonstrated that EPCs are able to suppress T cell proliferation and modulate them towards less pro-inflammatory and active phenotypes. Moreover, we showed that TNFα/TNFR2 immune-checkpoint pathway is critical in EPC immunomodulatory effect. Conclusions Our results reveal for the first time a mechanism that EPCs use to suppress immune cells, therefore, enabling them to form new immunosuppressive vessels. Furthermore, we have shown the importance of TNFα/TNFR2 axis in EPCs as an immune checkpoint pathway. We believe that targeting TNFR2 is especially crucial in cancer immune therapy since it controls two crucial aspects of tumor microenvironment: 1) Immunosuppression and 2) Angiogenesis. Video Abstract. (MP4 46355 kb)
Collapse
Affiliation(s)
- Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France. .,CellMedEx, Saint Maur Des Fossés, France. .,Paris-Saclay University, Villejuif, France.
| | - Mohamed Essameldin Abdelgawad
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France.,Biochemistry Division, Chemistry department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Guillaume Ha
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Nassim Arouche
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - José L Cohen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.,AP-HP, Hopital Henri Mondor, Centre d'investigation clinique biothérapie, F-94010, Creteil, France
| | - Benoît L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France. .,Paris-Saclay University, Villejuif, France.
| |
Collapse
|
4
|
Proust R, Ponsen AC, Rouffiac V, Schenowitz C, Montespan F, Ser-Le Roux K, De Leeuw F, Laplace-Builhé C, Mauduit P, Carosella ED, Banzet S, Lataillade JJ, Rouas-Freiss N, Uzan G, Peltzer J. Cord blood-endothelial colony forming cells are immunotolerated and participate at post-ischemic angiogenesis in an original dorsal chamber immunocompetent mouse model. Stem Cell Res Ther 2020; 11:172. [PMID: 32381102 PMCID: PMC7206734 DOI: 10.1186/s13287-020-01687-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cardiovascular diseases are the main cause of morbidity and mortality worldwide. Restoring blood supply to ischemic tissues is an essential goal for the successful treatment of these diseases. Growth factor or gene therapy efficacy remains controversial, but stem cell transplantation is emerging as an interesting approach to stimulate angiogenesis. Among the different stem cell populations, cord blood-endothelial progenitor cells (CB-EPCs) and more particularly cord blood-endothelial progenitor cell-derived endothelial colony forming cells (CB-ECFCs) have a great proliferative potential without exhibiting signs of senescence. Even if it was already described that CB-ECFCs were able to restore blood perfusion in hind-limb ischemia in an immunodeficient mouse model, until now, the immunogenic potential of allogenic CB-ECFCs remains controversial. Therefore, our objectives were to evaluate the immune tolerance potency of CB-ECFCs and their capacity to restore a functional vascular network under ischemic condition in immunocompetent mice. METHODS In vitro, the expression and secretion of immunoregulatory markers (HLA-G, IL-10, and TGF-β1) were evaluated on CB-ECFCs. Moreover, CB-ECFCs were co-cultured with activated peripheral blood mononuclear cells (PBMCs) for 6 days. PBMC proliferation was evaluated by [3H]-thymidine incorporation on the last 18 h. In vivo, CB-ECFCs were administered in the spleen and muscle of immunocompetent mice. Tissues were collected at day 14 after surgery. Finally, CB-ECFCs were injected intradermally in C57BL/6JRj mice close to ischemic macrovessel induced by thermal cauterization. Mice recovered until day 5 and were imaged, twice a week until day 30. RESULTS Firstly, we demonstrated that CB-ECFCs expressed HLA-G, IL-10, and TGF-β1 and secreted IL-10 and TGF-β1 and that they could display immunosuppressive properties in vitro. Secondly, we showed that CB-ECFCs could be tolerated until 14 days in immunocompetent mice. Thirdly, we revealed in an original ischemic model of dorsal chamber that CB-ECFCs were integrated in a new functional vascular network. CONCLUSION These results open up new perspectives about using CB-ECFCs as an allogeneic cell therapy product and gives new impulse to the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Richard Proust
