1
|
Knabl J, Ye Y, Desoye G, Jeschke U. HLA-G - evolvement from a trophoblast specific marker to a checkpoint molecule in cancer, a narrative review about the specific role in breast- and gynecological cancer. J Reprod Immunol 2024; 166:104385. [PMID: 39432974 DOI: 10.1016/j.jri.2024.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Human leukocyte antigen G (HLA-G) is known as a non-classical molecule of the major histocompatibility complex class Ib and downregulates the mother's immune response against the fetus during pregnancy, thereby generating immune tolerance. Due to the latter effect, HLA-G is also referred to as an immune checkpoint molecule. Originally identified on extravillous trophoblasts, HLA-G is already known to induce immune tolerance at various stages of the immune response, for example through cell differentiation and proliferation, cytolysis and cytokine secretion. Because of these functions, HLA-G is involved in various processes of cancer progression, but a comprehensive review of the role of HLA-G in gynecologic cancers is lacking. Therefore, this review focuses on the existing knowledge of HLA-G in ovarian cancer, endometrial cancer, cervical cancer and breast cancer. HLA-G is predominantly expressed in cancer tissues adjacent to the extravillous trophoblast. Therefore, modulating its expression in the cancer target tissues of cancer patients could be a potential therapeutic approach to treat these diseases.
Collapse
Affiliation(s)
- Julia Knabl
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistr.15, Munich 81377 , Germany; Department of Obstetrics, Klinik Hallerwiese, St.-Johannis Mühlgasse 19, Nürnberg 90419, Germany
| | - Yao Ye
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University Graz, Auenbruggerplatz 14, Graz A-8036, Austria
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstr. 2, Augsburg 86156, Germany.
| |
Collapse
|
2
|
Wang S, Wang J, Xia Y, Zhang L, Jiang Y, Liu M, Gao Q, Zhang C. Harnessing the potential of HLA-G in cancer therapy: advances, challenges, and prospects. J Transl Med 2024; 22:130. [PMID: 38310272 PMCID: PMC10838004 DOI: 10.1186/s12967-024-04938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024] Open
Abstract
Immune checkpoint blockades have been prized in circumventing and ablating the impediments posed by immunosuppressive receptors, reaching an exciting juncture to be an innovator in anticancer therapy beyond traditional therapeutics. Thus far, approved immune checkpoint blockades have principally targeted PD-1/PD-L1 and CTLA-4 with exciting success in a plethora of tumors and yet are still trapped in dilemmas of limited response rates and adverse effects. Hence, unveiling new immunotherapeutic targets has aroused immense scientific interest in the hope of expanding the clinical application of immune checkpoint blockades to scale new heights. Human leukocyte antigen-G (HLA-G), a non-classical major histocompatibility complex (MHC) class I molecule, is enriched on various malignant cells and is involved in the hindrance of immune effector cells and the facilitation of immunosuppressive cells. HLA-G stands out as a crucial next-generation immune checkpoint showing great promise for the benefit of cancer patients. Here, we provide an overview of the current understanding of the expression pattern and immunological functions of HLA-G, as well as its interaction with well-characterized immune checkpoints. Since HLA-G can be shed from the cell surface or released by various cells as free soluble HLA-G (sHLA-G) or as part of extracellular vesicles (EVs), namely HLA-G-bearing EVs (HLA-GEV), we discuss the potential of sHLA-G and HLA-GEV as predictive biomarkers. This review also addresses the advancement of HLA-G-based therapies in preclinical and clinical settings, with a focus on their clinical application in cancer.
