1
|
Shiravani Z, Mirshekari K, Larki MH, Shafiee N, Haghshenas MR, Ghaderi A, Fattahi MJ. Evaluation of the genetic diversity of KIR genes in patients with endometrial cancer. J Reprod Immunol 2024; 162:104217. [PMID: 38387251 DOI: 10.1016/j.jri.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 01/01/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Endometrial cancer (EC) constitutes more than half of all genital cancers in women, with an increasing incidence in different countries. Natural killer cells (NK cells) are kinds of innate immune cells that are controlled by sets of receptors, such as killer cell Ig-like receptors (KIRs), which can inhibit or activate NK cells. In this study, we evaluated the diversity and genetic association of KIRs in confirmed cases of endometrial cancer compared to healthy controls. A total of 151 women with EC and 167 age/race-matched healthy controls were analyzed for KIR genes. Demographic and histopathologic data were gathered in questionnaires, and 16 KIR genes along with two variants of KIR2DS4 (KIR2DS4fl and KIR2DS4del), were genotyped by usingsequence specific primers-polymerase chain reaction (SSP-PCR) method. A comparison between cases and controls revealed that although there were not any significant differences in A haplotype associated genes and also the variants of KIR2DS4 (p >0.05), B haplotype associated genes such as KIR2DS2 and KIR2DL2 decreased significantly in EC patients in comparison with healthy controls (p=0.03 and p=0.01, respectively). Furthermore, we found that EC mostly developed in cases with the AA genotype; however, the carriers of Bx and C4T4 genotypes were less frequent in patients with EC. Our results revealed that KIR2DS2 and KIR2DL2, along with Bx and C4T4 genotypes, have a protective impact against developing endometrial cancer in Iranians.
Collapse
Affiliation(s)
- Zahra Shiravani
- Gynecology Oncology Division, Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Mirshekari
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Hematian Larki
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nargess Shafiee
- Gynecology Oncology Division, Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Fattahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Choi H, Baek IC, Park SA, Park JS, Jeun SS, Kim TG, Ahn S. Polymorphisms of Killer Ig-like Receptors and the Risk of Glioblastoma. J Clin Med 2023; 12:4780. [PMID: 37510895 PMCID: PMC10380963 DOI: 10.3390/jcm12144780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE The immune responses of natural killer (NK) cells against cancer cells vary by patient. Killer Ig-like receptors (KIRs), which are some of the major receptors involved in regulating NK cell activity for killing cancer cells, have significant genetic variation. Numerous studies have suggested a potential association between the genetic variation of KIR genes and the risk of development or prognosis of various cancer types. However, an association between genetic variations of KIR genes and glioblastoma (GB) remains uncertain. We sought to evaluate the association of genetic variations of KIRs and their ligand genes with the risk of GB development in Koreans. METHODS A case-control study was performed to identify the odds ratios (ORs) of KIR genes and Classes A, B, and, C of the human leukocyte antigen (HLA) for GB. The GB group was comprised of 77 patients with newly diagnosed IDH-wildtype GB at our institution, and the control group consisted of 200 healthy Korean volunteers. RESULTS There was no significant difference in the frequency of KIR genes and KIR haplotypes between the GB and control groups. Genetic variations of KIR-2DL1, 3DL1, and 3DS1 with their ligand genes (HLA-C2, HLA-Bw4/6, and Bw4, respectively) had effects on the risk of GB in Korean patients. The frequency of KIR-2DL1 with HLA-C2 (OR 2.05, CI 1.19-3.52, p = 0.009), the frequency of KIR-3DL1 without HLA-Bw4 (80I) (OR 8.36, CI 4.06-17.18, p < 0.001), and the frequency of KIR-3DL1 with Bw6 (OR 4.54, CI 2.55-8.09, p < 0.001) in the GB group were higher than in the control group. In addition, the frequency of KIR-2DL1 without HLA-C2 (OR 0.44, CI 0.26-0.75, p = 0.003), the frequency of KIR-3DL1 with HLA-Bw4 (80T) (OR 0.13, CI 0.06-0.27, p < 0.001), the frequency of KIR-3DL1 without Bw6 (OR 0.27, CI 0.15-0.49, p < 0.001), and the frequency of KIR-3DS1 with Bw4 (80I) (OR 0.03, CI 0.00-0.50, p < 0.001) in the GB group were lower than in the control group. CONCLUSIONS This study suggests that genetic variations of KIRs and their ligand genes may affect GB development in the Korean population. Further investigations are needed to demonstrate the different immune responses for GB cells according to genetic variations of KIR genes and their ligand genes.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Soon A Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Expression of Killer Immunoglobulin Receptor Genes among HIV-Infected Individuals with Non-AIDS Comorbidities. J Immunol Res 2022; 2022:1119611. [PMID: 35071606 PMCID: PMC8769865 DOI: 10.1155/2022/1119611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/18/2022] Open
Abstract