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France
| | - Anne-Charlotte Ponsen
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France
| | - Valérie Rouffiac
- Paris-Saclay University, Paris-Sud University, Gustave Roussy Institute, INSERM, CNRS, Molecular Analysis, Modeling and Imaging of Cancer Disease, Villejuif, France
| | - Chantal Schenowitz
- CEA, DRF-IBFJ, Hemato-Immunology Research Unit, INSERM UMR-S 976, IRSL - Paris University, Saint-Louis Hospital, Paris, France
| | - Florent Montespan
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France
| | - Karine Ser-Le Roux
- Paris-Saclay University, Paris-Sud University, Gustave Roussy Institute, INSERM, CNRS, Molecular Analysis, Modeling and Imaging of Cancer Disease, Villejuif, France
| | - Frédéric De Leeuw
- Paris-Saclay University, Paris-Sud University, Gustave Roussy Institute, INSERM, CNRS, Molecular Analysis, Modeling and Imaging of Cancer Disease, Villejuif, France
| | - Corinne Laplace-Builhé
- Paris-Saclay University, Paris-Sud University, Gustave Roussy Institute, INSERM, CNRS, Molecular Analysis, Modeling and Imaging of Cancer Disease, Villejuif, France
| | - Philippe Mauduit
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France
| | - Edgardo D Carosella
- CEA, DRF-IBFJ, Hemato-Immunology Research Unit, INSERM UMR-S 976, IRSL - Paris University, Saint-Louis Hospital, Paris, France
| | - Sébastien Banzet
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France
| | - Jean-Jacques Lataillade
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-IBFJ, Hemato-Immunology Research Unit, INSERM UMR-S 976, IRSL - Paris University, Saint-Louis Hospital, Paris, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France
| | - Juliette Peltzer
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France.
| |
Collapse
|
5
|
d’Almeida TC, Sadissou I, Milet J, Cottrell G, Mondière A, Avokpaho E, Gineau L, Sabbagh A, Massougbodji A, Moutairou K, Donadi EA, Favier B, Carosella E, Moreau P, Rouas-Freiss N, Courtin D, Garcia A. Soluble human leukocyte antigen -G during pregnancy and infancy in Benin: Mother/child resemblance and association with the risk of malaria infection and low birth weight. PLoS One 2017; 12:e0171117. [PMID: 28166246 PMCID: PMC5293225 DOI: 10.1371/journal.pone.0171117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
Human leukocyte antigen (HLA) G is a tolerogenic molecule involved in the maternal-fetal immune tolerance phenomenon. Its expression during some infectious diseases leading to immune evasion has been established. A first study conducted in Benin has shown that the production of soluble HLA-G (sHLA-G) during the first months of life is strongly correlated with the maternal level at delivery and associated with low birth weight and malaria. However sHLA-G measurements during pregnancy were not available for mothers and furthermore, to date the evolution of sHLA-G in pregnancy is not documented in African populations. To extend these previous findings, between January 2010 and June 2013, 400 pregnant women of a malaria preventive trial and their newborns were followed up in Benin until the age of 2 years. Soluble HLA-G was measured 3 times during pregnancy and repeatedly during the 2 years follow-up to explore how sHLA-G evolved and the factors associated. During pregnancy, plasma levels of sHLA-G remained stable and increased significantly at delivery (p<0.001). Multigravid women seemed to have the highest levels (p = 0.039). In infants, the level was highest in cord blood and decreased before stabilizing after 18 months (p<0.001). For children, a high level of sHLA-G was associated with malaria infection during the follow-up (p = 0.02) and low birth weight (p = 0.06). The mean level of sHLA-G during infancy was strongly correlated with the mother’s level during pregnancy (<0.001), and not only at delivery. Moreover, mothers with placental malaria infection had a higher probability of giving birth to a child with a high level of sHLA-g (p = 0.006). High sHLA-G levels during pregnancy might be associated with immune tolerance related to placental malaria. Further studies are needed but this study provides a first insight concerning the potential role of sHLA-G as a biomarker of weakness for newborns and infants.
