1
|
Sabt A, Kitsos S, Ebaid MS, Furlan V, Pantiora PD, Tsolka M, Elkaeed EB, Hamissa MF, Angelis N, Tsitsilonis OE, Papageorgiou AC, Bren U, Labrou NE. Novel coumarin-6-sulfonamide-chalcone hybrids as glutathione transferase P1-1 inhibitors. PLoS One 2024; 19:e0306124. [PMID: 39141629 PMCID: PMC11324126 DOI: 10.1371/journal.pone.0306124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 08/16/2024] Open
Abstract
Multidrug resistance (MDR) mechanisms in cancer cells are greatly influenced by glutathione transferase P1-1 (hGSTP1-1). The use of synthetic or natural compounds as hGSTP1-1 inhibitors is considered an effective approach to overcome MDR. Nine compounds consisting of coumarin-6-sulfonamide linked to chalcone derivatives were synthesized and evaluated for their ability to inhibit hGSTP1-1. Among the synthetic derivatives, compounds 5g, 5f, and 5a displayed the most potent inhibitory effect, with IC50 values of 12.2 ± 0.5 μΜ, 12.7 ± 0.7 and 16.3 ± 0.6, respectively. Kinetic inhibition analysis of the most potent molecule, 5g, showed that it behaves as a mixed-type inhibitor of the target enzyme. An in vitro cytotoxicity assessment of 5a, 5f, and 5g against the human prostate cancer cell lines DU-145 and PC3, as well as the breast cancer cell line MCF-7, demonstrated that compound 5g exhibited the most pronounced cytotoxic effect on all tested cell lines. Molecular docking studies were performed to predict the structural and molecular determinants of 5g, 5f, and 5a binding to hGSTP1-1. In agreement with the experimental data, the results revealed that 5g exhibited the lowest docking score among the three studied inhibitors as a consequence of shape complementarity, governed by van der Waals, hydrogen bonds and a π-π stacking interaction. These findings suggest that coumarin-chalcone hybrids offer new perspectives for the development of safe and efficient natural product-based sensitizers that can target hGSTP1-1 for anticancer purposes.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo, Egypt
| | - Stefanos Kitsos
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Manal S. Ebaid
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Panagiota D. Pantiora
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Magdalini Tsolka
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah, Saudi Arabia
| | - Mohamed Farouk Hamissa
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague, Czech Republic
| | - Nikolaos Angelis
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Ourania E. Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
- Institute of Environmental Protection and Sensors, Maribor, Slovenia
| | - Nikolaos E. Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
2
|
Ozalp L, Orhan B, Alparslan MM, Meletli F, Çakmakçı E, Danış Ö. Arylcoumarin and novel biscoumarin derivatives as potent inhibitors of human glutathione S-transferase. J Biomol Struct Dyn 2023; 42:11456-11470. [PMID: 37768055 DOI: 10.1080/07391102.2023.2262598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
A series of arylcoumarin derivatives and two novel biscoumarin derivatives were investigated for their human recombinant glutathione S-transferase P1-1 (GSTP1-1) enzyme inhibitory activities for the first time. 4-(3,4-Dihydroxyphenyl)-6,7-dihydroxycoumarin (compound 24) was observed to be the most active coumarin derivative (IC50: 0.14 µM). The inhibition was found to be time-dependent and irreversible. Hypothetical binding modes of the ten most active compounds were calculated by molecular docking. Ligand efficiency indices (LEI) were estimated to better understand the binding performance of the coumarin derivatives. Extensive structure-activity relationship studies showed that hydroxy substitution on both the coumarin and the aryl ring enhanced the biological activity and the position of hydroxy group on the coumarin ring is critical for the binding pose and the activity. Top three ligands were subjected to molecular dynamics simulations and MM/PBSA for further investigation. Binding mode of compound 24 suggested that its high inhibitory activity might be attributed to its position between Tyr7 and the cofactor, glutathione (GS-DNB). Exhibiting favorable druglikeness profiles and pharmacokinetics based on ADME studies, compound 5 and 24 can be considered as potential drug leads in future studies for further development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lalehan Ozalp
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Berk Orhan
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | | | - Furkan Meletli
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Emrah Çakmakçı
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Özkan Danış
- Department of Chemistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
3
|
Xu J, Zhang J, Song J, Liu Y, Li J, Wang X, Tang R. Construction of multifunctional mesoporous silicon nano-drug delivery system and study of dual sensitization of chemo-photodynamic therapy in vitro and in vivo. J Colloid Interface Sci 2022; 628:271-285. [PMID: 35998453 DOI: 10.1016/j.jcis.2022.08.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
