1
|
Corral-Pérez J, Marín-Galindo A, Costilla M, Casals C, Muñoz-López A, Sánchez-Sixto A, Sañudo B, Ponce-González JG. Reliability of near-infrared spectroscopy in measuring muscle oxygenation during squat exercise. J Sci Med Sport 2024; 27:805-813. [PMID: 39054175 DOI: 10.1016/j.jsams.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Monitoring of changes in skeletal muscle oxygenation during exercise has increased in recent years. Tissue oxygenation, which is related to fatigue and muscle hypertrophy, is often measured using near-infrared spectroscopy (NIRS). OBJECTIVES This study aimed to determine the test-retest reliability of a non-portable NIRS (NIRO200Nx) during the full-squat exercise and recovery in young healthy men. DESIGN Twenty-five male participants (21.8 ± 2.6 years) were recruited for this original research. Each participant completed an 8-repetition test with a load that elicited a velocity of 1 m·s-1. The test was conducted twice, with a 48-hour washout period between sessions. METHODS The NIRS measured the changes of oxygenated-Hemoglobin (O2Hb), deoxygenated-Hemoglobin (HHb) and Tissue Oxygenation Index (TOI) in both Vastus Lateralis and Vastus Medialis during rest, exercise, and recovery. Coefficient of Variation (CV), Standard Error Measurement (SEM) and Intraclass Correlation Coefficient (ICC) were used to evaluate the reliability of the data. Significance was set at p < 0.05. RESULTS The results indicated that TOI had good to acceptable absolute reliability (CVTOI = 2.7-10.2 %). A good relative relativity for the overall test was found for Vastus Medialis O2Hb (ICC = 0.851), HHb (ICC = 0.852), and TOI (ICC = 0.864), and Vastus Lateralis O2Hb (ICC = 0.898), HHb (ICC = 0.899), and TOI (ICC = 0.897). CONCLUSIONS We conclude that NIRO200Nx is a reliable instrument for measuring muscle oxygen saturation through the TOI parameter in not-to-failure dynamic resistance exercises (1 set of 8 reps against ∼40 % 1 repetition maximum). Tissue oxygenation assessment could be a new way of individualizing exercise through dynamic resistance exercises.
Collapse
Affiliation(s)
- Juan Corral-Pérez
- ExPhy Research Group, Department of Physical Education, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Spain.
| | - Alberto Marín-Galindo
- ExPhy Research Group, Department of Physical Education, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Spain.
| | - Manuel Costilla
- ExPhy Research Group, Department of Physical Education, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Spain.
| | - Cristina Casals
- ExPhy Research Group, Department of Physical Education, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Spain.
| | - Alejandro Muñoz-López
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, Seville, Spain.
| | | | - Borja Sañudo
- Department of Physical Education and Sport, University of Seville, Spain.
| | - Jesús Gustavo Ponce-González
- ExPhy Research Group, Department of Physical Education, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Spain.
| |
Collapse
|
2
|
Borzelli D, Vieira TMM, Botter A, Gazzoni M, Lacquaniti F, d'Avella A. Synaptic inputs to motor neurons underlying muscle coactivation for functionally different tasks have different spectral characteristics. J Neurophysiol 2024; 131:1126-1142. [PMID: 38629162 DOI: 10.1152/jn.00199.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
The central nervous system (CNS) may produce the same endpoint trajectory or torque profile with different muscle activation patterns. What differentiates these patterns is the presence of cocontraction, which does not contribute to effective torque generation but allows to modulate joints' mechanical stiffness. Although it has been suggested that the generation of force and the modulation of stiffness rely on separate pathways, a characterization of the differences between the synaptic inputs to motor neurons (MNs) underlying these tasks is still missing. In this study, participants coactivated the same pair of upper-limb muscles, i.e., the biceps brachii and the triceps brachii, to perform two functionally different tasks: limb stiffness modulation or endpoint force generation. Spike trains of MNs were identified through decomposition of high-density electromyograms (EMGs) collected from the two muscles. Cross-correlogram showed a higher synchronization between MNs recruited to modulate stiffness, whereas cross-muscle coherence analysis revealed peaks in the β-band, which is commonly ascribed to a cortical origin. These peaks did not appear during the coactivation for force generation, thus suggesting separate cortical inputs for stiffness modulation. Moreover, a within-muscle coherence analysis identified two subsets of MNs that were selectively recruited to generate force or regulate stiffness. This study is the first to highlight different characteristics, and probable different neural origins, of the synaptic inputs driving a pair of muscles under different functional conditions. We suggest that stiffness modulation is driven by cortical inputs that project to a separate set of MNs, supporting the existence of a separate pathway underlying the control of stiffness.NEW & NOTEWORTHY The characterization of the pathways underlying force generation or stiffness modulation are still unknown. In this study, we demonstrated that the common input to motor neurons of antagonist muscles shows a high-frequency component when muscles are coactivated to modulate stiffness but not to generate force. Our results provide novel insights on the neural strategies for the recruitment of multiple muscles by identifying specific spectral characteristics of the synaptic inputs underlying functionally different tasks.
