1
|
Muniyappa N, Pati PP, Pitale J, Phalke S, Pandey RK. Identification of the Novel HLA-DPB1*03:01:27 Allele by Next-Generation Sequencing. HLA 2024; 104:e15781. [PMID: 39637334 DOI: 10.1111/tan.15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
The novel HLA-DPB1*03:01:27 allele differs from HLA-DPB1*03:01:01 by one nucleotide substitution in codon 199 exon 4.
Collapse
Affiliation(s)
| | | | - Jayee Pitale
- Strand Life Sciences, Bangalore, Karnataka, India
| | | | | |
Collapse
|
2
|
Li Y, Zhao Y, Chen Y, Wang C, Gao P. The Novel HLA-DQB1*04:01:01:03 Allele Identified Using HLA-Targeted HiFi Sequencing. HLA 2024; 104:e15756. [PMID: 39532523 DOI: 10.1111/tan.15756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
HLA-DQB1*04:01:01:03 differs from HLA-DQB1*04:01:01:01 by a 10-nucleotide fragment insertion in intron 1.
Collapse
Affiliation(s)
- Yankun Li
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuanli Zhao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingjie Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Caili Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Hematology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Peng Gao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Gil-Etayo FJ, Arroyo-Sánchez D, Niño Ramírez JE, Terradillos-Sánchez P, Tejeda Velarde A. Detection of the novel HLA-DQA1*05:73 allele with an amino acid substitution in the α2 extracellular domain. HLA 2024; 104:e15707. [PMID: 39327033 DOI: 10.1111/tan.15707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
A single nucleotide substitution in the exon 3 gives rise to the novel HLA-DQA1*05:73 allele.
Collapse
Affiliation(s)
- Francisco Javier Gil-Etayo
- Laboratorio de HLA-Biología Molecular, Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Daniel Arroyo-Sánchez
- Laboratorio de HLA-Biología Molecular, Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jairo Eduardo Niño Ramírez
- Laboratorio de HLA-Biología Molecular, Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Pilar Terradillos-Sánchez
- Laboratorio de HLA-Biología Molecular, Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Amalia Tejeda Velarde
- Laboratorio de HLA-Biología Molecular, Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
4
|
Archita S, Shruthi PS, Deepika A, Manpreet K, Megha PI. Identification of nine novel HLA alleles by next-generation sequencing in individuals from India. HLA 2024; 104:e15676. [PMID: 39234804 DOI: 10.1111/tan.15676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Nine novel HLA alleles were identified when HLA typing individuals from the Indian population.
Collapse
Affiliation(s)
- S Archita
- Histocompatibility Department, MedGenome Labs Ltd., Bangalore, India
| | - P S Shruthi
- Histocompatibility Department, MedGenome Labs Ltd., Bangalore, India
| | - A Deepika
- Histocompatibility Department, MedGenome Labs Ltd., Bangalore, India
| | - K Manpreet
- Histocompatibility Department, MedGenome Labs Ltd., Bangalore, India
| | - P I Megha
- Histocompatibility Department, MedGenome Labs Ltd., Bangalore, India
| |
Collapse
|
5
|
Caragea AM, Ursu RI, Maruntelu I, Tizu M, Constantinescu AE, Tălăngescu A, Constantinescu I. High Resolution HLA-A, HLA-B, and HLA-C Allele Frequencies in Romanian Hematopoietic Stem Cell Donors. Int J Mol Sci 2024; 25:8837. [PMID: 39201523 PMCID: PMC11354460 DOI: 10.3390/ijms25168837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The HLA genes are associated with various autoimmune pathologies, with the control of the immune response also being significant in organs and cells transplantation. The aim of the study is to identify the HLA-A, HLA-B, and HLA-C alleles frequencies in the analyzed Romanian cohort. We performed HLA typing using next-generation sequencing (NGS) in a Romanian cohort to estimate class I HLA allele frequencies up to a six-digit resolution. A total of 420 voluntary donors from the National Registry of Voluntary Hematopoietic Stem Cell Donors (RNDVCSH) were included in the study for HLA genotyping. Peripheral blood samples were taken and brought to the Fundeni Clinical Institute during 2020-2021. HLA genotyping was performed using the Immucor Mia Fora NGS MFlex kit. A total of 109 different alleles were detected in 420 analyzed samples, out of which 31 were for HLA-A, 49 for HLA-B, and 29 for HLA-C. The most frequent HLA-A alleles were HLA-A*02:01:01 (26.11%), HLA-A*01:01:01 (12.5%), HLA-A*24:02:01 (11.67%), HLA-A*03:01:01 (9.72%), HLA-A*11:01:01, and HLA-A*32:01:01 (each with 8.6%). For the HLA-B locus, the most frequent allele was HLA-B*18:01:01 (11.25%), followed by HLA-B*51:01:01 (10.83%) and HLA-B*08:01:01 (7.78%). The most common HLA-C alleles were HLA-C*07:01:01 (17.36%), HLA-C*04:01:01 (13.47%), and HLA-C*12:03:01 (10.69%). Follow-up studies are ongoing for confirming the detected results.