Collapse
Affiliation(s)
- Siyuan Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yueqiang Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Man Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
3
|
Li L, Yang W, Jia D, Zheng S, Gao Y, Wang G. Establishment of a N1-methyladenosine-related risk signature for breast carcinoma by bioinformatics analysis and experimental validation. Breast Cancer 2023:10.1007/s12282-023-01458-1. [PMID: 37178414 DOI: 10.1007/s12282-023-01458-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES Breast carcinoma (BRCA) has resulted in a huge health burden globally. N1-methyladenosine (m1A) RNA methylation has been proven to play key roles in tumorigenesis. Nevertheless, the function of m1A RNA methylation-related genes in BRCA is indistinct. METHODS The RNA sequencing (RNA-seq), copy-number variation (CNV), single-nucleotide variant (SNV), and clinical data of BRCA were acquired via The Cancer Genome Atlas (TCGA) database. In addition, the GSE20685 dataset, the external validation set, was acquired from the Gene Expression Omnibus (GEO) database. 10 m1A RNA methylation regulators were obtained from the previous literature, and further analyzed through differential expression analysis by rank-sum test, mutation by SNV data, and mutual correlation by Pearson Correlation Analysis. Furthermore, the differentially expressed m1A-related genes were selected through overlapping m1A-related module genes obtained by weighted gene co-expression network analysis (WGCNA), differentially expressed genes (DEGs) in BRCA and DEGs between high- and low- m1A score subgroups. The m1A-related model genes in the risk signature were derived by univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. In addition, a nomogram was built through univariate and multivariate Cox analyses. After that, the immune infiltration between the high- and low-risk groups was investigated through ESTIMATE and CIBERSORT. Finally, the expression trends of model genes in clinical BRCA samples were further confirmed by quantitative real-time PCR (RT‒qPCR). RESULTS Eighty-five differentially expressed m1A-related genes were obtained. Among them, six genes were selected as prognostic biomarkers to build the risk model. The validation results of the risk model showed that its prediction was reliable. In addition, Cox independent prognosis analysis revealed that age, risk score, and stage were independent prognostic factors for BRCA. Moreover, 13 types of immune cells were different between the high- and low-risk groups and the immune checkpoint molecules TIGIT, IDO1, LAG3, ICOS, PDCD1LG2, PDCD1, CD27, and CD274 were significantly different between the two risk groups. Ultimately, RT-qPCR results confirmed that the model genes MEOX1, COL17A1, FREM1, TNN, and SLIT3 were significantly up-regulated in BRCA tissues versus normal tissues. CONCLUSIONS An m1A RNA methylation regulator-related prognostic model was constructed, and a nomogram based on the prognostic model was constructed to provide a theoretical reference for individual counseling and clinical preventive intervention in BRCA.
Collapse
Affiliation(s)
- Leilei Li
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Wenhui Yang
- Department of Digestive Oncology, Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, People's Republic of China
| | - Daqi Jia
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Shiqi Zheng
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Yuzhe Gao
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, People's Republic of China.
| | - Guanghui Wang
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, People's Republic of China.
| |
Collapse
|
4
|
TRUONG NC, HUYNH NT, PHAM KD, PHAM PV. Roles of cancer stem cells in cancer immune surveillance. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Jiang N, Yu Y, Wu D, Wang S, Fang Y, Miao H, Ma P, Huang H, Zhang M, Zhang Y, Tang Y, Li N. HLA and tumour immunology: immune escape, immunotherapy and immune-related adverse events. J Cancer Res Clin Oncol 2023; 149:737-747. [PMID: 36662304 DOI: 10.1007/s00432-022-04493-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/22/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE As molecules responsible for presenting antigens to T lymphocytes, leukocytes antigens (HLAs) play a vital role in cancer immunology. This review aims to provide current understanding of HLAs in tumour immunology. METHODS Perspectives on how HLA alterations may contribute to the