Collapse
Affiliation(s)
- Daniele Borzelli
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Taian M M Vieira
- Laboratory for Engineering of the Neuromuscular System, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Marco Gazzoni
- Laboratory for Engineering of the Neuromuscular System, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine and Center of Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea d'Avella
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
3
|
Cederbaum LA, Yoon S, Côté JN. Males and females have similar neuromuscular coordination strategies of the quadriceps during fatiguing repeated all-out cycling. Front Sports Act Living 2023; 5:1248303. [PMID: 37780119 PMCID: PMC10541224 DOI: 10.3389/fspor.2023.1248303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction An imbalance of vastus medialis (VM) and vastus lateralis (VL) muscle activation and patterns of dyscoordination may contribute to the sex discrepancy in the incidence of patellofemoral pain syndrome (PFPS). While some studies have examined sex-specific VM/VL coordination strategies in some tasks, no previous studies have examined sex-specific VM/VL coordination strategies during repeated sprint exercise (RSE). Methods In this study, asymptomatic young adults (N = 39, 19 females) completed a RSE protocol consisting of 10 × 10 s all-out cycling interspersed by 30 s of passive rest. Electromyographic (EMG) signals from the VM and VL muscles were recorded throughout exercise. Results VM:VL ratio did not change with fatigue and was not different between the sexes. From sprint 1 to 10, VM-VL onset delay increased from 9.62 to 16.95 ms and from 19.28 to 45.09 ms in males and females, respectively (p < 0.001); however, no sex difference was found (p = 0.524). Muscle activation amplitude plateaued at different sprint repetitions in males and females while mechanical work plateaued at similar repetitions. Discussion These findings suggest that sex differences in the incidence of PFPS may not be influenced by VM/VL muscle coordination as assessed by EMG.
Collapse
Affiliation(s)
- Lauren A. Cederbaum
- Department of Kinesiology and Physical Education, Biomechanics of Occupation and Sport Laboratory, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
4
|
Di Giminiani R, Marinelli S, La Greca S, Di Blasio A, Angelozzi M, Cacchio A. Neuromuscular Characteristics of Unilateral and Bilateral Maximal Voluntary Isometric Contractions following ACL Reconstruction. BIOLOGY 2023; 12:1173. [PMID: 37759573 PMCID: PMC10525486 DOI: 10.3390/biology12091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Despite the advancement of diagnostic surgical techniques in anterior cruciate ligament (ACL) reconstruction and rehabilitation protocols following ACL injury, only half of the athletes return to sports at a competitive level. A major concern is neuromechanical dysfunction, which occurs with injuries persisting in operated and non-operated legs following ACL rehabilitation. One of the criteria for a safe return to sports participation is based on the maximal voluntary isometric contraction (MVIC) performed unilaterally and a comparison between the 'healthy knee' and the 'operated knee'. The present study aimed to investigate MVIC in athletes following ACL rehabilitation during open kinetic chain exercise performed unilaterally and bilateral exercises. Twenty subjects participated in the present investigation: 10 male athletes of regional-national level (skiers, rugby, soccer, and volleyball players) who were previously operated on one knee and received a complete rehabilitation protocol (for 6-9 months) were included in the ACL group (age: 23.4 ± 2.11 years; stature: 182.0 ± 9.9 cm; body mass: 78.6 ± 9.9 kg; body mass index: 23.7 ± 1.9 kg/m2), and 10 healthy male athletes formed the control group (CG: age: 24.0 ± 3.4 years; stature: 180.3 ± 10.7 cm; body mass: 74.9 ± 13.5 kg; body mass index: 22.8 ± 2.7 kg/m2). MVICs synchronised with electromyographic (EMG) activity (recorded on the vastus lateralis, vastus medialis, and biceps femoris muscles) were performed during unilateral and bilateral exertions. The rate of force development (RFD) and co-activation index (CI) were also calculated. The differences in the MVIC and RFD between the two legs within each group were not significant (p > 0.05). Vastus lateralis EMG activity during MVIC and biceps femoris EMG activity during RFD were significantly higher in the operated leg than those in the non-operated leg when exertion was performed bilaterally (p < 0.05). The CI was higher in the operated leg than that in the non-operated leg when exertion was performed bilaterally (p < 0.05). Vice versa, vastus medialis EMG activity during RFD was significantly higher in the right leg than that in the left leg when exertion was performed bilaterally (p < 0.05) in the CG. MVICs performed bilaterally represent a reliability modality for highlighting neuromechanical asymmetries. This bilateral exercise should be included in the criteria for a safe return to sports following ACL reconstruction.