Collapse
Affiliation(s)
- Andreea Mirela Caragea
- Department of Immunology and Transplantation Immunology, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania; (A.M.C.); (I.M.); (M.T.); (A.-E.C.); (A.T.); (I.C.)
- Center for Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Radu-Ioan Ursu
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ion Maruntelu
- Department of Immunology and Transplantation Immunology, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania; (A.M.C.); (I.M.); (M.T.); (A.-E.C.); (A.T.); (I.C.)
- Center for Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Maria Tizu
- Department of Immunology and Transplantation Immunology, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania; (A.M.C.); (I.M.); (M.T.); (A.-E.C.); (A.T.); (I.C.)
- Center for Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Alexandra-Elena Constantinescu
- Department of Immunology and Transplantation Immunology, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania; (A.M.C.); (I.M.); (M.T.); (A.-E.C.); (A.T.); (I.C.)
| | - Adriana Tălăngescu
- Department of Immunology and Transplantation Immunology, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania; (A.M.C.); (I.M.); (M.T.); (A.-E.C.); (A.T.); (I.C.)
- Center for Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ileana Constantinescu
- Department of Immunology and Transplantation Immunology, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania; (A.M.C.); (I.M.); (M.T.); (A.-E.C.); (A.T.); (I.C.)
- Center for Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
6
|
Buhler S, Nørgaard M, Steffensen R, Kløve-Mogensen K, Møller BK, Grossmann R, Ferrari-Lacraz S, Lehmann C. High resolution HLA genotyping with third generation sequencing technology-A multicentre study. HLA 2024; 104:e15632. [PMID: 39132735 DOI: 10.1111/tan.15632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/04/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Molecular HLA typing techniques are currently undergoing a rapid evolution. While real-time PCR is established as the standard method in tissue typing laboratories regarding allocation of solid organs, next generation sequencing (NGS) for high-resolution HLA typing is becoming indispensable but is not yet suitable for deceased donors. By contrast, high-resolution typing is essential for stem cell transplantation and is increasingly required for questions relating to various disease associations. In this multicentre clinical study, the TGS technique using nanopore sequencing is investigated applying NanoTYPE™ kit and NanoTYPER™ software (Omixon Biocomputing Ltd., Budapest, Hungary) regarding the concordance of the results with NGS and its practicability in diagnostic laboratories. The results of 381 samples show a concordance of 99.58% for 11 HLA loci, HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, -DQA1, -DQB1, -DPA1 and -DPB1. The quality control (QC) data shows a very high quality of the sequencing performed in each laboratory, 34,926 (97.15%) QC values were returned as 'passed', 862 (2.4%) as 'inspect' and 162 (0.45%) as 'failed'. We show that an 'inspect' or 'failed' QC warning does not automatically lead to incorrect HLA typing. The advantages of nanopore sequencing are speed, flexibility, reusability of the flow cells and easy implementation in the laboratory. There are challenges, such as exon coverage and the handling of large amounts of data. Finally, nanopore sequencing presents potential for applications in basic research within the field of epigenetics and genomics and holds significance for clinical concerns.
Collapse
Affiliation(s)
- Stéphane Buhler
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Maja Nørgaard
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Rudi Steffensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Kirstine Kløve-Mogensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Bjarne Kuno Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Rebecca Grossmann
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Leipzig, Germany
| | - Sylvie Ferrari-Lacraz
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Claudia Lehmann
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Kim JA, Bang HI, Chae S, Im HY, Shin JW. The novel HLA-A allele, HLA-A*03:478, identified in a Korean individual. HLA 2024; 104:e15595. [PMID: 38993156 DOI: 10.1111/tan.15595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
One nucleotide substitution in codon 320 of A*03:01:01:01 results in the novel allele, HLA-A*03:478.