immune escape of cancer cells and resistance to immunotherapy, and potential methods to overcome HLA defects were summarized. In addition, we discussed the potential association between HLA and immune-related adverse events (irAEs), which has not been reviewed elsewhere. RESULTS Downregulation, loss of heterogeneity and entire loss of HLAs are responsible for the immune escape of tumour cells. The strategies to overcome the HLA defects can be effective therapies of cancer. Compared with classical HLA-I, non-classical HLA-I molecules, such as HLA-E and HLA-G, appear to be more reliable predictors of prognosis, as they tend to play immunosuppressive roles in antitumor response. Relative diversified or high expression of classical HLA-I are potential predictors of favourable response of immunotherapy. Certain HLA types may be associated to enhanced affinity to self-antigen-mimicked tumour-antigens, thus may positively correlated to irAEs triggered by checkpoint inhibitors. CONCLUSIONS Further studies exploring the relationship between HLAs and cancer may not only lead to the development of novel therapies but also bring about better management of irAEs.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yue Yu
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Dawei Wu
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shuhang Wang
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yuan Fang
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Huilei Miao
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Peiwen Ma
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Huiyao Huang
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | | | - Yu Zhang
- Renke Beijing Biotechnology Co., Ltd, Beijing, China
| | - Yu Tang
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Ning Li
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
6
|
HLA-G and Other Immune Checkpoint Molecules as Targets for Novel Combined Immunotherapies. Int J Mol Sci 2022; 23:ijms23062925. [PMID: 35328349 PMCID: PMC8948858 DOI: 10.3390/ijms23062925] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
HLA-G is an HLA-class Ib molecule that is involved in the establishment of tolerance at the maternal/fetal interface during pregnancy. The expression of HLA-G is highly restricted in adults, but the de novo expression of this molecule may be observed in different hematological and solid tumors and is related to cancer progression. Indeed, tumor cells expressing high levels of HLA-G are able to suppress anti-tumor responses, thus escaping from the control of the immune system. HLA-G has been proposed as an immune checkpoint (IC) molecule due to its crucial role in tumor progression, immune escape, and metastatic spread. We here review data available in the literature in which the interaction between HLA-G and other IC molecules is reported, in particular PD-1, CTLA-4, and TIM-3, but also IDO and TIGIT. Clinical trials using monoclonal antibodies against HLA-G and other IC are currently ongoing with cancer patients where antibodies and inhibitors of PD-1 and CTLA-4 showed encouraging results. With this background, we may envisage that combined therapies using antibodies targeting HLA-G and another IC may be successful for clinical purposes. Indeed, such immunotherapeutic protocols may achieve a better rescue of effective anti-tumor immune response, thus improving the clinical outcome of patients.
Collapse
|
7
|
Immune Checkpoint Inhibitors (ICI) in Advanced and Recurrent Endometrial Cancer. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2022. [DOI: 10.1007/s40944-021-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Motofei IG. Nobel Prize for immune checkpoint inhibitors, understanding the immunological switching between immunosuppression and autoimmunity. Expert Opin Drug Saf 2021; 21:599-612. [PMID: 34937484 DOI: 10.1080/14740338.2022.2020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are a revolutionary form of immunotherapy in cancer. However, the percentage of patients responding to therapy is relatively low, while adverse effects occur in a large number of patients. In addition, the therapeutic mechanisms of ICIs are not yet completely described. AREAS COVERED The initial view (articles published in PubMed, Scopus, Web of Science, etc.) was that ICIs increase tumor-specific immunity. Recent data (collected from the same databases) suggest that the ICIs pharmacotherapy actually extends beyond the topic of immune reactivity, including