Collapse
Affiliation(s)
- Riccardo Di Giminiani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.M.); (S.L.G.)
| | - Stefano Marinelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.M.); (S.L.G.)
| | - Stefano La Greca
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.M.); (S.L.G.)
| | - Andrea Di Blasio
- Department of Medicine and Aging Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, 66013 Chieti, Italy;
| | - Massimo Angelozzi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (A.C.)
| | - Angelo Cacchio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (A.C.)
| |
Collapse
|
5
|
Schilaty ND, McPherson AL, Nagai T, Bates NA. Differences in psychological readiness for return to sport after anterior cruciate ligament injury is evident in thigh musculature motor unit characteristics. BMJ Open Sport Exerc Med 2023; 9:e001609. [PMID: 37440978 PMCID: PMC10335479 DOI: 10.1136/bmjsem-2023-001609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Background Following anterior cruciate ligament (ACL) injury, many athletes that undergo surgery and 6-9 months of rehabilitation struggle to return to sport. Evidence suggests that psychological factors contribute to this failure to return-to-sport. Objective Determine the motor control relationship between thigh musculature motor unit characteristics and psychological readiness to return to sport between ACL-injured and healthy controls. Study design A longitudinal cohort study. Methods Athletes longitudinally completed the ACL Return to Sport after Injury (ACL-RSI) survey and isometric strength measures with a measurement of electromyography (EMG) of the vastus lateralis, vastus medialis, biceps femoris, and semitendinosus. A score cut-off of 61 on the ACL-RSI was used to divide ACL-injured groups. EMG was decomposed to provide each identified motor unit's characteristics (amplitude, average firing rate, etc). Results Data demonstrated increased average firing rate for hamstrings (p<0.001), decreased average firing rate for vastus lateralis (p<0.001) and decreased motor unit size for both the quadriceps and hamstrings at return-to-sport post-ACL reconstruction compared with sex-matched and age-matched healthy controls (p<0.001). Furthermore, there were marked differences in disparate ACL-RSI scores between ACL-injured athletes. Conclusions At return to sport, ACL-injured athletes have major alterations of thigh musculature motor control, with smaller motor units used by those with low ACL-RSI scores. This study uniquely demonstrates objective thigh muscle motor unit characteristics that coincide with subjective reports of psychological readiness. This information will be important to address psychomotor complexes of injury for future rehabilitation protocols.
Collapse
Affiliation(s)
- Nathan D Schilaty
- Department of Neurosurgery & Brain Repair, University of South Florida Tampa Campus, Tampa, Florida, USA
- Medical Engineering, University of South Florida, Tampa, Florida, USA
- Center for Neuromusculoskeletal Research, University of South Florida, Tampa, Florida, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - April L McPherson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopaedics, The Ohio State University, Columbus, Ohio, USA
- Emory Sports Performance and Research Center, Emory University, Atlanta, Georgia, USA
| | - Takashi Nagai
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Division of Military Performance, USARIEM, Natick, Massachusetts, USA
| | - Nathaniel A Bates
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopaedics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Orantes-Gonzalez E, Heredia-Jimenez J, Lindley SB, Richards JD, Chapman GJ. An exploration of the motor unit behaviour during the concentric and eccentric phases of a squat task performed at different speeds. Sports Biomech 2023:1-12. [PMID: 37339268 DOI: 10.1080/14763141.2023.2221682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
Despite squatting being important in strength training and rehabilitation, few studies have investigated motor unit (MU) behaviour. This study explored the MU behaviour of vastus medialis (VM) and vastus lateralis (VL) during the concentric and eccentric phases of a squat exercise performed at two speeds. Twenty-two participants had surface dEMG sensors attached over VM and VL, and IMUs recorded thigh and shank angular velocities. Participants performed squats at 15 and 25 repetitions per minute in a randomised order, and EMG signals were decomposed into their MU action potential trains. A four factor (muscle × speed × contraction phase × sexes) mixed methods ANOVA revealed significant main effects for MU firing rates between speeds, between muscles and between sexes, but not contraction phases. Post hoc analysis showed significantly greater MU firing rates and amplitudes in VM. A significant interaction was seen between speed and the contraction phases. Further analysis revealed significantly greater firing rates during the concentric compared to the eccentric phases, and between speeds during the eccentric phase only. VM and VL respond differently during squatting depending on speed and contraction phase. These new insights in VM and VL MU behvaviour may be useful when designing training and rehabilitation protocols.
