1
|
Seetharaman A, Christopher V, Dhandapani H, Jayakumar H, Dhanushkodi M, Bhaskaran N, Rajaraman S, Ranganathan R, Sunder Singh S, Vijayakumar V, Rajamanickam A, Suri A, Jagadish N, Rajkumar T, Ramanathan P. Optimization and Validation of a Harmonized Protocol for Generating Therapeutic-Grade Dendritic Cells in a Randomized Phase II Clinical Trial, Using Two Varied Antigenic Sources. Vaccines (Basel) 2024; 12:112. [PMID: 38400096 PMCID: PMC10892253 DOI: 10.3390/vaccines12020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 02/25/2024] Open
Abstract
Autologous dendritic cell (DC)-based immunotherapy is a cell-based advanced therapy medicinal product (ATMP) that was first introduced more than three decades ago. In the current study, our objective was to establish a harmonized protocol using two varied antigenic sources and a good manufacturing practice (GMP)-compliant, manual method for generating clinical-grade DCs at a limited-resource academic setting. After obtaining ethical committee-approved informed consent, the recruited patients underwent leukapheresis, and single-batch DC production was carried out. Using responder-independent flow cytometric assays as quality control (QC) criteria, we propose a differentiation and maturation index (DI and MI, respectively), calculated with the QC cut-off and actual scores of each batch for comparison. Changes during cryopreservation and personnel variation were assessed periodically for up to two to three years. Using our harmonized batch production protocol, the average DI was 1.39 and MI was 1.25. Allogenic responder proliferation was observed in all patients, while IFN-gamma secretion, evaluated using flow cytometry, was detected in 10/36 patients and significantly correlated with CD8+ T cell proliferation (p value-0.0002). Tracking the viability and phenotype of cryopreserved MDCs showed a >90% viability for up to three years, while a mature DC phenotype was retained for up to one year. Our results confirm that the manual/semi-automated protocol was simple, consistent, and cost-effective, without the requirement for expensive equipment and without compromising on the quality of the final product.
Collapse
Affiliation(s)
- Abirami Seetharaman
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai 600036, India; (A.S.); (H.D.); (H.J.); (M.D.); (T.R.)
| | - Vasanth Christopher
- Department of Radiation Oncology, Cancer Institute (WIA), Adyar, Chennai 600036, India;
| | - Hemavathi Dhandapani
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai 600036, India; (A.S.); (H.D.); (H.J.); (M.D.); (T.R.)
| | - Hascitha Jayakumar
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai 600036, India; (A.S.); (H.D.); (H.J.); (M.D.); (T.R.)
| | - Manikandan Dhanushkodi
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai 600036, India; (A.S.); (H.D.); (H.J.); (M.D.); (T.R.)
| | - Narmadha Bhaskaran
- Department of Transfusion Medicine, Cancer Institute (WIA), Adyar, Chennai 600036, India;
| | - Swaminathan Rajaraman
- Department of Epidemiology, Cancer Institute (WIA), Adyar, Chennai 600036, India; (S.R.); (R.R.)
| | - Rama Ranganathan
- Department of Epidemiology, Cancer Institute (WIA), Adyar, Chennai 600036, India; (S.R.); (R.R.)
| | | | | | | | - Anil Suri
- National Institute of Immunology, Department of Biotechnology (DBT), Ministry of Science and Technology, New Delhi 110067, India; (A.S.); (N.J.)
- Centre for Cancer Immunotherapy, Sri Ram Cancer & Superspeciality Centre (SRCC), Mahatma Gandhi Medical College and Hospital, Jaipur 302022, India
| | - Nirmala Jagadish
- National Institute of Immunology, Department of Biotechnology (DBT), Ministry of Science and Technology, New Delhi 110067, India; (A.S.); (N.J.)
- Centre for Cancer Immunotherapy, Sri Ram Cancer & Superspeciality Centre (SRCC), Mahatma Gandhi Medical College and Hospital, Jaipur 302022, India
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai 600036, India; (A.S.); (H.D.); (H.J.); (M.D.); (T.R.)