Combined antiretroviral therapy (cART) increased the life expectancy of people living with HIV (PLHIV) and remarkably reduced the morbidity and mortality associated with HIV infection. However, non-AIDS associated comorbidities including diabetes, hypertension, hyperlipidemia, and cardiovascular diseases (CVD) are increasingly reported among PLHIV receiving cART. Killer cell immunoglobulin receptors (KIRs) expressed on the surface of natural killer (NK) cells have been previously implicated in controlling HIV disease progression. The aim of this study is to investigate the role of KIRs in developing non-AIDS associated comorbidities among PLHIV. Demographic and behavioral data were collected from voluntary participants using a standardized questionnaire. Whole blood samples were collected for KIR genotyping. Hypertension (29.5%) and hyperlipidemia (29.5%) followed by diabetes (23.7%) and CVD (9.7%) were mainly reported among our study participants with higher rate of comorbid conditions observed among
years old. The observed KIR frequency (OF) was ≥90% for inhibitory KIR2DL1 and KIR3DL1, activating KIR2DS4 and the pseudogene KIR2DP1 among study participants. We detected significant differences in the expression of KIR3DS4 and KIR3DL1 (
) between diabetic and nondiabetic and in the expression of KIR2DL3 between hypertensive and normotensive HIV-infected individuals (
). Moreover, KIR2DL1 and KIR2DP1 were associated with significantly reduced odds of having CVD (OR 0.08; 95% CI: 0.01-0.69;
). Our study suggests the potential role of KIR in predisposition to non-AIDS comorbidities among PLHIV and underscores the need for more studies to further elucidate the role of KIRs in this population.
Collapse
|
4
|
Yang Y, Bai H, Wu Y, Chen P, Zhou J, Lei J, Ye X, Brown AJ, Zhou X, Shu T, Chen Y, Wei P, Yin L. The Activating receptor KIR2DS2 bound to HLA-C1 reveals the novel recognition features of activating receptor. Immunology 2021; 165:341-354. [PMID: 34967442 DOI: 10.1111/imm.13439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are important receptors for regulating the killing of virus-infected or cancer cells of natural killer (NK) cells. KIR2DS2 can recognize peptides derived from hepatitis C virus (HCV) or global flaviviruses (such as dengue and Zika) presented by HLA-C*0102 to activate NK cells, and have shown promising results when used for cancer immunotherapy. Here, we present the complex structure of KIR2DS2 with HLA-C*0102 at a resolution of 2.5Å. Our structure reveals that KIR2DS2 can bind HLA-C*0102 and HLA-A*1101 in two different directions. Moreover, Tyr45 (in activating receptor KIR2DS2) and Phe45 (in inhibitory KIRs) distinguish the two different binding models and binding affinity between activating KIRs and inhibitory KIRs. The conserved "AT" motif of the peptide mediates recognition and determines the peptide specificity of recognition. These structural characteristic shed light on how KIRs activate NK cells and can provide a molecular basis for immunotherapy by NK cells.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hua Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yankang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jin Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Lei
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Ye
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alex J Brown
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, China
| | - Ting Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengcheng Wei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Diaz-Peña R, Mondelo-Macía P, Molina de la Torre AJ, Sanz-Pamplona R, Moreno V, Martín V. Analysis of Killer Immunoglobulin-Like Receptor Genes in Colorectal Cancer. Cells 2020; 9:cells9020514. [PMID: 32102404 PMCID: PMC7072752 DOI: 10.3390/cells9020514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/22/2022] Open
Abstract
Natural killer cells (NK cells) play a major role in the immune response to cancer. An important element of NK target recognition is the binding of human leucocyte antigen (HLA) class I molecules by killer immunoglobulin-like receptors (KIRs). Colorectal carcinoma (CRC) is one of the most common types of inflammation-based cancer. The purpose of the present study was to investigate the presence of KIR genes and HLA class I and II alleles in 1074 CRC patients and 1272 controls. We imputed data from single-nucleotide polymorphism (SNP) Illumina OncoArray to identify associations at HLA (HLA–A, B, C, DPB1, DQA1, DQB1, and DRB1) and KIRs (HIBAG and KIR*IMP, respectively). For association analysis, we used PLINK (v1.9), the PyHLA software, and R version 3.4.0. Only three SNP markers showed suggestive associations (p < 10−3; rs16896742, rs28367832, and rs9277952). The frequency of KIR2DS3 was significantly increased in the CRC patients compared to healthy controls (p < 0.005). Our results suggest that the implication of NK cells in CRC may not act through allele combinations in KIR and HLA genes. Much larger studies in ethnically homogeneous populations are needed to rule out the possible role of allelic combinations in KIR and HLA genes in CRC risk.