Collapse
Affiliation(s)
- Eva Orantes-Gonzalez
- Department of Sports and Computer Science, Faculty of Sports, University of Pablo de Olavide, Seville, Spain
| | - Jose Heredia-Jimenez
- Department of Physical Education and Sport, Faculty of Education, Economy and Technology, University of Granada, Ceuta, Spain
| | | | - Jim D Richards
- Allied Health Research Unit, University of Central Lancashire, Preston, UK
| | - Graham J Chapman
- Allied Health Research Unit, University of Central Lancashire, Preston, UK
| |
Collapse
|
7
|
Schilaty ND, McPherson AL, Nagai T, Bates NA. Arthrogenic muscle inhibition manifests in thigh musculature motor unit characteristics after anterior cruciate ligament injury. Eur J Sport Sci 2023; 23:840-850. [PMID: 35306977 PMCID: PMC9626399 DOI: 10.1080/17461391.2022.2056520] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Joint trauma induces a presynaptic reflex inhibition termed arthrogenic muscle inhibition (AMI) that prevents complete activation of muscles. Reduced motor unit (MU) output is a hypothesised mechanism for persistent strength deficits. The objective of this study was to determine MU characteristics of thigh musculature and determine how they change with anterior cruciate ligament (ACL) injury compared to healthy controls. A randomised protocol of knee flexion/extension isometric contractions (10-50% maximal voluntary isometric contraction) was performed for each leg with surface EMG 5-pin array electrodes placed on the vastus medialis, vastus lateralis, semitendinosus and biceps femoris. Longitudinal assessments for average rate coding, recruitment thresholds and MU action potentials were acquired at 6-month intervals. With exception of the vastus medialis, all thigh musculature of ACL-injured demonstrated smaller MU action potential peak-to-peak amplitude. For average rate coding, ACL-injured demonstrated lower coding rates than Controls for the quadriceps (p < .05) and higher rates than Controls for the hamstrings (p < .05). These MU characteristics were different from Controls after ACL reconstruction up to 12 months post-surgery, yet maximal strength increased during this time frame. As thigh MU characteristics are known across phases of ACL rehabilitation, future studies can assess these patterns of motor control and their potential to determine risk of re-injury. Further, future rehabilitation can target specific intervention programmes to restore motor control.HighlightsMotor unit strategies of arthrogenic muscle inhibition are characterised for the first time via decomposed EMG.Motor unit deficits of thigh musculature persist throughout all phases of ACL rehabilitation, even after return-to-sport.After ACL injury, motor unit sizes at similar recruitment thresholds were smaller than those of healthy controls.