Collapse
Affiliation(s)
- Jung-Ah Kim
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Hae In Bang
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Soobin Chae
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hwa Young Im
- Division of Field Application Specialist, Dow Biomedica Inc, Seoul, Republic of Korea
| | - Jeong Won Shin
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Mallis P, Siorenta A, Stamathioudaki E, Vrani V, Paterakis G. Frequency distribution of HLA class I and II alleles in Greek population and their significance in orchestrating the National Donor Registry Program. Int J Immunogenet 2024; 51:164-172. [PMID: 38459565 DOI: 10.1111/iji.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Human leukocyte antigens (HLA) represent one of the most polymorphic systems in humans, responsible for the identification of foreign antigens and the presentation of immune responses. Therefore, HLA is considered to play a major role in human disorders, donor-recipient matching and transplantation outcomes. This study aimed to determine the HLA class I and II alleles and haplotypes in the Greek population. Moreover, a comparative analysis of HLA alleles and haplotype frequencies found in Greek and pooled European populations was also performed to acquire a better knowledge about the HLA alleles distribution. A total number of 1896 healthy individuals were typed for their HLA alleles in the National Tissue Typing Center of Greece. High-resolution HLA typing for the HLA-A, -B, -C and -DR, -DQ, -DP with the use of the next-generation sequencing analysis was performed, followed by data analysis for establishing the HLA allele and haplotype differences. The results of this study showed that the most frequent alleles for the HLA-A were the A*02:01:01 (27.1%), *24:02:01 (14.4%), *01:01:01 (9.3%), for the HLA-B were the B*51:01:01 (15.3%), *18:01:01 (9.7%), *35:01:01 (6.8%) and for the HLA-C were the C*04:01:01 (15.4%), *07:01:01 (13.1%), *12:03:01 (9.6%). For the HLA class II, the most frequent alleles for the HLA-DRB1 were the DRB1*11:04:01 (16.4%), *16:01:01 (11.3%), *11:01:01 (9.5%), for the HLA-DQB1 were the DQB1*03:01:01 (30.5%), *05:02:01 (15.1%), *05:01:01 (10.6%) and for the HLA-DPB1 were the DPB1*04:01:01 (34.8%), *02:01:01 (11.6%), *04:02:01 (7.3%). Additionally, the most frequent haplotypes were the A*02:01:01∼C*07:01:01-B*18:01:01∼DRB1*11:04:01 (2.3%), followed by the A*01:01:01∼C*07:01:01∼B*08:01:01∼DRB1*03:01:01 (2.2%), A*24:02:01∼C*04:01:01∼B*35:02:01∼DRB1*11:04:01 (1.4%) and A*02:01:01∼C*04:01:01∼B*35:01:01-DRB1*14:01:01 (1.2%). The results herein were comparable to those obtained from the pooled European populations. Moreover, these results can be used for the improvement of the donor-recipient matching procedure and to understand better the disease association in Greece.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Immunology Department & National Tissue Typing Center, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Alexandra Siorenta
- Immunology Department & National Tissue Typing Center, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Erasmia Stamathioudaki
- Immunology Department & National Tissue Typing Center, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Vasiliki Vrani
- Immunology Department & National Tissue Typing Center, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - George Paterakis
- Immunology Department & National Tissue Typing Center, General Hospital of Athens "G. Gennimatas", Athens, Greece
| |
Collapse
|
9
|
Gil-Etayo FJ, Arroyo-Sánchez D, Niño Ramírez JE, Vicente Parra A, Tejeda Velarde A. Two new HLA-DQB1*03:02:01 variants with substitutions in intron 2: HLA-DQB1*03:02:01:19 and -DQB1*03:02:01:21. HLA 2024; 103:e15492. [PMID: 38706128 DOI: 10.1111/tan.15492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Two different single nucleotide substitutions in intron 2 give rise to novel HLA-DQB1*03:02:01 alleles.
Collapse
Affiliation(s)
- Francisco Javier Gil-Etayo
- Laboratorio de HLA-Biología Molecular, Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Daniel Arroyo-Sánchez
- Laboratorio de HLA-Biología Molecular, Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jairo Eduardo Niño Ramírez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Universidad de Salamanca (USAL), Salamanca, Spain
| | - Ariadna Vicente Parra
- Laboratorio de HLA-Biología Molecular, Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Amalia Tejeda Velarde
- Laboratorio de HLA-Biología Molecular, Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
10
|
Zhu X, Luo G, Zheng L. Update on HLA-B*15:02 allele associated with adverse drug reactions. Pharmacogenomics 2024; 25:97-111. [PMID: 38305022 DOI: 10.2217/pgs-2023-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
HLA alleles, part of the major histocompatibility complex, are strongly associated with adverse drug reactions (ADRs). This review focuses on HLA-B*15:02 and explores its association with ADRs in various ethnic populations and with different drugs, aiming to provide insights into the safe clinical use of drugs and minimize the occurrence of ADRs. Furthermore, the review explores the potential mechanisms by which HLA-B*15:02 may be associated with ADRs, aiming to gain new insights into drug modification and identification of haptens. In addition, it analyzes the frequency of the HLA-B*15:02, genotyping methods, cost-effectiveness and treatment measures for adverse reactions, thereby providing a theoretical basis for formulating clinical treatment plans.