Collapse
Affiliation(s)
- Roberto Diaz-Peña
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain;
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
- Correspondence: or ; Tel.: +34-981-955-073 (ext. 15706)
| | - Patricia Mondelo-Macía
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain;
| | - Antonio José Molina de la Torre
- Instituto de Biomedicina (IBIOMED), CIBERESP, 24071 León, Spain; (A.J.M.d.l.T.); (V.M.)
- Group of Research on Gene-Environment-Health Interactions (GIIGAS), Universidad de León, 24071 León, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L’Hospitalet de Llobregat, 08908 Barcelona, Spain (V.M.)
| | - Víctor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L’Hospitalet de Llobregat, 08908 Barcelona, Spain (V.M.)
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Vicente Martín
- Instituto de Biomedicina (IBIOMED), CIBERESP, 24071 León, Spain; (A.J.M.d.l.T.); (V.M.)
- Group of Research on Gene-Environment-Health Interactions (GIIGAS), Universidad de León, 24071 León, Spain
| |
Collapse
|
6
|
Shayanrad B, Ghanadi K, Varzi AM, Birjandi M, Ahmadi SAY, Shahsavar F. Association of KIR genes and their HLA ligands diversity with colorectal cancer in Lur population of Iran. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
The impact of KIR/HLA genes on the risk of developing multibacillary leprosy. PLoS Negl Trop Dis 2019; 13:e0007696. [PMID: 31525196 PMCID: PMC6762192 DOI: 10.1371/journal.pntd.0007696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/26/2019] [Accepted: 08/08/2019] [Indexed: 11/19/2022] Open
Abstract
Background Killer-cell immunoglobulin-like receptors (KIRs) are a group of regulatory molecules able to activate or inhibit natural killer cells upon interaction with human leukocyte antigen (HLA) class I molecules. Combinations of KIR and HLA may contribute to the occurrence of different immunological and clinical responses to infectious diseases. Leprosy is a chronic neglected disease, both disabling and disfiguring, caused mainly by Mycobacterium leprae. In this case–control study, we examined the influence of KIRs and HLA ligands on the development of multibacillary leprosy. Methodology/Principal findings Genotyping of KIR and HLA genes was performed in 264 multibacillary leprosy patients and 518 healthy unrelated controls (238 healthy household contacts and 280 healthy subjects). These are unprecedented results in which KIR2DL2/KIR2DL2/C1/C2 and KIR2DL3/2DL3/C1/C1 indicated a risk for developing lepromatous and borderline leprosy, respectively. Concerning to 3DL2/A3/A11+, our study demonstrated that independent of control group (contacts or healthy subjects), this KIR receptor and its ligand act as a risk factor for the borderline clinical form. Conclusions/Significance Our finding suggests that synergetic associations of activating and inhibitory KIR genes may alter the balance between these receptors and thus interfere in the progression of multibacillary leprosy. Leprosy is a neglected disease with the highest worldwide prevalence, and remains a public health problem in Brazil. The innate immune mechanisms are determinants in the management of leprosy and its different clinical manifestations. Accordingly, genetic association study provides information about the contribution of host genetic factors and the environment in which the individual lives on the development of leprosy. The individuals considered most affected and associated with a major risk for developing leprosy are household contacts with an intimate relation to patients living in crowded households. For this reason, we chose the contacts as one of our control groups, since they are more exposed to infection compared to the general population. We investigated the influence of KIR and HLA genes on the susceptibility to multibacillary leprosy. Our results reinforce the importance of host genetic background in the susceptibility to leprosy demonstrating that, independent from the control group (contacts or healthy subjects) the KIR and HLA act as risk factors in the development of lepromatous and borderline leprosy.