This study was conducted to construct a multifunctional nanodrug delivery system (NDDS) to deplete glutathione (GSH) in tumor cells and amplify oxidative stress, enhancing the synergistic effect of chemotherapy and photodynamic therapy (PDT). l-Buthionine-sulfoximine (BSO) and chlorin e6 (Ce6) were loaded into mesoporous silicon nanoparticles (MSN), and then MSN were modified with oxidized hyaluronic acid (OHA) as a pore-blocking agent. Cisplatin (Pt(II)) was further loaded by a coordination reaction with carboxyl groups in OHA to yield a multifunctional NDDS (denoted as MSN@OHA-Ce6/BSO/Pt). The physicochemical properties and antitumor activity of the prepared nanoparticles were characterized in detail. In vitro and in vivo experiments demonstrated that OHA was shed from MSN@OHA-Ce6/BSO/Pt under acidic conditions in tumors, resulting in the release of free BSO, Ce6, and Pt(II). The released BSO could reduce intracellular GSH expression by 48.8 %, effectively enhancing the PDT effect of Ce6 and the chemotherapy effect of Pt(II). Finally, the tumor inhibitory rate (vs saline) reached 73.8 % ± 2.5 % for MSN@OHA-Ce6/BSO/Pt in A549/DDP tumor-bearing nude mice. Therefore, the multifunctional NDDS significantly enhanced the synergistic effect of PDT and chemotherapy.
Collapse
Affiliation(s)
- Jiaxi Xu
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Jingwen Zhang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Jinping Song
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Yufei Liu
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Junnan Li
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China.
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China.
| |
Collapse
|
4
|
Glutathione S-Transferase M3 Is Associated with Glycolysis in Intrinsic Temozolomide-Resistant Glioblastoma Multiforme Cells. Int J Mol Sci 2021; 22:ijms22137080. [PMID: 34209254 PMCID: PMC8268701 DOI: 10.3390/ijms22137080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary brain tumor. The 5-year relative survival rate of patients with GBM remains <30% on average despite aggressive treatments, and secondary therapy fails in 90% of patients. In chemotherapeutic failure, detoxification proteins are crucial to the activity of chemotherapy drugs. Usually, glutathione S-transferase (GST) superfamily members act as detoxification enzymes by activating xenobiotic metabolites through conjugation with glutathione in healthy cells. However, some overexpressed GSTs not only increase GST activity but also trigger chemotherapy resistance and tumorigenesis-related signaling transductions. Whether GSTM3 is involved in GBM chemoresistance remains unclear. In the current study, we found that T98G, a GBM cell line with pre-existing temozolomide (TMZ) resistance, has high glycolysis and GSTM3 expression. GSTM3 knockdown in T98G decreased glycolysis ability through lactate dehydrogenase A activity reduction. Moreover, it increased TMZ toxicity and decreased invasion ability. Furthermore, we provide next-generation sequencing-based identification of significantly changed messenger RNAs of T98G cells with GSTM3 knockdown for further research. GSTM3 was downregulated in intrinsic TMZ-resistant T98G with a change in the expression levels of some essential glycolysis-related genes. Thus, GSTM3 was associated with glycolysis in chemotherapeutic resistance in T98G cells. Our findings provide new insight into the GSTM3 mechanism in recurring GBM.
Collapse
|
5
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
6
|
Chan WH, Mohamad MS, Deris S, Zaki N, Kasim S, Omatu S, Corchado JM, Al Ashwal H. Identification of informative genes and pathways using an improved penalized support vector machine with a weighting scheme. Comput Biol Med 2016; 77:102-15. [PMID: 27522238 DOI: 10.1016/j.compbiomed.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 01/03/2023]
Abstract
Incorporation of pathway knowledge into microarray analysis has brought better biological interpretation of the analysis outcome. However, most pathway data are manually curated without specific biological context. Non-informative genes could be included when the pathway data is used for analysis of context specific data like cancer microarray data. Therefore, efficient identification of informative genes is inevitable. Embedded methods like penalized classifiers have been used for microarray analysis due to their embedded gene selection. This paper proposes an improved penalized support vector machine with absolute t-test weighting scheme to identify informative genes and pathways. Experiments are done on four microarray data sets. The results are compared with previous methods using 10-fold cross validation in terms of accuracy, sensitivity, specificity and F-score. Our method shows consistent improvement over the previous methods and biological validation has been done to elucidate the relation of the selected genes and pathway with the phenotype under study.