Collapse
Affiliation(s)
- Xueting Zhu
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanghua Luo
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu Zheng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
11
|
Eskandari SK, Daccache A, Azzi JR. Chimeric antigen receptor T reg therapy in transplantation. Trends Immunol 2024; 45:48-61. [PMID: 38123369 DOI: 10.1016/j.it.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
In the quest for more precise and effective organ transplantation therapies, chimeric antigen receptor (CAR) regulatory T cell (Treg) therapies represent a potential cutting-edge advance. This review comprehensively analyses CAR Tregs and how they may address important drawbacks of polyclonal Tregs and conventional immunosuppressants. We examine a growing body of preclinical findings of CAR Treg therapy in transplantation, discuss CAR Treg design specifics, and explore established and attractive new targets in transplantation. In addition, we explore present impediments where future studies will be necessary to determine the efficacy of CAR Tregs in reshaping alloimmune responses and transplant microenvironments to reduce reliance on chemical immunosuppressants. Overall, ongoing studies and trials are crucial for understanding the full scope of CAR Treg therapy in transplantation.
Collapse
Affiliation(s)
- Siawosh K Eskandari
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Andrea Daccache
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Bioscience Education and Research (UFR Biosciences), Claude Bernard University Lyon 1, Lyon, France
| | - Jamil R Azzi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Montoro J, Balaguer-Roselló A, Sanz J. Recent advances in allogeneic transplantation for acute myeloid leukemia. Curr Opin Oncol 2023; 35:564-573. [PMID: 37820092 DOI: 10.1097/cco.0000000000000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW This review highlights recent advancements in allogeneic hematopoietic stem cell transplantation (allo-HSCT) for patients with acute myeloid leukemia (AML). RECENT FINDINGS Important improvements have been observed throughout the allo-HSCT procedure and patient management. Universal donor availability and reduced risk of graft-versus-host disease (GVHD) have been achieved with the introduction of posttransplant cyclophosphamide for GVHD prophylaxis. It has contributed, together with advances in conditioning regimens, GVHD treatment and supportive care, to a reduced overall toxicity of the procedure. Relapse is now the most frequent cause of transplant failure. With increased knowledge of the biological characterization of AML, better prediction of transplant risks and more profound and standardized minimal residual disease (MRD) monitoring, pharmacological, and immunological strategies to prevent relapse are been developed. SUMMARY Allo-HSCT remains the standard of care for high-risk AML. Increased access to transplant, reduced toxicity and relapse are improving patient outcomes. Further research is needed to optimize MRD monitoring, refine conditioning regimens, and explore new GVHD management and relapse prevention therapies.
Collapse
Affiliation(s)
- Juan Montoro
- Hematology Department, Hospital Universitario y Politécnico La Fe
- Departamento de Medicina, Universidad Católica de Valencia
| | - Aitana Balaguer-Roselló
- Hematology Department, Hospital Universitario y Politécnico La Fe
- CIBERONC, Instituto Carlos III, Madrid
| | - Jaime Sanz
- Hematology Department, Hospital Universitario y Politécnico La Fe
- CIBERONC, Instituto Carlos III, Madrid
- Departamento de Medicina, Universidad de Valencia, Spain
| |
Collapse
|
13
|
Vasoya D, Tzelos T, Benedictus L, Karagianni AE, Pirie S, Marr C, Oddsdóttir C, Fintl C, Connelley T. High-Resolution Genotyping of Expressed Equine MHC Reveals a Highly Complex MHC Structure. Genes (Basel) 2023; 14:1422. [PMID: 37510326 PMCID: PMC10379315 DOI: 10.3390/genes14071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The Major Histocompatibility Complex (MHC) genes play a key role in a number of biological processes, most notably in immunological responses. The MHCI and MHCII genes incorporate a complex set of highly polymorphic and polygenic series of genes, which, due to the technical limitations of previously available technologies, have only been partially characterized in non-model but economically important species such as the horse. The advent of high-throughput sequencing platforms has provided new opportunities to develop methods to generate high-resolution sequencing data on a large scale and apply them to the analysis of complex gene sets such as the MHC. In this study, we developed and applied a MiSeq-based approach for the combined analysis of the expressed MHCI and MHCII repertoires in cohorts of Thoroughbred, Icelandic, and Norwegian Fjord Horses. The approach enabled us to generate comprehensive MHCI/II data for all of the individuals (n = 168) included in the study, identifying 152 and 117 novel MHCI and MHCII sequences, respectively. There was limited overlap in MHCI and MHCII haplotypes between the Thoroughbred and the Icelandic/Norwegian Fjord horses, showcasing the variation in MHC repertoire between genetically divergent breeds, and it can be inferred that there is much more MHC diversity in the global horse population. This study provided novel insights into the structure of the expressed equine MHC repertoire and highlighted unique features of the MHC in horses.