Collapse
Affiliation(s)
- Nathan D. Schilaty
- Department of Neurosurgery & Brain Repair, University of South Florida, Tampa, FL, USA
- Center for Neuromusculoskeletal Research, University of South Florida, Tampa, FL, USA
- Department of Orthopedics, Mayo Clinic, Rochester, MN, USA
| | - April L. McPherson
- Department of Orthopedics, Mayo Clinic, Rochester, MN, USA
- United States Olympic & Paralympic Committee, Colorado Springs, CO, USA
| | - Takashi Nagai
- Department of Orthopedics, Mayo Clinic, Rochester, MN, USA
- United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Nathaniel A. Bates
- Department of Orthopedics, Mayo Clinic, Rochester, MN, USA
- Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Lower motor unit discharge rates in gastrocnemius lateralis, but not in gastrocnemius medialis or soleus, in runners with Achilles tendinopathy: a pilot study. Eur J Appl Physiol 2023; 123:633-643. [PMID: 36418751 PMCID: PMC9684880 DOI: 10.1007/s00421-022-05089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/06/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Deficits in muscle performance could be a consequence of a reduced ability of a motor neuron to increase the rate in which it discharges. This study aimed to investigate motor unit (MU) discharge properties of each triceps surae muscle (TS) and TS torque steadiness during submaximal intensities in runners with Achilles tendinopathy (AT). METHODS We recruited runners with (n = 12) and without (n = 13) mid-portion AT. MU discharge rate was analysed for each of the TS muscles, using high-density surface electromyography during 10 and 20% isometric plantar flexor contractions. RESULTS MU mean discharge rate was lower in the gastrocnemius lateralis (GL) in AT compared to controls. In AT, GL MU mean discharge rate did not increase as torque increased from 10% peak torque, 8.24 pps (95% CI 7.08 to 9.41) to 20%, 8.52 pps (7.41 to 9.63, p = 0.540); however, in controls, MU discharge rate increased as torque increased from 10%, 8.39 pps (7.25-9.53) to 20%, 10.07 pps (8.89-11.25, p < 0.001). There were no between-group difference in gastrocnemius medialis (GM) or soleus (SOL) MU discharge rates. We found no between-group differences in coefficient of variation of MU discharge rate in any of the TS muscles nor in TS torque steadiness. CONCLUSION Our data demonstrate that runners with AT may have a lower neural drive to GL, failing to increase MU discharge rate to adjust for the increase in torque demand. Further research is needed to understand how interventions focussing on increasing neural drive to GL would affect muscle function in runners with AT.
Collapse
|
9
|
Detecting motor unit abnormalities in amyotrophic lateral sclerosis using high-density surface EMG. Clin Neurophysiol 2022; 142:262-272. [PMID: 35902304 DOI: 10.1016/j.clinph.2022.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The purpose of this study was to detect specific motor unit (MU) abnormalities in people with amyotrophic lateral sclerosis (ALS) compared to controls using high-density surface electromyography (HD-SEMG). METHODS Sixteen people with ALS and 16 control subjects. The participants performed ramp up and sustained contractions at 30% of their maximal voluntary contraction. HD-SEMG signals were recorded in the vastus lateralis muscle and decomposed into individual MU firing behavior using a convolution blind source separation method. RESULTS In total, 339 MUs were detected (people with ALS; n = 93, control subjects; n = 246). People with ALS showed significantly higher mean firing rate, recruitment threshold, coefficient of variation of the MU firing rate, MU firing rate at recruitment, and motoneurons excitability than those of control subjects (p < 0.001). The number of MU, MU firing rate, recruitment threshold, and MU firing rate at recruitment were significantly correlated with disease severity (p < 0.001). Multivariable analysis revealed that an increased MU firing rate at recruitment was independently associated with ALS. CONCLUSIONS These results suggest increased excitability at recruitment, which is consistent with neurodegeneration results in a compensatory increase in MU activity. SIGNIFICANCE Abnormal MU firing behavior provides an important physiological index for understanding the pathophysiology of ALS.
Collapse
|
10
|
KOMIYA MAKOTO, MAEDA NORIAKI, NISHIKAWA YUICHI, SASADAI JUNPEI, MORIKAWA MASANORI, TASHIRO TSUBASA, FUJISHITA HIRONORI, URABE YUKIO. SPATIAL DISTRIBUTION PATTERN OF THE ELECTROMYOGRAPHIC POTENTIAL IN THE VASTUS MEDIALIS AND LATERALIS MUSCLES FOR THREE KNEE FLEXION ANGLES DURING ISOMETRIC KNEE EXTENSION. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422500312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding the function of the vastus lateralis (VL) and vastus medialis (VM) muscles is important since these muscles are essential for daily and sport activities. The association between the knee flexion angle and spatial muscle activation is controversial. This study compares the distribution patterns of multi-channel electromyographic activities of the VL and VM muscles at three knee flexion angles for three intensities of isometric contraction. Sixteen men performed isometric knee extensions at 30%, 50% and 70% maximal voluntary contraction (MVC), at [Formula: see text], [Formula: see text] and [Formula: see text] knee flexion. Alterations in the spatial electromyographic potential distribution were determined by the root mean square (RMS), modified entropy, and coefficient of variation in the spatial electromyographic potential. Modified entropy and the coefficient of variation showed differences in the VM muscle between [Formula: see text] and [Formula: see text] knee flexion. The RMS at the three angles was similar between the VL and VM muscles, with no differences in contraction intensities at 30%, 50%, or 70% MVC. The VL and VM muscle function differed among knee flexion angles, as did activity in the distal and proximal VM muscles. These findings suggest the need for functional evaluation of the VL and VM muscles at each knee flexion angle.