additional immune pathways, such as disrupting immunosuppression and increasing tumor-specific autoimmunity. Unfortunately, there is no clear delimitation between these specific autoimmune reactions that are therapeutically beneficial, and nonspecific autoimmune reactions/toxicity that can be extremely severe side effects. EXPERT OPINION Immune checkpoint mechanisms perform a non-selective immune regulation, maintaining a dynamic balance between immunosuppression and autoimmunity. By blocking these mechanisms, ICIs actually perform an immunological reset, decreasing immunosuppression and increasing tumor-specific immunity and predisposition to autoimmunity. The predisposition to autoimmunity induces both side effects and beneficial autoimmunity. Consequently, further studies are necessary to maximize the beneficial tumor-specific autoimmunity, while reducing the counterproductive effect of associated autoimmune toxicity.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Surgery/ Oncology, Carol Davila University, Bucharest, Romania.,Department of Surgery/ Oncology, St. Pantelimon Hospital, Bucharest, Romania
| |
Collapse
|
9
|
Tariq F, Khan W, Ahmad W, Riaz SK, Khan M, Sherwani S, Haque S, Malik MFA, Iftikhar MJ, Khan S, Haq F. Effect of MHC Linked 7-Gene Signature on Delayed Hepatocellular Carcinoma Recurrence. J Pers Med 2021; 11:jpm11111129. [PMID: 34834481 PMCID: PMC8625636 DOI: 10.3390/jpm11111129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Dysregulated immune response significantly affects hepatocellular carcinoma's (HCC) prognosis. Human Leukocyte Antigens are key in devising immune responses against HCC. Here, we investigated how HLAs modulate HCC development at the transcriptomic level. RNA-seq data of 576 patients from two independent cohorts was retrieved. The clinicopathological relevance of all HLA genes was investigated using Fisher-Exact, correlation, and Kaplan-Meier and cox regression survival tests. Clustering of ~800 immune-related genes against HLAs was completed using a ward-agglomerative method. Networks were generated using 40 HLA associated unique genes and hub genes were investigated. HLAs including HLA-DMA, HLA-DMB, HLA-DOA and HLA-DRB6 were associated with delayed recurrence in both discovery (204 HCC cases) and validation (372 HCC cases) cohorts. Clustering analyses revealed 40 genes associated with these four HLAs in both cohorts. A set of seven genes (NCF4, TYROBP, LCP2, ZAP70, PTPRC, FYN and WAS) was found co-expressed at gene-gene interaction level in both cohorts. Furthermore, survival analysis revealed seven HLA-linked genes as predictors of delayed recurrence. Multivariate analysis also predicted that mean expression of 7-gene is an independent predictor of delayed recurrence in both cohorts. We conclude that the expression of 7-gene signature may lead to improved patient prognosis. Further studies are required for consideration in clinical practice.
Collapse
Affiliation(s)
- Fomaz Tariq
- Department of Biosciences, COMSATS University, Islamabad 44000, Pakistan; (F.T.); (W.K.); (W.A.); (S.K.R.); (M.F.A.M.)
| | - Walizeb Khan
- Department of Biosciences, COMSATS University, Islamabad 44000, Pakistan; (F.T.); (W.K.); (W.A.); (S.K.R.); (M.F.A.M.)
| | - Washaakh Ahmad
- Department of Biosciences, COMSATS University, Islamabad 44000, Pakistan; (F.T.); (W.K.); (W.A.); (S.K.R.); (M.F.A.M.)
| | - Syeda Kiran Riaz
- Department of Biosciences, COMSATS University, Islamabad 44000, Pakistan; (F.T.); (W.K.); (W.A.); (S.K.R.); (M.F.A.M.)
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- College of Medicine, Texas A&M University, College Station, TX 77840-77845, USA
| | - Mahvish Khan
- Department of Biology, College of Science, Ha’il University, Ha’il 55211, Saudi Arabia; (M.K.); (S.S.)
| | - Subuhi Sherwani
- Department of Biology, College of Science, Ha’il University, Ha’il 55211, Saudi Arabia; (M.K.); (S.S.)
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Faculty of Medicine, Görükle Campus, Bursa Uludağ University, Bursa 16059, Turkey
| | - Muhammad Faraz Arshad Malik
- Department of Biosciences, COMSATS University, Islamabad 44000, Pakistan; (F.T.); (W.K.); (W.A.); (S.K.R.); (M.F.A.M.)
| | | | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha’il University, Ha’il 55211, Saudi Arabia
- Correspondence: (S.K.); (F.H.)
| | - Farhan Haq
- Department of Biosciences, COMSATS University, Islamabad 44000, Pakistan; (F.T.); (W.K.); (W.A.); (S.K.R.); (M.F.A.M.)
- Correspondence: (S.K.); (F.H.)