Collapse
Affiliation(s)
- Deepali Vasoya
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Thomas Tzelos
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Lindert Benedictus
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Anna Eleonora Karagianni
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Scott Pirie
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Celia Marr
- Rossdales Equine Hospital, Cotton End Road, Exning, Newmarket CD8 7NN, UK
| | - Charlotta Oddsdóttir
- The Institute for Experimental Pathology at Keldur, University of Iceland Keldnavegur 3, 112 Reykjavík, Iceland
| | - Constanze Fintl
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Timothy Connelley
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| |
Collapse
|
14
|
Jung K, Kim JG, Shin S, Roh EY, Hong YJ, Song EY. Allele and haplotype frequencies of 11 HLA loci in Koreans by next-generation sequencing. HLA 2023; 101:602-612. [PMID: 36719349 DOI: 10.1111/tan.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 12/24/2022] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Data on HLA genotype distribution, including DQA1 and DPA1, in the Korean population are limited. We aimed to investigate the allele and haplotype frequencies of 11 HLA loci in 339 Korean subjects using next-generation sequencing (NGS)-based HLA typing. A total of 339 samples from unrelated healthy subjects were genotyped for HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, -DQB1, -DQA1, -DPB1, and -DPA1 using two different NGS-based HLA typing kits (166 tested using the NGSgo-MX11-3 kit [GenDx, Netherlands] and 173 by the AllType NGS 11 Loci Amplification kit [One Lambda, USA]). PyPop software was used to estimate allele and haplotype frequencies and linkage disequilibrium between the loci. Additionally, a principal component analysis was performed to compare the allele distribution of Koreans with that of other populations. A total of 214 HLA alleles (97 class I and 117 class II alleles) were assigned. The most frequent alleles for each locus were A*24:02:01 (24.78%), B*15:01:01 (10.18%), C*01:02:01 (18.44%), DRB1*04:05:01 (9.59%), DRB3*02:02:01 (13.72%), DRB4*01:03:01 (25.81%), DRB5*01:01:01 (9.0%), DQA1*01:02:01 (16.96%), DQB1*03:01:01 (14.31%), DPA1*01:03:01 (44.4%), and DPB1*05:01:01 (35.1%), respectively. The most frequent haplotypes were A*33:03:01-C*03:02:02-B*58:01:01 for HLA class I (5.01%) and DRB1*04:05:01-DQA1*03:03:01-DQB1*04:01:01-DPA1*02:02:02-DPB1*05:01:01 for HLA class II (6.23%). The total allelic ambiguities by NGS were estimated to be minimal and considerably decreased compared with those by Sanger sequencing. The Japanese population had the most similar allele distribution to Koreans, followed by the Chinese population. Frequency data of 11 HLA loci in Koreans can provide essential data for population genetics and disease association studies.
Collapse
Affiliation(s)
- Kiwook Jung
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Jisoo G Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Eun Youn Roh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Yun Ji Hong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eun Young Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Zhang L, Parvin R, Chen M, Hu D, Fan Q, Ye F. High-throughput microfluidic droplets in biomolecular analytical system: A review. Biosens Bioelectron 2023; 228:115213. [PMID: 36906989 DOI: 10.1016/j.bios.2023.115213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Droplet microfluidic technology has revolutionized biomolecular analytical research, as it has the capability to reserve the genotype-to-phenotype linkage and assist for revealing the heterogeneity. Massive and uniform picolitre droplets feature dividing solution to the level that single cell and single molecule in each droplet can be visualized, barcoded, and analyzed. Then, the droplet assays can unfold intensive genomic data, offer high sensitivity, and screen and sort from a large number of combinations or phenotypes. Based on these unique advantages, this review focuses on up-to-date research concerning diverse screening applications utilizing droplet microfluidic technology. The emerging progress of droplet microfluidic technology is first introduced, including efficient and scaling-up in droplets encapsulation, and prevalent batch operations. Then the new implementations of droplet-based digital detection assays and single-cell muti-omics sequencing are briefly examined, along with related applications such as drug susceptibility testing, multiplexing for cancer subtype identification, interactions of virus-to-host, and multimodal and spatiotemporal analysis. Meanwhile, we specialize in droplet-based large-scale combinational screening regarding desired phenotypes, with an emphasis on sorting for immune cells, antibodies, enzymatic properties, and proteins produced by directed evolution methods. Finally, some challenges, deployment and future perspective of droplet microfluidics technology in practice are also discussed.