Collapse
Affiliation(s)
- MAKOTO KOMIYA
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - NORIAKI MAEDA
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - YUICHI NISHIKAWA
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - JUNPEI SASADAI
- Sports Medical Center, Japan Institute of Sports, Sciences, Tokyo, Japan
| | - MASANORI MORIKAWA
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - TSUBASA TASHIRO
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - YUKIO URABE
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
Divjak M, Sedej G, Murks N, Gerževič M, Marusic U, Pišot R, Šimunič B, Holobar A. Inter-Person Differences in Isometric Coactivations of Triceps Surae and Tibialis Anterior Decrease in Young, but Not in Older Adults After 14 Days of Bed Rest. Front Physiol 2022; 12:809243. [PMID: 35153817 PMCID: PMC8832055 DOI: 10.3389/fphys.2021.809243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
We examined activation patterns of the gastrocnemius medialis (GM), gastrocnemius lateralis (GL), soleus (SO), and tibialis anterior (TA) muscles in eight older (58.4 ± 3.3 years) and seven young (23.1 ± 2.9 years) participants, before and after 14 days of horizontal bed rest. Visual feedback on the exerted muscle torque was provided to the participants. The discharge patterns of individual motor units (MUs) were studied in three repetitions of isometric plantar flexion at 30 and 60% of Maximum Voluntary Contraction (MVC), before, and 1 day after the 14-day bed rest, respectively. In the GL and GM muscles, the older participants demonstrated higher MU discharge rates than the young, regardless of the contraction level, both before and after the bed rest. In the TA and SO muscles, the differences between the older and young participants were less consistent. Detailed analysis revealed person-specific changes in the MU discharge rates after the bed rest. To quantify the coactivation patterns we calculated the correlation coefficients between the cumulative spike trains of identified MUs from each muscle, and measured the root mean square difference of the correlation coefficients between the trials of the same session (intra-session variability) and between different sessions (inter-session variability) in each participant (intra-person comparison) and across participants (inter-person comparison). In the intra-person comparison, the inter-session variability was higher than the intra-session variability, either before or after the bed rest. At 60% MVC torque, the young demonstrated higher inter-person variability of coactivation than the older participants, but this variability decreased significantly after the bed rest. In older participants, inter-person variability was consistently lower at 60% than at 30% MVC torque. In young participants, inter-person variability became lower at 60% than at 30% MVC torque only after the bed rest. Precaution is required when analyzing the MU discharge and coactivation patterns, as individual persons demonstrate individual adaptations to aging or bed rest.
Collapse
Affiliation(s)
- Matjaž Divjak
- System Software Laboratory, Institute of Computer Science, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Gašper Sedej
- System Software Laboratory, Institute of Computer Science, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Nina Murks
- System Software Laboratory, Institute of Computer Science, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Mitja Gerževič
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Department of Health Sciences, Alma Mater Europaea – ECM, Maribor, Slovenia
| | - Uros Marusic
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Department of Health Sciences, Alma Mater Europaea – ECM, Maribor, Slovenia
| | - Rado Pišot
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Boštjan Šimunič
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Aleš Holobar
- System Software Laboratory, Institute of Computer Science, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
- *Correspondence: Aleš Holobar,
| |
Collapse
|
12
|
Vieira TM, Botter A. The Accurate Assessment of Muscle Excitation Requires the Detection of Multiple Surface Electromyograms. Exerc Sport Sci Rev 2021; 49:23-34. [PMID: 33044329 DOI: 10.1249/jes.0000000000000240] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When sampling electromyograms (EMGs) with one pair of electrodes, it seems implicitly assumed the detected signal reflects the net muscle excitation. However, this assumption is discredited by observations of local muscle excitation. Therefore, we hypothesize that the accurate assessment of muscle excitation requires multiple EMG detection and consideration of electrode-fiber alignment. We advise prudence when drawing inferences from individually collected EMGs.