- Research Oncology, Medgenome, Bangalore 560099, India
- IIT Madras, Chennai 600036, India
- Department of Nano sciences and Molecular Medicine, AIMS, Kochi 682041, India
| | - Priya Ramanathan
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai 600036, India; (A.S.); (H.D.); (H.J.); (M.D.); (T.R.)
| |
Collapse
|
2
|
Shiri Aghbash P, Shirvaliloo M, Khalo Abass Kasho A, Alinezhad F, Nauwynck H, Bannazadeh Baghi H. Cluster of differentiation frequency on antigen presenting-cells: The next step to cervical cancer prognosis? Int Immunopharmacol 2022; 108:108896. [DOI: 10.1016/j.intimp.2022.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
|
3
|
Dhandapani H, Jayakumar H, Seetharaman A, Singh SS, Ganeshrajah S, Jagadish N, Suri A, Thangarajan R, Ramanathan P. Dendritic cells matured with recombinant human sperm associated antigen 9 (rhSPAG9) induce CD4 +, CD8 + T cells and activate NK cells: a potential candidate molecule for immunotherapy in cervical cancer. Cancer Cell Int 2021; 21:473. [PMID: 34493268 PMCID: PMC8424976 DOI: 10.1186/s12935-021-01951-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Dendritic cell (DC)-based immunotherapy is capable of activating the immune system and in particular tumor-specific cytotoxic T lymphocytes (CTLs) to eradicate the tumor. However, major limitations are the availability of autologous tumor cells as antigenic source and the selection of antigen that may have potential to activate both CD4+ and CD8+ T cells in immune-specific manner. Recently, we reported the expression of sperm associated antigen 9 (SPAG9) that is associated with various types of malignancies including cervical cancer. We examined the recombinant human SPAG9 (rhSPAG9) as an antigenic source for generating efficient DCs to stimulate CD4+ and CD8+ T cell responses for future DCs-based vaccine trials in cervical cancer patients. Methods Human monocytes derived DCs were pulsed with different concentrations (250 ng/ml to 1000 ng/ml) of recombinant human SPAG9 (rhSPAG9) and evaluated for their phenotypic and functional ability. The efficacy of DCs primed with 750 ng/ml of rhSPAG9 (SPDCs) was compared with DCs primed with autologous tumor lysates (TLDCs), to induce CD4+, CD8+ T cells and activating NK cells. In addition, we investigated the effect of the chemotherapeutic drug cisplatin on phenotypic and functional potential of SPDCs. Results Phenotypic and functional characterization of DCs pulsed with 750 ng/ml rhSPAG9 was found to be optimal and effective for priming DCs. SPDCs were also capable of stimulating allogeneic T cells similar to TLDCs. SPDCs showed a statistically insignificant increase in the expression of maturation marker CD83 and migration towards CCL19 and CCL21 compared with TLDCs (CD83; P = 0.4; migration; P = 0.2). In contrast, although TLDCs showed better proliferation and secretion of Th1 cytokines (IL12p40, IL12p70 and IFNγ) compared to SPDCs, this difference was not statistically significant (IL12p40, P = 0.06). Further we also observed that clinical dose of cisplatin (200 µM) treated SPDCs were able to stimulate the proliferation of cytotoxic T lymphocytes without increasing the FOXP3+ Tregs in autologous co-cultures. Conclusions In summary, in order to overcome the limitation of the availability of autologous tumor cells as antigenic sources, our present strategy provides an insight to consider rhSPAG9 as a strong immunogen for DC-based immunotherapy for cervical cancer trials and warrants further studies. This is the first report to suggest that rhSPAG9 is an effective antigen for pulsing DCs that are capable of eliciting a potent Th1 response which, in turn, may help in decreasing the tumor burden when used along with a cisplatin based combinatorial regimen for therapeutic intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01951-7.