Collapse
Affiliation(s)
- Lexiang Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Rokshana Parvin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Mingshuo Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Dingmeng Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Qihui Fan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
16
|
Bruijnesteijn J. HLA/MHC and KIR characterization in humans and non-human primates using Oxford Nanopore Technologies and Pacific Biosciences sequencing platforms. HLA 2023; 101:205-221. [PMID: 36583332 DOI: 10.1111/tan.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The gene products of the HLA/MHC and KIR multigene families are important modulators of the immune system and are associated with health and disease. Characterization of the genes encoding these receptors has been integrated into different biomedical applications, including transplantation and reproduction biology, immune therapies and in fundamental research into disease susceptibility or resistance. Conventional short-read sequencing strategies have shown their value in high throughput typing, but are insufficient to uncover the entire complexity of the highly polymorphic HLA/MHC and KIR gene systems. The implementation of single-molecule and real-time sequencing platforms, offered by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), revolutionized the fields of genomics and transcriptomics. Using fundamentally distinct principles, these platforms generate long-read data that can unwire the plasticity of the HLA/MHC and KIR genes, including high-resolution characterization of genes, alleles, phased haplotypes, transcription levels and epigenetics modification patterns. These insights might have profound clinical relevance, such as improved matching of donors and patients in clinical transplantation, but could also lift disease association studies to a higher level. Even more, a comprehensive characterization may refine animal models in preclinical studies. In this review, the different HLA/MHC and KIR characterization approaches using PacBio and ONT platforms are described and discussed.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
17
|
Blout Zawatsky CL, Bick D, Bier L, Funke B, Lebo M, Lewis KL, Orlova E, Qian E, Ryan L, Schwartz MLB, Soper ER. Elective genomic testing: Practice resource of the National Society of Genetic Counselors. J Genet Couns 2023; 32:281-299. [PMID: 36597794 DOI: 10.1002/jgc4.1654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 01/05/2023]
Abstract
Genetic counseling for patients who are pursuing genetic testing in the absence of a medical indication, referred to as elective genomic testing (EGT), is becoming more common. This type of testing has the potential to detect genetic conditions before there is a significant health impact permitting earlier management and/or treatment. Pre- and post-test counseling for EGT is similar to indication-based genetic testing. Both require a complete family and medical history when ordering a test or interpreting a result. However, EGT counseling has some special considerations including greater uncertainties around penetrance and clinical utility and a lack of published guidelines. While certain considerations in the selection of a high-quality genetic testing laboratory are universal, there are some considerations that are unique to the selection of a laboratory performing EGT. This practice resource intends to provide guidance for genetic counselors and other healthcare providers caring for adults seeking pre- or post-test counseling for EGT. Genetic counselors and other genetics trained healthcare providers are the ideal medical professionals to supply accurate information to individuals seeking counseling about EGT enabling them to make informed decisions about testing and follow-up.
Collapse
Affiliation(s)
- Carrie L Blout Zawatsky
- Genomes2People, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.,Ariadne Labs, Boston, Massachusetts, USA.,The MGH Institute of Health Professions, Boston, Massachusetts, USA
| | | | - Louise Bier
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Matthew Lebo
- Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Cambridge, Massachusetts, USA.,Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Boston, Massachusetts, USA
| | - Katie L Lewis
- Center for Precision Health Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Ekaterina Orlova
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily Qian
- Department of Genetics, Yale University, New Haven, Connecticut, USA
| | | | - Marci L B Schwartz
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Emily R Soper
- The Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
18
|
Johansson T, Partanen J, Saavalainen P. HLA allele-specific expression: Methods, disease associations, and relevance in hematopoietic stem cell transplantation. Front Immunol 2022; 13:1007425. [PMID: 36248878 PMCID: PMC9554311 DOI: 10.3389/fimmu.2022.1007425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Varying HLA allele-specific expression levels are associated with human diseases, such as graft versus host disease (GvHD) in hematopoietic stem cell transplantation (HSCT), cytotoxic T cell response and viral load in HIV infection, and the risk of Crohn’s disease. Only recently, RNA-based next generation sequencing (NGS) methodologies with accompanying bioinformatics tools have emerged to quantify HLA allele-specific expression replacing the quantitative PCR (qPCR) -based methods. These novel NGS approaches enable the systematic analysis of the HLA allele-specific expression changes between individuals and between normal and disease phenotypes. Additionally, analyzing HLA allele-specific expression and allele-specific expression loss provide important information for predicting efficacies of novel immune cell therapies. Here, we review available RNA sequencing-based approaches and computational tools for NGS to quantify HLA allele-specific expression. Moreover, we explore recent studies reporting disease associations with differential HLA expression. Finally, we discuss the role of allele-specific expression in HSCT and how considering the expression quantification in recipient-donor matching could improve the outcome of HSCT.