Collapse
Affiliation(s)
- Weng Howe Chan
- Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Saberi Mohamad
- Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Safaai Deris
- Faculty of Creative Technology & Heritage, Universiti Malaysia Kelantan, Locked Bag 01, Bachok, 16300 Kota Bharu, Kelantan, Malaysia
| | - Nazar Zaki
- College of Information Technology, United Arab Emirate University, Al Ain 15551, United Arab Emirates
| | - Shahreen Kasim
- Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Malaysia
| | - Sigeru Omatu
- Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Juan Manuel Corchado
- Biomedical Research Institute of Salamanca/BISITE Research Group, University of Salamanca, Salamanca, Spain
| | - Hany Al Ashwal
- College of Information Technology, United Arab Emirate University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
7
|
Kitada M, Takeda K, Dezawa M. Regulation of DM-20 mRNA expression and intracellular translocation of glutathione-S-transferase pi isoform during oligodendrocyte differentiation in the adult rat spinal cord. Histochem Cell Biol 2016; 146:45-57. [PMID: 26921198 DOI: 10.1007/s00418-016-1421-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.
Collapse
Affiliation(s)
- Masaaki Kitada
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Kazuya Takeda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Faculty of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
8
|
Alparslan MM, Danış Ö. In VitroInhibition of Human Placental GlutathioneS-Transferase by 3-Arylcoumarin Derivatives. Arch Pharm (Weinheim) 2015. [DOI: 10.1002/ardp.201500151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Özkan Danış
- Department of Chemistry; Faculty of Arts and Sciences; Marmara University; Istanbul Turkey
| |
Collapse
|
9
|
Zhang J, Grek C, Ye ZW, Manevich Y, Tew KD, Townsend DM. Pleiotropic functions of glutathione S-transferase P. Adv Cancer Res 2015; 122:143-75. [PMID: 24974181 DOI: 10.1016/b978-0-12-420117-0.00004-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutathione S-transferase P (GSTP) is one member of the GST superfamily that is prevalently expressed in mammals. Known to possess catalytic activity through deprotonating glutathione allowing formation of thioether bonds with electrophilic substrates, more recent discoveries have broadened our understanding of the biological roles of this protein. In addition to catalytic detoxification, other properties so far ascribed to GSTP include chaperone functions, regulation of nitric oxide pathways, regulation of a variety of kinase signaling pathways, and participation in the forward reaction of protein S-glutathionylation. The expression of GSTP has been linked with cancer and other human pathologies and more recently even with drug addiction. With respect to human health, polymorphic variants of GSTP may determine individual susceptibility to oxidative stress and/or be critical in the design and development of drugs that have used redox pathways as a discovery platform.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christina Grek
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yefim Manevich
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kenneth D Tew
- Professor and Chairman, Department of Cell and Molecular Pharmacology, John C. West Chair of Cancer Research, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
10
|
Rose MC, Kostyanovskaya E, Huang RS. Pharmacogenomics of cisplatin sensitivity in non-small cell lung cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:198-209. [PMID: 25449594 PMCID: PMC4411417 DOI: 10.1016/j.gpb.2014.10.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 01/13/2023]
Abstract
Cisplatin, a platinum-based chemotherapeutic drug, has been used for over 30 years in a wide variety of cancers with varying degrees of success. In particular, cisplatin has been used to treat late stage non-small cell lung cancer (NSCLC) as the standard of care. However, therapeutic outcomes vary from patient to patient. Considerable efforts have been invested to identify biomarkers that can be used to predict cisplatin sensitivity in NSCLC. Here we reviewed current evidence for cisplatin sensitivity biomarkers in NSCLC. We focused on several key pathways, including nucleotide excision repair, drug transport and metabolism. Both expression and germline DNA variation were evaluated in these key pathways. Current evidence suggests that cisplatin-based treatment could be improved by the use of these biomarkers.