Collapse
Affiliation(s)
- Hemavathi Dhandapani
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Hascitha Jayakumar
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Abirami Seetharaman
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Shirley Sunder Singh
- Department of Pathology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Selvaluxmy Ganeshrajah
- Department of Radiation Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Nirmala Jagadish
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anil Suri
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rajkumar Thangarajan
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Priya Ramanathan
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India.
| |
Collapse
|
4
|
Dhandapani H, Seetharaman A, Jayakumar H, Ganeshrajah S, Singh SS, Thangarajan R, Ramanathan P. Autologous cervical tumor lysate pulsed dendritic cell stimulation followed by cisplatin treatment abrogates FOXP3+ cells in vitro. J Gynecol Oncol 2021; 32:e59. [PMID: 33908712 PMCID: PMC8192235 DOI: 10.3802/jgo.2021.32.e59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/08/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Dendritic cells (DCs) are administered as immunotherapeutic adjuvants after the completion of standard treatment in most settings. However, our Phase I trial indicated that one patient out of four, who received autologous tumor lysate-pulsed dendritic cell (TLDC) also received cisplatin chemotherapy and experienced complete regression of her lung lesion, continuing to be disease free till date. Hence, the objective of our current study is to evaluate the sustenance or augmentation of immune responses when autologous human papillomavirus positive cervical tumor lysate pulsed DC- are combined with cisplatin, using co-culture assays in vitro. Methods Before treatment, peripheral blood and punch biopsy samples were collected from 23 cervical cancer patients after obtaining an informed consent. DC functionality was confirmed through phenotypic and functional assays using autologous peripheral blood mononuclear cells as responders. For cisplatin experiments, the drug was added at 150, 200 (clinical dose equivalent), and 400 µM concentrations to DCs alone or DC-T cell co-cultures. Phenotypic assessment and functional characterization of DCs was done using flow cytometry. Cytokine enzyme-linked immunosorbent assay and interferon (IFN)-γ enzyme-linked immune absorbent spot assays were also performed. Results The functionality of TLDCs was not compromised upon cisplatin treatment in vitro even at the highest (400 μM) concentration. Even though cisplatin treatment reduced the secretion of IFN-γ and interleukin (IL)-12p40 in co-cultures stimulated with TLDCs, this effect was not significant (p>0.05). A doubling of IFN-γ secretion following cisplatin treatment was observed in at least one of three independent experiments. Additional experiments showed a reduction in both FOXP3+ regulatory T cells and IL-10 levels. Conclusion Our results provide evidence that cisplatin treatment may be given after autologous TLDC administration to maintain or improve a productive anti-tumor response in vaccinated patients.
Collapse
Affiliation(s)
- Hemavathi Dhandapani
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Abirami Seetharaman
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Hascitha Jayakumar
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Selvaluxmy Ganeshrajah
- Department of Radiation Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Shirley Sunder Singh
- Department of Oncopathology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Rajkumar Thangarajan
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Priya Ramanathan
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India.