Collapse
Affiliation(s)
- Tiira Johansson
- Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
- *Correspondence: Tiira Johansson,
| | - Jukka Partanen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Päivi Saavalainen
- Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Genetics Research Program, Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
19
|
Genome sequence assembly algorithms and misassembly identification methods. Mol Biol Rep 2022; 49:11133-11148. [PMID: 36151399 DOI: 10.1007/s11033-022-07919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
The sequence assembly algorithms have rapidly evolved with the vigorous growth of genome sequencing technology over the past two decades. Assembly mainly uses the iterative expansion of overlap relationships between sequences to construct the target genome. The assembly algorithms can be typically classified into several categories, such as the Greedy strategy, Overlap-Layout-Consensus (OLC) strategy, and de Bruijn graph (DBG) strategy. In particular, due to the rapid development of third-generation sequencing (TGS) technology, some prevalent assembly algorithms have been proposed to generate high-quality chromosome-level assemblies. However, due to the genome complexity, the length of short reads, and the high error rate of long reads, contigs produced by assembly may contain misassemblies adversely affecting downstream data analysis. Therefore, several read-based and reference-based methods for misassembly identification have been developed to improve assembly quality. This work primarily reviewed the development of DNA sequencing technologies and summarized sequencing data simulation methods, sequencing error correction methods, various mainstream sequence assembly algorithms, and misassembly identification methods. A large amount of computation makes the sequence assembly problem more challenging, and therefore, it is necessary to develop more efficient and accurate assembly algorithms and alternative algorithms.
Collapse
|
20
|
Human Leukocyte Antigen (HLA) System: Genetics and Association with Bacterial and Viral Infections. J Immunol Res 2022; 2022:9710376. [PMID: 35664353 PMCID: PMC9162874 DOI: 10.1155/2022/9710376] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/08/2022] [Indexed: 12/19/2022] Open
Abstract
The human leukocyte antigen (HLA) system is one of the most crucial host factors influencing disease progression in bacterial and viral infections. This review provides the basic concepts of the structure and function of HLA molecules in humans. Here, we highlight the main findings on the associations between HLA class I and class II alleles and susceptibility to important infectious diseases such as tuberculosis, leprosy, melioidosis, Staphylococcus aureus infection, human immunodeficiency virus infection, coronavirus disease 2019, hepatitis B, and hepatitis C in populations worldwide. Finally, we discuss challenges in HLA typing to predict disease outcomes in clinical implementation. Evaluation of the impact of HLA variants on the outcome of bacterial and viral infections would improve the understanding of pathogenesis and identify those at risk from infectious diseases in distinct populations and may improve the individual treatment.
Collapse
|
21
|
Kim N, Kim S, Choi JR, Park Y. A Single-Center Experience on HLA Typing with 11 Loci Next Generation Sequencing in Korean Patients with Hematologic Disease. Diagnostics (Basel) 2022; 12:1074. [PMID: 35626230 PMCID: PMC9139519 DOI: 10.3390/diagnostics12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022] Open
Abstract
The human leukocyte antigen (HLA) system comprises the most polymorphic genes of the human genome and is famous for its potential pathological roles. To accurately type HLA genes and find HLA-matched donors, which are critical for effective hematopoietic transplantation, HLA typing using next-generation sequencing (NGS) was implemented. We aimed to share the experience of HLA typing using NGS in patients with hematologic malignancies and evaluate its association with hematologic diseases. Data from 211 Korean, non-familial patients diagnosed with a hematologic disease were reviewed, and NGS was performed for 11 HLA loci. Three-field HLA typing with G code was successfully achieved for all loci and the known linkage between HLA-DRB3/4/5 and HLA-DRB1 was fully matched. Therefore, NGS-based HLA typing enables a detailed, high-resolution analysis of the HLA system that can help with the selection of suitable donors. Notably, HLA-DRB1*08:02:01G was significantly associated with myelodysplastic syndrome. Although this result confirms the tendency of some alleles to be associated with hematological disorders, this may not be the case in hematologic malignancies. Nonetheless, NGS-based HLA typing data for HLA-DP, HLA-DQ, and HLA-DRB3/4/5 are still warranted for a better understanding of the corresponding locus.
Collapse
Affiliation(s)
| | | | | | - Younhee Park
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (N.K.); (S.K.); (J.R.C.)
| |
Collapse
|
22
|
Krummey SM, Cliff Sullivan H. The utility of imputation for molecular mismatch analysis in solid organ transplantation. Hum Immunol 2022; 83:241-247. [PMID: 35216846 DOI: 10.1016/j.humimm.2021.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023]
Abstract
HLA genotyping has undergone a rapid progression in resolution since the development of DNA-based typing methods. Despite the advent of high-resolution next-generation sequencing, the bulk of solid organ genotyping is performed at intermediate resolution, which provides multiple possible two-field results for each classical HLA loci. As a result, several methodologies have been developed to impute the most likely allele-level (two-field) HLA genotype for the purposes of donor-recipient compatibility analysis. The advent of molecular mismatch analysis, however, has placed a new emphasis on the accuracy of imputation. While seminal molecular mismatch studies have relied on the imputation of intermediate resolution genotyping, several recent studies have performed analysis showing that imputation generates inaccuracies in epitope identification. While the clinical impact of these errors is not clear, it is important that these concerns do not preclude future progress in understanding the utility of molecular mismatch analysis in transplantation. In the future, advances in genotyping methods will result in routine two-field resolution that will abrogate these concerns. In the meantime, however, studies are needed in order to address the role of molecular mismatch in diverse patient populations and to carefully address the potential of molecular mismatch analysis in the context of imputation.