Collapse
Affiliation(s)
- Tania C. d’Almeida
- Université Pierre et Marie Curie, Paris, France
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- * E-mail:
| | - Ibrahim Sadissou
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin
- Université d’Abomey-Calavi, Cotonou, Bénin
- Division of Clinical Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Jacqueline Milet
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Gilles Cottrell
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Amandine Mondière
- UMR 216-MERIT, Institut de Recherche pour le Développement, Campus de la Faculté des Sciences de la Santé (FSS) et de l’Institut des Sciences Biomédicales Appliquées (ISBA), Cotonou, Bénin
| | | | - Laure Gineau
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - Audrey Sabbagh
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - Achille Massougbodji
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin
- Université d’Abomey-Calavi, Cotonou, Bénin
| | | | - Eduardo A. Donadi
- Division of Clinical Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Benoit Favier
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes (IMETI), Service de Recherches en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, IUH, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hôpital Saint-Louis, UMR_E5, IUH, Paris, France
| | - Edgardo Carosella
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes (IMETI), Service de Recherches en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, IUH, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hôpital Saint-Louis, UMR_E5, IUH, Paris, France
| | - Philippe Moreau
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes (IMETI), Service de Recherches en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, IUH, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hôpital Saint-Louis, UMR_E5, IUH, Paris, France
| | - Nathalie Rouas-Freiss
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes (IMETI), Service de Recherches en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, IUH, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hôpital Saint-Louis, UMR_E5, IUH, Paris, France
| | - David Courtin
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - André Garcia
- Université Pierre et Marie Curie, Paris, France
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin
| |
Collapse
|
6
|
Flex A, Biscetti F, Iachininoto MG, Nuzzolo ER, Orlando N, Capodimonti S, Angelini F, Valentini CG, Bianchi M, Larocca LM, Martini M, Teofili L. Human cord blood endothelial progenitors promote post-ischemic angiogenesis in immunocompetent mouse model. Thromb Res 2016; 141:106-11. [PMID: 26994683 DOI: 10.1016/j.thromres.2016.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Human cord blood (CB) endothelial colony forming cells (ECFCs) are endowed with high vascular regenerative ability in immunodeficient mice, but their immunogenicity and susceptibility to rejection in immunocompetent models has yet to be explored. METHODS We injected CB ECFCs in non-immuno-suppressed C57BL/6J mice after having induced the hindlimb ischemia and we investigated their contribution to the recovery from the ischemic injury. Human ECFCs (hECFCs) were administered by intramuscular injection and hindlimb blood perfusion was measured by laser Doppler analysis at 7-day intervals for 28days after treatment. Mice were sacrificed after 7 and 28days and immunohistochemistry for specific human (CD31) and mouse (von Willebrand factor) endothelial antigens was carried out. Before euthanasia, blood samples to assess cytokines and angiogenic growth factor levels were collected. RESULTS Mice injected with hECFCs showed a prompter and greater recovery of blood flow than controls. Several endothelial cells of human origin were detected at day7 after injection and their number declined progressively. Likewise, a progressive increase of mouse-derived vascular structures were observed, paralleled by the amplified endogenous production of various soluble mediators of angiogenesis, including Vascular Endothelial Growth Factor and Fibroblast Growth Factor. CONCLUSIONS Overall, our findings are consistent with the hypothesis that human ECFCs might expand the endogenous vascular repair potential of recipients and support their possible HLA-independent unconventional use.
Collapse
Affiliation(s)
- Andrea Flex
- Department of Internal Medicine, Catholic University, Rome, Italy
| | | | | | | | | | | | - Flavia Angelini
- Department of Internal Medicine, Catholic University, Rome, Italy
| | | | - Maria Bianchi
- Institute of Hematology, Catholic University, Rome, Italy
| | | | | | | |
Collapse
|
7
|
The tissue inhibitor of metalloproteinases 1 increases the clonogenic efficiency of human hematopoietic progenitor cells through CD63/PI3K/Akt signaling. Exp Hematol 2015. [DOI: 10.1016/j.exphem.2015.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Ferretti C, Mattioli-Belmonte M. Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge. World J Stem Cells 2014; 6:266-277. [PMID: 25126377 PMCID: PMC4131269 DOI: 10.4252/wjsc.v6.i3.266] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/09/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Periosteum is a thin fibrous layer that covers most bones. It resides in a dynamic mechanically loaded environment and provides a niche for pluripotent cells and a source for molecular factors that modulate cell behaviour. Elucidating periosteum regenerative potential has become a hot topic in orthopaedics. This review discusses the state of the art of osteochondral tissue engineering rested on periosteum derived progenitor cells (PDPCs) and suggests upcoming research directions. Periosteal cells isolation, characterization and migration in the site of injury, as well as their differentiation, are analysed. Moreover, the role of cell mechanosensing and its contribution to matrix organization, bone microarchitecture and bone stenght is examined. In this regard the role of periostin and its upregulation under mechanical stress in order to preserve PDPC survival and bone tissue integrity is contemplated. The review also summarized the role of the periosteum in the field of dentistry and maxillofacial reconstruction. The involvement of microRNAs in osteoblast differentiation and in endogenous tissue repair is explored as well. Finally the novel concept of a guided bone regeneration based on the use of periosteum itself as a smart material and the realization of constructs able to mimic the extracellular matrix features is talked out. Additionally, since periosteum can differentiate into insulin producing cells it could be a suitable source in allogenic transplantations. That innovative applications would take advantage from investigations aimed to assess PDPC immune privilege.