| |
Collapse
|
10
|
Lin A, Yan WH. HLA-G/ILTs Targeted Solid Cancer Immunotherapy: Opportunities and Challenges. Front Immunol 2021; 12:698677. [PMID: 34276691 PMCID: PMC8278316 DOI: 10.3389/fimmu.2021.698677] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 12/04/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have become a promising immunotherapy for cancers. Human leukocyte antigen-G (HLA-G), a neoantigen, its biological functions and clinical relevance have been extensively investigated in malignancies, and early clinical trials with “anti-HLA-G strategy” are being launched for advance solid cancer immunotherapy. The mechanism of HLA-G as a new ICI is that HLA-G can bind immune cell bearing inhibitory receptors, the immunoglobulin-like transcript (ILT)-2 and ILT-4. HLA-G/ILT-2/-4 (HLA-G/ILTs) signaling can drive comprehensive immune suppression, promote tumor growth and disease progression. Though clinical benefits could be expected with application of HLA-G antibodies to blockade the HLA-G/ILTs signaling in solid cancer immunotherapy, major challenges with the diversity of HLA-G isoforms, HLA-G/ILTs binding specificity, intra- and inter-tumor heterogeneity of HLA-G, lack of isoform-specific antibodies and validated assay protocols, which could dramatically affect the clinical efficacy. Clinical benefits of HLA-G-targeted solid cancer immunotherapy may be fluctuated or even premature unless major challenges are addressed.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Wei-Hua Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China.,Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
11
|
Adolf IC, Almars A, Dharsee N, Mselle T, Akan G, Nguma IJ, Nateri AS, Atalar F. HLA-G and single nucleotide polymorphism (SNP) associations with cancer in African populations: Implications in personal medicine. Genes Dis 2021; 9:1220-1233. [PMID: 35873024 PMCID: PMC9293715 DOI: 10.1016/j.gendis.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/15/2021] [Accepted: 06/05/2021] [Indexed: 11/30/2022] Open
Abstract
The immune system plays an important role in protecting the body against malignancy. During cancer immunoediting, the immune system can recognize and keep checking the tumor cells by down-expression of some self-molecules or by increasing expression of some novel molecules. However, the microenvironment created in the course of cancer development hampers the immune ability to recognize and destroy the transforming cells. Human Leukocyte Antigen G (HLA-G) is emerging as immune checkpoint molecule produced more by cancer cells to weaken the immune response against them. HLA-G is a non-classical HLA class I molecule which is normally expressed in immune privileged tissues as a soluble or membrane-bound protein. HLA-G locus is highly polymorphic in the non-coding 3′ untranslated region (UTR) and in the 5′ upstream regulatory region (5′ URR). HLA-G expression is controlled by polymorphisms located in these regions, and several association studies between these polymorphic sites and disease predisposition, response to therapy, and/or HLA-G protein expression have been reported. Various polymorphisms are demonstrated to modulate its expression and this is increasingly finding more significance in cancer biology. This review focuses on the relevance of the HLA-G gene and its polymorphisms in cancer development. We highlight population genetics of HLA-G as evidence to espouse the need and importance of exploring potential utility of HLA-G in cancer diagnosis, prognosis and immunotherapy in the currently understudied African population.
Collapse
Affiliation(s)
- Ismael Chatita Adolf
- Mbeya College of Health and Allied Sciences, University of Dar es Salaam, Mbeya, P.O Box 608, Tanzania
| | - Amany Almars
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nazima Dharsee
- Ocean Road Cancer Institute, Department of Oncology, Dar es Salaam, P.O Box 3592, Tanzania
| | - Teddy Mselle
- Muhimbili University of Health and Allied Sciences, MUHAS Genetic Laboratory, Department of Biochemistry, Dar es Salaam, P.O Box 65001, Tanzania
| | - Gokce Akan
- Muhimbili University of Health and Allied Sciences, MUHAS Genetic Laboratory, Department of Biochemistry, Dar es Salaam, P.O Box 65001, Tanzania
| | - Irene Jeremiah Nguma
- Clinical Oncology Department, Mbeya Zonal Referral Hospital (MZRH), Mbeya P.O Box 419, Tanzania
| | - Abdolrahman S. Nateri
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Corresponding author.
| | - Fatmahan Atalar
- Muhimbili University of Health and Allied Sciences, MUHAS Genetic Laboratory, Department of Biochemistry, Dar es Salaam, P.O Box 65001, Tanzania
- Child Health Institute, Department of Rare Diseases, Istanbul University, Istanbul 34093, Turkey
- Corresponding author. Muhimbili University of Health and Allied Sciences, MUHAS Genetic Laboratory, Department of Biochemistry, P.O Box 65001, Dar es Salaam, Tanzania.
| |
Collapse
|