Collapse
Affiliation(s)
- Scott M Krummey
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - H Cliff Sullivan
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
23
|
Anzar I, Sverchkova A, Samarakoon P, Ellingsen EB, Gaudernack G, Stratford R, Clancy T. Personalized
HLA
typing leads to the discovery of novel
HLA
alleles and tumor‐specific
HLA
variants. HLA 2022; 99:313-327. [PMID: 35073457 PMCID: PMC9546058 DOI: 10.1111/tan.14562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 11/29/2022]
Abstract
Accurate and full‐length typing of the HLA region is important in many clinical and research settings. With the advent of next generation sequencing (NGS), several HLA typing algorithms have been developed, including many that are applicable to whole exome sequencing (WES). However, most of these solutions operate by providing the closest‐matched HLA allele among the known alleles in IPD‐IMGT/HLA Database. These database‐matching approaches have demonstrated very high performance when typing well characterized HLA alleles. However, as they rely on the completeness of the HLA database, they are not optimal for detecting novel or less well characterized alleles. Furthermore, the database‐matching approaches are also not adequate in the context of cancer, where a comprehensive characterization of somatic HLA variation and expression patterns of a tumor's HLA locus may guide therapy and clinical outcome, because of the pivotal role HLA alleles play in tumor antigen recognition and immune escape. Here, we describe a personalized HLA typing approach applied to WES data that leverages the strengths of database‐matching approaches while simultaneously allowing for the discovery of novel HLA alleles and tumor‐specific HLA variants, through the systematic integration of germline and somatic variant calling. We applied this approach on WES from 10 metastatic melanoma patients and validated the HLA typing results using HLA targeted NGS sequencing from patients where at least one HLA germline candidate was detected on Class I HLA. Targeted NGS sequencing confirmed 100% performance for the 1st and 2nd fields. In total, five out of the six detected HLA germline variants were because of Class I ambiguities at the third or fourth fields, and their detection recovered the correct HLA allele genotype. The sixth germline variant let to the formal discovery of a novel Class I allele. Finally, we demonstrated a substantially improved somatic variant detection accuracy in HLA alleles with a 91% of success rate in simulated experiments. The approach described here may allow the field to genotype more accurately using WES data, leading to the discovery of novel HLA alleles and help characterize the relationship between somatic variation in the HLA region and immunosurveillance.
Collapse
Affiliation(s)
- Irantzu Anzar
- NEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo Norway
| | - Angelina Sverchkova
- NEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo Norway
| | - Pubudu Samarakoon
- NEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo Norway
| | | | - Gustav Gaudernack
- Ultimovacs ASA, Oslo Cancer Cluster, Ullernchausseen 64/66 Oslo Norway
| | - Richard Stratford
- NEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo Norway
| | - Trevor Clancy
- NEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo Norway
| |
Collapse
|
24
|
Affiliation(s)
- Lee Ann Baxter-Lowe
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles CA United States.
| |
Collapse
|
25
|
Baxter-Lowe LA. The changing landscape of HLA typing: Understanding how and when HLA typing data can be used with confidence from bench to bedside. Hum Immunol 2021; 82:466-477. [PMID: 34030895 DOI: 10.1016/j.humimm.2021.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Human leukocyte antigen (HLA) genes are extraordinary for their extreme diversity and widespread impact on human health and disease. More than 30,000 HLA alleles have been officially named and more alleles continue to be discovered at a rapid pace. HLA typing systems which have been developed to detect HLA diversity have advanced rapidly and are revolutionizing our understanding of HLA's clinical importance. However, continuous improvements in knowledge and technology have created challenges for clinicians and scientists. This review explains how differences in HLA typing systems can impact the HLA types that are assigned. The consequences of differences in laboratory testing methods and reference databases are described. The challenges of using HLA types that are not equivalent are illustrated. A fundamental understanding of the continual expansion of our understanding of HLA diversity and limitations in some of the typing data is essential for using typing data appropriately in clinical and research settings.
Collapse
Affiliation(s)
- Lee Ann Baxter-Lowe
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, USA; Department of Pathology, University of Southern California, USA.
| |
Collapse
|