Collapse
|
13
|
Nishikawa Y, Watanabe K, Holobar A, Maeda N, Maruyama H, Tanaka S. Identification of the laterality of motor unit behavior in female patients with parkinson's disease using high-density surface electromyography. Eur J Neurosci 2020; 53:1938-1949. [PMID: 33377245 DOI: 10.1111/ejn.15099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022]
Abstract
Patients with Parkinson's disease (PD) have greater laterality of muscle contraction properties than other people with parkinsonism diseases. However, few studies have reported the laterality of MU activation properties of the lower extremity muscles in patients with PD. The aim of the present study was to identify the laterality of MU behavior in PD patients using high-density surface electromyography (HD-SEMG). Eleven female patients with PD (age, 69.2 ± 6.2 years, disease duration, 2.7 ± 0.9 years, Unified Parkinson's disease Rating Scale score, 13 (9-16)), and 9 control female subjects (age, 66.8 ± 3.5 years) were enrolled in the present study. All subjects performed a sustained isometric knee extension in a 30% maximal voluntary contraction (MVC) task for 20 s. HD-SEMG signals were used to record and extract single MU firing behavior in the vastus lateralis muscle during submaximal isometric knee extensor contractions with 64 electrodes and decomposed with the convolution kernel compensation technique to extract individuals MUs. Compared to the control subjects, the patients with PD exhibited laterality of the MU firing rate and an absence of a relationship between the mean MU firing rate and MU threshold. Patients with PD exhibit laterality of MU behavior and experience MU behavioral abnormalities even with mild symptoms such as Hoehn & Yahr stage ≤ 3 and disease duration = 2.7 ± 0.9. These findings suggest the importance of considering the detection of abnormal muscle properties in PD patients beginning in the early phase of the disease.
Collapse
Affiliation(s)
- Yuichi Nishikawa
- Faculty of Frontier Engineering, Institute of Science & Engineering, Kanazawa University, Kanazawa, Japan.,Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of International Liberal Studies, Chukyo University, Nagoya, Japan
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Noriaki Maeda
- Division of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinobu Tanaka
- Faculty of Frontier Engineering, Institute of Science & Engineering, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
14
|
Olson MW. Static loading of the knee joint results in modified single leg landing biomechanics. PLoS One 2020; 15:e0219648. [PMID: 32084138 PMCID: PMC7034804 DOI: 10.1371/journal.pone.0219648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/04/2020] [Indexed: 11/18/2022] Open
Abstract
Background External loading of the ligamentous tissues induces mechanical creep, which modifies neuromuscular response to perturbations. It is not well understood how ligamentous creep affects athletic performance and contributes to modifications of knee biomechanics during functional tasks. Hypothesis/purpose The purpose of this study was to examine the mechanical and neuromuscular responses to single leg drop landing perturbations before and after passive loading of the knee joint. Methods Descriptive laboratory study. Male (n = 7) and female (n = 14) participants’ (21.3 ± 2.1 yrs., 1.69 ± 0.09 m, 69.3 ± 13.0 kg) right hip, knee, and ankle kinematics were assessed during drop landings performed from a 30 cm height onto a force platform before and after a 10 min creep protocol. Electromyography (EMG) signals were recorded from rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), semimembranosus (SM), and biceps femoris (BF) muscles. The creep protocol involved fixing the knee joint at 35° during static loading with perpendicular loads of either 200 N (males) or 150 N (females). Maximum, minimum, range of motion (ROM), and angular velocities were assessed for the hip, knee, and ankle joints, while normalized EMG (NEMG), vertical ground reaction forces (VGRF), and rate of force development (RFD) were assessed at landing using ANOVAs. Alpha was set at 0.05. Results Maximum hip flexion velocity decreased (p < 0.01). Minimum knee flexion velocity increased (p < 0.02). Minimum knee ad/abduction velocity decreased (p < 0.001). Ankle ROM decreased (p < 0.001). aVGRF decreased (p < 0.02). RFD had a non-significant trend (p = 0.076). NAEMG was significant between muscle groups (p < 0.02). Conclusion Distinct changes in velocity parameters are attributed to the altered mechanical behavior of the knee joint tissues and may contribute to changes in the loading of the leg during landing.