Collapse
|
9
|
Adult and cord blood endothelial progenitor cells have different gene expression profiles and immunogenic potential. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2013; 12 Suppl 1:s367-74. [PMID: 23867184 DOI: 10.2450/2013.0042-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/26/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Endothelial colony-forming cells (ECFC) are endowed with vascular regenerative ability in vivo and in vitro. In this study we compared the genotypic profile and the immunogenic potential of adult and cord blood ECFC, in order to explore the feasibility of using them as a cell therapy product. MATERIALS AND METHODS ECFC were obtained from cord blood samples not suitable for haematopoietic stem cell transplantation and from adult healthy blood donors after informed consent. Genotypes were analysed by commercially available microarray assays and results were confirmed by real-time polymerase chain reaction analysis. HLA antigen expression was evaluated by flow-cytometry. Immunogenic capacity was investigated by evaluating the activation of allogeneic lymphocytes and monocytes in co-cultures with ECFC. RESULTS Microarray assays revealed that the genetic profile of cord blood and adult ECFC differed in about 20% of examined genes. We found that cord blood ECFC were characterised by lower pro-inflammatory and pro-thrombotic gene expression as compared to adult ECFC. Furthermore, whereas cord blood and adult ECFCs expressed similar amount of HLA molecules both at baseline and after incubation with γ-interferon, cord blood ECFC elicited a weaker expression of pro-inflammatory cytokine genes. Finally, we observed no differences in the amount of HLA antigens expressed among cord blood ECFC, adult ECFC and mesenchymal cells. CONCLUSIONS Our observations suggest that cord blood ECFC have a lower pro-inflammatory and pro-thrombotic profile than adult ECFC. These preliminary data offer level-headed evidence to use cord blood ECFC as a cell therapy product in vascular diseases.
Collapse
|
10
|
The plasma levels of soluble HLA-G molecules correlate directly with CD34+ cell concentration and HLA-G 14bp insertion/insertion polymorphism in cord blood donors. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2013; 12 Suppl 1:s361-6. [PMID: 23399358 DOI: 10.2450/2012.0144-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 11/19/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cord blood provides haematopoietic stem cells for allogeneic transplantation and, thanks to the naivety of its immune system, has several advantages over other sources of stem cells. In the transplantation setting, the presence of immunosuppressive human leucocyte antigen (HLA)-G molecules has been advocated to prevent both rejection and Graft-versus-Host disease. HLA-G is physiologically expressed throughout pregnancy and is contained in cord blood at birth. Moreover, it has recently been reported that not only cord blood mesenchymal cells, but also CD34+ cell progenies produce soluble HLA-G (sHLA-G). We tried to identify the largest producer of sHLA-G among 85 healthy cord blood donors at Pavia Cord Blood Bank, correlating the sHLA-G concentration with the HLA-G 14bp insertion/deletion (INS/DEL) genotype and CD34+ cell concentration. MATERIALS AND METHODS We measured sHLA-G levels in 36 cord blood plasma stored at -20 °C for 2 months and 49 cord blood plasma stored at -196 °C for 4-6 years, by enzyme-linked immunosorbent assay. All cord blood donors were genotyped for the HLA-G 14bp INS/DEL polymorphism by polymerase chain reaction. For each cord blood unit, we measured the cell concentration by flow cytometry. RESULTS We did not find differences in sHLA-G levels between cord blood plasma aliquots stored for 4-6 years at -196 °C and cord blood plasma aliquots stored for 2 months at -20 °C. We observed a higher sHLA-G concentration in cord blood plasma donors who carried the HLA-G 14bp INS/INS genotype and had higher CD34+ cell concentrations (P=0.006). DISCUSSION This is the first report showing that the best cord blood stem cell donor is also the best sHLA-G producer, particularly if genetically characterized by the HLA-G 14bp INS/INS genotype. If the therapeutic role of sHLA-G molecules were to be finally established in the transplantation setting, our data suggest that cord blood plasma donors can provide a safe source of allogeneic sHLA-G immunosuppressive molecules ready for transfusion.
Collapse
|