Collapse
Affiliation(s)
- Maimon C Rose
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | | | - R Stephanie Huang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Rybárová S, Hodorová I, Mihalik J, Mirossay L. MRP1 and GSTp1 expression in non-small cell lung cancer does not correlate with clinicopathological parameters: A Slovakian population study. Acta Histochem 2014; 116:1390-8. [PMID: 25258012 DOI: 10.1016/j.acthis.2014.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/24/2022]
Abstract
We detected MRP1 (multidrug resistance-associated protein 1) and GSTp1 (glutathione-S-transferase p1) protein expression in samples of non-small cell lung cancer (NSCLC) and our results were compared to basic clinicopathological parameters. The indirect immunohistochemical method was used for localization of monitored proteins. A total of 135 tissue samples of NSCLC were characterized according to histopathological type of tumor. Next, we compared our results with basic clinicopathological parameters (histopathological type of tumor, tumor grade and TNM stage of disease). In MRP1 and GSTp1 positive tumor cells, strong brown cytoplasmic immunostaining was visible. In our set of samples 71% showed MRP1 positivity, while according to histopathological type the squamous cell carcinoma reached the highest level of positivity (76%). Our GSTp1 results showed that similarly to MRP1, 70% of samples were GSTp1 positive. According to histopathological type the adenocarcinoma samples showed the highest GSTp1 expression (77%). For precise statistical evaluation the Kruskal-Wallis, Chi-square and Mann-Whitney tests were used. We did not find any statistically significant correlations between MRP1 and clinicopathological parameters. In the group of GSTp1, by Mann-Whitney test we found a statistically significant correlation between GSTp1 and histological grade (p=0.025) in adenocarcinoma samples. As this was only one group of statistically significant correlation we wanted to confirm this finding. For this we applied also Chi-square test which revealed no statistically significant dependence (p=0.077). No statistically significant relation was seen in the coexpression of both proteins (p=0.753). Despite this, the majority of samples simultaneously expressed MRP1 and GSTp1 proteins. In conclusion, our results show that MRP1 and GSTp1 proteins represent independent prognostic features in NSCLC. Nevertheless, the clinical outcome in individual patients is often difficult to predict. Identification of the factors that characterize the resistant cases would permit immediate treatment of the patients with alternative therapeutic approaches.
Collapse
Affiliation(s)
- Silvia Rybárová
- Department of Anatomy, Faculty of Medicine, P.J. Šafárik University, Šrobárova 2, 041 80 Košice, Slovak Republic
| | - Ingrid Hodorová
- Department of Anatomy, Faculty of Medicine, P.J. Šafárik University, Šrobárova 2, 041 80 Košice, Slovak Republic.
| | - Jozef Mihalik
- Department of Anatomy, Faculty of Medicine, P.J. Šafárik University, Šrobárova 2, 041 80 Košice, Slovak Republic
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, tr. SNP 1, 040 11 Košice, Slovak Republic
| |
Collapse
|
12
|
Lai JH, She TF, Juang YM, Tsay YG, Huang AH, Yu SL, Chen JJW, Lai CC. Comparative proteomic profiling of human lung adenocarcinoma cells (CL 1-0) expressing miR-372. Electrophoresis 2012; 33:675-88. [PMID: 22451061 DOI: 10.1002/elps.201100329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lung cancer is a common malignancy and has a poor overall prognosis. Widespread metastasis is a common phenomenon in non-small cell lung cancer (NSCLC). It has been demonstrated that cancer relapse and survival can be predicted by the presence of a five-microRNA (miRNA) signature independent of stage or histologic type in NSCLC patients. Among the five miRNAs in the signature, miR-372 has been shown to play a significant role in metastasis and in the development of human testicular germ cell tumors. In addition, there is evidence that miR-372 posttranscriptionally downregulates large tumor suppressor, homolog 2 (Lats2), resulting in tumorigenesis and proliferation. To further investigate the cellular mechanisms involved in miR-372-induced silencing, we conducted a comparative proteomic analysis of NSCLC CL 1-0 cells expressing miRNA-372 and/or vector only by using two-dimensional gel electrophoresis (2DE), two-dimensional difference gel electrophoresis (2D-DIGE), and LC/MS/MS. Proteins identified as being up- or downregulated were further classified according to their biological functions. Many of the proteins identified in our study may be potential diagnostic biomarkers of NSCLC, particularly phosphorylated eIF4A-I.