Collapse
|
8
|
Poggi A, Benelli R, Venè R, Costa D, Ferrari N, Tosetti F, Zocchi MR. Human Gut-Associated Natural Killer Cells in Health and Disease. Front Immunol 2019; 10:961. [PMID: 31130953 PMCID: PMC6509241 DOI: 10.3389/fimmu.2019.00961] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
It is well established that natural killer (NK) cells are involved in both innate and adaptive immunity. Indeed, they can recognize molecules induced at the cell surface by stress signals and virus infections. The functions of NK cells in the gut are much more complex. Gut NK cells are not precisely organized in lymphoid aggregates but rather scattered in the epithelium or in the stroma, where they come in contact with a multitude of antigens derived from commensal or pathogenic microorganisms in addition to components of microbiota. Furthermore, NK cells in the bowel interact with several cell types, including epithelial cells, fibroblasts, macrophages, dendritic cells, and T lymphocytes, and contribute to the maintenance of immune homeostasis and development of efficient immune responses. NK cells have a key role in the response to intestinal bacterial infections, primarily through production of IFNγ, which can stimulate recruitment of additional NK cells from peripheral blood leading to amplification of the anti-bacterial immune response. Additionally, NK cells can have a role in the pathogenesis of gut autoimmune inflammatory bowel diseases (IBDs), such as Crohn's Disease and Ulcerative Colitis. These diseases are considered relevant to the generation of gastrointestinal malignancies. Indeed, the role of gut-associated NK cells in the immune response to bowel cancers is known. Thus, in the gut immune system, NK cells play a dual role, participating in both physiological and pathogenic processes. In this review, we will analyze the known functions of NK cells in the gut mucosa both in health and disease, focusing on the cross-talk among bowel microenvironment, epithelial barrier integrity, microbiota, and NK cells.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Benelli
- Immunology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberta Venè
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Delfina Costa
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicoletta Ferrari
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Meng FC, Lin JK. Liquiritigenin Inhibits Colorectal Cancer Proliferation, Invasion, and Epithelial-to-Mesenchymal Transition by Decreasing Expression of Runt-Related Transcription Factor 2. Oncol Res 2019; 27:139-146. [PMID: 29471888 PMCID: PMC7848391 DOI: 10.3727/096504018x15185747911701] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inhibition of tumor metastasis is one of the most important purposes in colorectal cancer (CRC) treatment. This study aimed to explore the effects of liquiritigenin, a flavonoid extracted from the roots of Glycyrrhiza uralensis Fisch, on HCT116 cell proliferation, invasion, and epithelial-to-mesenchymal transition (EMT). We found that liquiritigenin significantly inhibited HCT116 cell proliferation, invasion, and the EMT process, but had no influence on cell apoptosis. Moreover, liquiritigenin remarkably reduced the expression of runt-related transcription factor 2 (Runx2) in HCT116 cells. Overexpression of Runx2 obviously reversed the liquiritigenin-induced invasion and EMT inhibition. Furthermore, liquiritigenin inactivated the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway in HCT116 cells. Upregulation of Runx2 reversed the liquiritigenin-induced PI3K/AKT pathway inactivation. In conclusion, our research verified that liquiritigenin exerted significant inhibitory effects on CRC invasion and EMT process by downregulating the expression of Runx2 and inactivating the PI3K/AKT signaling pathway. Liquiritigenin could be an effective therapeutic and preventative medicine for CRC treatment.
Collapse
Affiliation(s)
- Fan-Chun Meng
- Department of Gastrointestinal Surgery, Shengli Oilfield Central Hospital, Dongying, Shandong, P.R. China
| | - Jun-Kai Lin
- Department of Gastrointestinal Surgery, Shengli Oilfield Central Hospital, Dongying, Shandong, P.R. China
| |
Collapse
|
10
|
Chaisri S, Traherne JA, Jayaraman J, Romphruk A, Trowsdale J, Leelayuwat C. Novel KIR genotypes and gene copy number variations in northeastern Thais. Immunology 2017; 153:380-386. [PMID: 28950036 DOI: 10.1111/imm.12847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 01/02/2023] Open
Abstract
KIR (Killer Immunoglobulin-like Receptor) variants influence immune responses and are genetic factors in disease susceptibility. Using sequence-specific priming PCR, we have previously described the diversity of KIR genes in term of presence/absence in northeastern Thais (NETs). To provide additional resolution beyond conventional methods, quantitative PCR was applied to determine KIR copy number profiles. Novel expanded and contracted KIR copy number profiles were identified at cumulatively high frequencies. These all comprise haplotypes with duplication (6·9%) or deletion (2·7%) of KIR3DL1/S1 along with adjacent genes. Five expanded KIR profiles comprised haplotypes with duplications of KIR2DP1, 2DL1, 3DP1, 2DL4, 3DL1/S1 and 2DS1/4, whereas two contracted profiles contained only a single copy of KIR3DP1, 3DL1/S1 and 2DL4. Using a KIR haplotype prediction program (KIR Haplotype Identifier), 14% of NET haplotypes carried atypical haplotypes based on the gene copy number data.
Collapse
Affiliation(s)
- Suwit Chaisri
- Chulabhorn International College of Medicine (CICM), Thammasat University, Klong Luang, Thailand.,The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - James A Traherne
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Jyothi Jayaraman
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Amornrat Romphruk
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Blood Transfusion Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - John Trowsdale
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Chanvit Leelayuwat
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|