Collapse
Affiliation(s)
- Michael W. Olson
- Department of Kinesiology, Southern Illinois University Carbondale, Carbondale, IL, United States of America
- Department of Athletic Training and Exercise Physiology, Midwestern State University, Wichita Falls, TX, United States of America
- * E-mail:
| |
Collapse
|
15
|
Rodriguez-Falces J, Vieira T, Place N, Botter A. Potentiation of the first and second phases of the M wave after maximal voluntary contractions in the biceps brachii muscle. Med Biol Eng Comput 2019; 57:2231-2244. [PMID: 31410691 DOI: 10.1007/s11517-019-02025-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
The study was undertaken to examine separately the potentiation of the first and second phases of the M wave in biceps brachii after conditioning maximal voluntary contractions (MVCs) of different durations. M waves were evoked in the biceps brachii muscle before and after isometric MVCs of 1, 3, 6, 10, 30, and 60 s. The amplitude, duration, and area of the first and second phases of monopolar M waves were measured during the 10-min period following each contraction. Our results indicated that the amplitude and area of the M-wave first phase increased after MVCs of long (≥ 30 s) duration (P < 0.05), while it decreased after MVCs of short (≤ 10 s) duration (P < 0.05). The enlargement after the long MVCs persisted for 5 min, whereas the depression after the short contractions lasted only for 15 s. The amplitude of the second phase increased immediately (1 s) after all MVCs tested (P < 0.05), regardless of their duration, and then returned rapidly (10 s) to control levels. Unexpectedly, the amplitude of the second phase decreased below control values between 15 s and 1 min after the MVCs lasting ≥ 6 s (P < 0.05). Our results reinforce the idea that the presence of fatigue is a necessary condition to induce an enlargement of the M-wave first phase and that this enlargement would be greater (and occur sooner) in muscles with a predominance of type II fibers (quadriceps and biceps brachii) compared to type-I predominant muscles (tibialis anterior). The unique findings observed for the M-wave second phase indicate that changes in this phase are highly muscle dependent. Graphical abstract Left panel-Representative examples of M waves recorded in one participant before (control) and at various times after conditioning maximal voluntary contractions (MVCs) of short (a1) and long (a2) duration. Left panel-Time course of recovery of the amplitude of the first (b1) and second (b2) phases of the M wave after conditioning MVCs of different durations.
Collapse
Affiliation(s)
- Javier Rodriguez-Falces
- Department of Electrical and Electronical Engineering, Public University of Navarra, Pamplona, Spain. .,Department of Electrical and Electronical Engineering, Universidad Pública de Navarra D.I.E.E, Campus de Arrosadía s/n, 31006, Pamplona, Spain.
| | - Taian Vieira
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Torino, Italy
| | - Nicolas Place
- Institute of Sport Sciences, Faculty of Biology Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Torino, Italy
| |
Collapse
|
16
|
Mesin L. Single channel surface electromyogram deconvolution to explore motor unit discharges. Med Biol Eng Comput 2019; 57:2045-2054. [PMID: 31350669 DOI: 10.1007/s11517-019-02010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 07/04/2019] [Indexed: 11/28/2022]
Abstract
Interference surface electromyogram (EMG) reflects many bioelectric properties of active motor units (MU), which are however difficult to estimate due to the asynchronous summation of their discharges. This paper introduces a deconvolution technique to estimate the cumulative firings of MUs. Tests in simulations show that the power spectral density of the estimated MU firings has a low-frequency peak corresponding to the mean firing rate of MUs in the detection volume of the recording system, weighted by the amplitudes of MU action potentials. The peak increases in amplitude and its centroid shifts to a higher frequency when MU synchronization is simulated (mainly due to the shift of discharges of large MUs). The peak is found even at high force levels, when such a contribution does not emerge from the EMG. This result is also confirmed in preliminary applications to experimental data. Moreover, the simulated cumulative firings of MUs are estimated with a correlation above 90% (considering frequency contributions up to 150 Hz), for all force levels. The method requires a single EMG channel, thus being feasible even in applied studies using simple recording systems. It may open many potential applications, e.g., in the study of the modulation of MU firing rate induced by either fatigue or pathology and in coherency analysis. Graphical Abstract Examples of application of the deconvolution (Deconv) algorithm and comparison with the cumulative firings and the cumulated weighted firings (CWF, i.e., each firing pattern is weighted by the root mean squared amplitude of the corresponding MU action potential). Portions of data are shown on the left, the power spectral densities (PSD) on the right (Welch method applied to 3 s of data, sub-epochs of 0.5 s, mean value removed from each of them, 50% of overlap). A) Simulated signal (50% of maximal voluntary contraction, MVC) with random MU firings. B) Simulated signal (50% MVC) with a level of synchronization equal to 10%. C) Experimental data from vastus medialis at 40% MVC (data decomposed by the algorithm of Holobar and Zazula, IEEE Trans. Sig. Proc. 2007; PSD of the cumulated firings almost identical to that of CWF, as few MUs were identified).
Collapse
Affiliation(s)
- Luca Mesin
- Mathematical Biology and Physiology, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| |
Collapse
|