Collapse
Affiliation(s)
- Juo-Hsin Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tan KL, Jankova L, Chan C, Fung CLS, Clarke C, Lin BPC, Robertson G, Molloy M, Chapuis PH, Bokey L, Dent OF, Clarke SJ. Clinicopathological correlates and prognostic significance of glutathione S-transferase Pi expression in 468 patients after potentially curative resection of node-positive colonic cancer. Histopathology 2011; 59:1057-70. [DOI: 10.1111/j.1365-2559.2011.04044.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
The expression of GST isoenzymes and p53 in non-small cell lung cancer. Folia Histochem Cytobiol 2010; 48:122-7. [PMID: 20529827 DOI: 10.2478/v10042-008-0084-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study investigated the immunohistochemical staining characteristics of glutathione-S-transferase alpha, pi, mu, theta and p53 in non-small cell lung carcinoma and normal lung tissue from 50 patients. The relationships between expressions of the Glutathione-S-transferase isoenzymes and some clinicopathological features were also examined. Expression of glutathione-S-transferase pi, mu, alpha, theta and p53 was assessed by immunohistochemistry for primary lung carcinomas of 50 patients from the Sanitarium Education and Research Hospital, Ankara lung cancer collection. The relationships between expression of the glutathione-S-transferase isoenzymes, p53 in normal and tumor tissue by Student T test and the clinicopathological data were also examined by Spearman Rank tests. When the normal and tumor tissue of these cases were compared according to their staining intensity and percentage of positive staining, glutathione-S-transferase alpha, pi, mu, theta expressions in tumor cells was significantly higher than normal cells (p<0.05). There was no significant difference in the expression of p53 between normal and tumor cells (p>0.05). When the immunohistochemical results of glutathione-S-transferase isoenzymes and p53 were correlated with the clinical parameters, there were no significant associations between glutathione-S-transferases and p53 expressions and tumor stage, tumor grade and smoking status (p>0.05).
Collapse
|
15
|
Xu C, Feng D, Li L, Yu P, Hu X, Liu Y. [The expression and prognostic significance of ERCC1 and GST-pi in lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:195-200. [PMID: 20673515 PMCID: PMC6000534 DOI: 10.3779/j.issn.1009-3419.2010.03.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/12/2009] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVE It has been known that the expression levels of ERCC1 and GST-pi were correlated with tumorigenesis and prognosis. The aim of this study is to investigate the relationship between expression levels of ERCC1 and GST-pi, and clinicopathologic parameters and survival in patients with lung cancer. METHODS The expression levels of ERCC1 and GST-pi were detected by immunohistochemical staining on tissue micro-array sections made of 148 cases of lung cancer and 7 cases of normal lung samples. The results were compared with relevant clinical and pathologic data. RESULTS Positive rates of ERCC1 and GST-pi were 36.2% and 73.6%, respectively. None of normal lung samples was positive staining. Positive expression of ERCC1 was significantly higher in group of non-small cell lung cancer (NSCLC), highly differentiated and the smokers less than 400 (P < 0.05), positive expression of GST-pi was significantly higher in group of non-smokers and NSCLC (P < 0.05). There were significant correlations between expression of ERCC1 and GST-pi (r = 0.253, P = 0.001). The 5 years survival rate was higher in positive expression of ERCC1. There was significant correlations between expression of ERCC1 and survival (P = 0.037). There was no significant correlations between expression of GST-pi and survival (P = 0.614). Multivariate analysis using Cox regression model showed that expression levels of ERCC1 and GST-pi were not the important independent prognostic factors for survival. CONCLUSION ERCC1 and GST-pi are aberrant highly expressed in NSCLC with positive correlation, which indicate they might act synergistically in tumorigenesis of NSCLC. The positive expression of ERCC1 have better survival and may have effect on prognosis.
Collapse
Affiliation(s)
- Chong'an Xu
- Department of Oncology Medicine, Fourth Hospital of China Medical University, Shenyang 110032, China.
| | | | | | | | | | | |
Collapse
|
16
|
Gruber-Olipitz M, Ströbel T, Kang SU, John JPP, Grotzer MA, Slavc I, Lubec G. Neurotrophin 3/TrkC-regulated proteins in the human medulloblastoma cell line DAOY. Electrophoresis 2009; 30:540-9. [PMID: 19156760 DOI: 10.1002/elps.200800325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Medulloblastoma (MB) is the most common malignant childhood brain tumor and high neurotrophin (NP) receptor TrkC mRNA expression was identified as a powerful independent predictor of favorable survival outcome. In order to determine downstream effector proteins of TrkC signaling, the MB cell line DAOY was stably transfected with a vector containing the full-length TrkC cDNA sequence or an empty vector control. A proteomic approach was used to search for expressional changes by two mass spectrometric methods and immunoblotting for validation of significant results. Multiple time points for up to 48 h following NP-3-induced TrkC receptor activation were chosen. Thirteen proteins from several pathways (nucleoside diphosphate kinase A, stathmin, valosin-containing protein, annexin A1, dihydropyrimidinase-related protein-3, DJ-1 protein, glutathione S-transferase P, lamin A/C, fascin, cofilin, vimentin, vinculin, and moesin) were differentially expressed and most have been shown to play a role in differentiation, migration, invasion, proliferation, apoptosis, drug resistance, or oncogenesis. Knowledge on effectors of TrkC signaling may represent a first useful step for the identification of marker candidates or reflecting probable pharmacological targets for specific treatment of MB.