| |
Collapse
|
5
|
Ramos-Martínez E, Rojas-Serrano J, García-Hernández O, García-Vázquez FJ, Andrade WA, Avila G, Salinas-Pasquier L, López-Vancell MR. The immune response to Hymenolepis nana in mice decreases tumorigenesis induced by 7,12 dimethylbenz-anthracene. Cytokine 2019; 123:154743. [PMID: 31255915 DOI: 10.1016/j.cyto.2019.154743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cancer is a high-impact disease throughout the world. A negative correlation has been established between the development of cancer and the Th2 immune response. Infection by helminth parasites is characterized by the induction of a strong and long-lasting Th2 response. The aim of this work was to evaluate the effect of the immune response induced by the infection with the helminth Hymenolepis nana, on the tumorigenesis induced by dimethylbenz-anthracene (DMBA) in mice. METHODOLOGY Four different groups of 14 female BALB/c mice were formed; Group A, dimethyl sulfoxide (DMSO) (vehicle) was administered cutaneously, Group B infected with H. nana, group C, cutaneously DMBA and finally Group D infected with H. nana and cutaneous DMBA. The tumor load was determined in those animals that developed cancerous lesions. In all groups were determined: serum concentration of IgE, IFNγ, IL-10, IL-5 and malondialdehyde (MDA). The inflammatory infiltrate was analyzed from skin samples and the expression of the main eosinophilic protein and myeloperoxidase was determined. RESULTS The group previously infected with H. nana had a reduced amount of tumors with smaller size, in comparison to the group that received only DMBA; this reduction was associated with lower levels of IFNγ and IL-10, while levels of IgE, IL-5 and MDA were higher. Further, the number of eosinophils and neutrophils was statistically higher in the animals that were previously infected with the helminth and developed less tumors. CONCLUSION The immune response induced by H. nana infection is associated with the reduction of tumors probably due to the activity of eosinophils and neutrophils.
Collapse
Affiliation(s)
- E Ramos-Martínez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - J Rojas-Serrano
- Servicio Clínico de enfermedades del Intersticio del Pulmón y Reumatología Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Ciudad de México, Mexico
| | - O García-Hernández
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - F J García-Vázquez
- Instituto Nacional de Pediatría, Laboratorio de Inmunogenética Molecular, Departamento de Análisis Clínicos y Estudios Especiales, México, DF, Mexico
| | - W A Andrade
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - G Avila
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, Mexico
| | - L Salinas-Pasquier
- Servicio de Anatomía Patológica, Unidad de Citopatología. Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, Mexico
| | - M R López-Vancell
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
6
|
Krzastek SC, Goliadze E, Zhou S, Petrossian A, Youniss F, Sundaresan G, Wang L, Zweit J, Guruli G. Dendritic cell trafficking in tumor-bearing mice. Cancer Immunol Immunother 2018; 67:1939-1947. [PMID: 29943070 PMCID: PMC11028156 DOI: 10.1007/s00262-018-2187-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/13/2018] [Indexed: 12/16/2022]
Abstract
Prostate cancer is one of the leading causes of cancer deaths, with no curative treatments once it spreads. Alternative therapies, including immunotherapy, have shown limited efficacy. Dendritic cells (DC) have been widely used in the treatment of various malignancies. DC capture antigens and move to the lymphoid organs where they prime naive T cells. Interaction between DC and T cells are most active in lymph nodes and suppression of DC trafficking to lymph nodes impairs the immune response. In this work, we aimed to study trafficking of DC in vivo via various routes of delivery, to optimize the effectiveness of DC-based therapy. A DC labeling system was developed using 1,1'-dioctadecyltetramethyl indotricarbocyanine Iodine for in vivo fluorescent imaging. DC harvested from C57B/6 mice were matured, labeled, and injected intravenously, subcutaneously, or intratumorally, with or without antigen loading with whole tumor lysate, into C57B/6 mice inoculated with RM-1 murine prostate tumor cells. Signal intensity was measured in vivo and ex vivo. Signal intensity at the tumor site increased over time, suggesting trafficking of DC to the tumor with all modes of injection. Subcutaneous injection showed preferential trafficking to lymph nodes and tumor. Intravenous injection showed trafficking to lungs, intestines, and spleen. Subcutaneous injection of DC pulsed with whole tumor lysate resulted in the highest increase in signal intensity at the tumor site and lymph nodes, suggesting subcutaneous injection of primed DC leads to highest preferential trafficking of DC to the immunocompetent organs.
Collapse
Affiliation(s)
- Sarah C Krzastek
- Division of Urology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Ekaterine Goliadze
- Division of Urology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Shaoqing Zhou
- Division of Urology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Albert Petrossian
- Division of Urology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Fatma Youniss
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Gobalakrishnan Sundaresan
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Li Wang
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Jamal Zweit
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Georgi Guruli
- Division of Urology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|