Collapse
|
17
|
Vlachogeorgos GS, Manali ED, Blana E, Legaki S, Karagiannidis N, Polychronopoulos VS, Roussos C. Placental isoform glutathione S-transferase and P-glycoprotein expression in advanced nonsmall cell lung cancer: association with response to treatment and survival. Cancer 2009; 114:519-26. [PMID: 19006072 DOI: 10.1002/cncr.23981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Increased expression of the glutathione S-transferase placental isoform (GST-pi) and of P-glycoprotein (P-gp) in tissues from patients with nonsmall cell lung cancer (NSCLC) has been associated with poor antineoplastic drug sensitivity, response to treatment, and survival. However, the diagnosis of advanced NSCLC often is based on cytology. The objectives of the current study were to examine GST-pi and P-gp expression in cytologic specimens from patients with unresectable NSCLC and to determine the association of that expression with response to chemotherapy and survival. METHODS Patients with unresectable, cytologically diagnosed NSCLC were eligible for the study. Diagnosis was made by fiberoptic bronchoscopy, and staging was done according to international standards. All patients received sequential chemoradiotherapy and were re-evaluated for treatment response. GST-pi and P-gp expression levels were evaluated by immunocytochemistry and immunohistochemistry of bronchial brushing/washing and bronchial tissue biopsy, respectively. Survival was defined as the time between diagnosis and death or last follow-up at 24 months. RESULTS Thirty-nine patients were included in the study. There were 35 men and 4 women, and the mean patient age (+/-standard deviation was 61.4 years (+/-9.1 years). There were 4 patients with stage IIIA NSCLC, 32 patients with stage IIIB NSCLC, and 3 patients with stage IV NSCLC. Cytologic evaluation of GST-pi and P-gp expression paralleled expression determined in pathology specimens. GST-pi and P-gp expression levels were associated inversely with response to chemotherapy and survival. CONCLUSIONS Cytologic evaluation of GST-pi and P-gp expression may predictor the response to treatment and the survival of patients with advanced NSCLC.
Collapse
|
18
|
Fujikawa Y, Urano Y, Komatsu T, Hanaoka K, Kojima H, Terai T, Inoue H, Nagano T. Design and Synthesis of Highly Sensitive Fluorogenic Substrates for Glutathione S-Transferase and Application for Activity Imaging in Living Cells. J Am Chem Soc 2008; 130:14533-43. [DOI: 10.1021/ja802423n] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yuuta Fujikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, and School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, and School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, and School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, and School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hirotatsu Kojima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, and School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takuya Terai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, and School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideshi Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, and School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tetsuo Nagano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, and School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
19
|
Nolte F, Hofmann WK. Myelodysplastic syndromes: molecular pathogenesis and genomic changes. Ann Hematol 2008; 87:777-95. [PMID: 18516602 DOI: 10.1007/s00277-008-0502-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 04/15/2008] [Indexed: 01/27/2023]
Abstract
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis presenting with peripheral cytopenias in combination with a hyperplastic bone marrow and an increased risk of evolution to acute myeloid leukemia. The classification systems such as the WHO classification mainly rely on morphological criteria and are supplemented by the International Prognostic Scoring System which takes cytogenetical changes into consideration when determining the prognosis of MDS but wide intra-subtype variations do exist. The pathomechanisms causing primary MDS require further work. Development and progression of MDS is suggested to be a multistep alteration to hematopoietic stem cells. Different molecular alterations have been described, affecting genes involved in cell-cycle control, mitotic checkpoints, and growth factor receptors. Secondary signal proteins and transcription factors, which gives the cell a growth advantage over its normal counterpart, may be affected as well. The accumulation of such defects may finally cause the leukemic transformation of MDS.
Collapse
Affiliation(s)
- Florian Nolte
- Department of Hematology and Oncology, University Hospital Benjamin Franklin, Charité, Hindenburgdamm 30, 12203, Berlin, Germany.
| | | |
Collapse
|