1
|
Ghosh I, Dey Ghosh R, Mukhopadhyay S. Identification of genes associated with gall bladder cell carcinogenesis: Implications in targeted therapy of gall bladder cancer. World J Gastrointest Oncol 2023; 15:2053-2063. [PMID: 38173427 PMCID: PMC10758643 DOI: 10.4251/wjgo.v15.i12.2053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 12/14/2023] Open
Abstract
Gall bladder cancer (GBC) is becoming a very devastating form of hepatobiliary cancer in India. Every year new cases of GBC are quite high in India. Despite recent advanced multimodality treatment options, the survival of GBC patients is very low. If the disease is diagnosed at the advanced stage (with local nodal metastasis or distant metastasis) or surgical resection is inoperable, the prognosis of those patients is very poor. So, perspectives of targeted therapy are being taken. Targeted therapy includes hormone therapy, proteasome inhibitors, signal transduction and apoptosis inhibitors, angiogenesis inhibitors, and immunotherapeutic agents. One such signal transduction inhibitor is the specific short interfering RNA (siRNA) or short hairpin RNA (shRNA). For developing siRNA-mediated therapy shRNA, although several preclinical studies to evaluate the efficacy of these key molecules have been performed using gall bladder cells, many more clinical trials are required. To date, many such genes have been identified. This review will discuss the recently identified genes associated with GBC and those that have implications in its treatment by siRNA or shRNA.
Collapse
Affiliation(s)
- Ishita Ghosh
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India
| | - Ruma Dey Ghosh
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India
| | - Soma Mukhopadhyay
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India
| |
Collapse
|
2
|
Chiu SY, Chung HJ, Chen YT, Huang MS, Huang CC, Huang SF, Matsuura I. A nonsense mutant of the hepatitis B virus large S protein antagonizes multiple tumor suppressor pathways through c-Jun activation domain-binding protein1. PLoS One 2019; 14:e0208665. [PMID: 30870427 PMCID: PMC6417713 DOI: 10.1371/journal.pone.0208665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/26/2019] [Indexed: 11/18/2022] Open
Abstract
Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). Previous studies have identified recurrent nonsense mutations in the HBV large S (LHBs) gene from the liver from HBV core antigen-positive HCC patients. These nonsense mutants have been shown to be oncogenic in mouse xenograft models using a mouse embryonic fibroblast cell line. Here, we expressed in a liver cell line Huh-7 a carboxy terminally truncated protein from a nonsense mutant of the LHBs gene, sW182* (stop codon at tryptophane-182). Although the sW182* protein appeared not to be very stable in the cultured liver cells, we confirmed that the protein can be highly expressed and retained for a prolonged period of time in the hepatocytes in the mouse liver, indicating its stable nature in the physiological condition. In the Huh-7 cells, the sW182* mutant downregulated tumor suppressors p53 and Smad4. This downregulation was reversed by a proteasome inhibitor MG132, implying the involvement of proteasome-based protein degradation in the observed regulation of the tumor suppressors. On the other hand, we found that c-Jun activation domain-binding protein 1 (Jab1) physically interacts with the sW182*, but not wild-type LHBs. RNA interference (RNAi) of Jab1 restored the levels of the downregulated p53 and Smad4. The sW182* mutant inhibited the promoter activity of downstream target genes of the tumor suppressors. Consistently, Jab1 RNAi reversed the inhibition. These results suggest that the LHBs nonsense mutant antagonizes the tumor suppressor pathways through Jab1 in the liver contributing to HCC development.
Collapse
Affiliation(s)
- Shu-Yi Chiu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiang-Ju Chung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ya-Ting Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Min-Syuan Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chien-Chih Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Isao Matsuura
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- * E-mail:
| |
Collapse
|
3
|
Guo Z, Wang Y, Zhao Y, Shu Y, Liu Z, Zhou H, Wang H, Zhang W. The pivotal oncogenic role of Jab1/CSN5 and its therapeutic implications in human cancer. Gene 2018; 687:219-227. [PMID: 30468907 DOI: 10.1016/j.gene.2018.11.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 01/28/2023]
Abstract
Jab1/CSN5 is a conserved multifunctional protein involved in ubiquitin-mediated protein degradation. Deregulation of Jab1/CSN5 can exert dramatic effects on diverse cellular functions, including DNA repair, cell cycle control, apoptosis, angiogenesis, and signal transduction, all of which are critical for tumor development. Although increasing evidence has demonstrated that Jab1/CSN5 was overexpressed in a variety of human cancers and usually correlated with poor prognosis, little was known about the underlying regulatory principles that coordinated its function. In this review, we highlight recent advances of the oncogenic role of Jab1/CSN5 and its potential as a therapeutic target for anticancer intervention.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Youhong Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Yu Zhao
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
4
|
Liu G, Claret FX, Zhou F, Pan Y. Jab1/COPS5 as a Novel Biomarker for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Human Cancer. Front Pharmacol 2018. [PMID: 29535627 PMCID: PMC5835092 DOI: 10.3389/fphar.2018.00135] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
C-Jun activation domain-binding protein-1 (Jab1) involves in controlling cellular proliferation, cell cycle, apoptosis, affecting a series of pathways, as well as regulating genomic instability and DNA damage response (DDR). Jab1/COPS5 dysregulation contributes to oncogenesis by deactivating several tumor suppressors and activating oncogenes. Jab1 overexpression was found in many tumor types, illuminating its important role in cancer initiation, progression, and prognosis. Jab1/COPS5 has spurred a strong research interest in developing inhibitors of oncogenes/oncoproteins for cancer therapy. In this paper, we present evidences demonstrating the importance of Jab1/COPS5 overexpression in several cancer types and recent advances in dissecting the Jab1/COPS5 upstream and downstream signaling pathways. By conducting ingenuity pathway analysis (IPA) based on the Ingenuity Knowledge Base, we investigated signaling network that interacts with Jab1/COPS5. The data confirmed the important role of Jab1/COPS5 in tumorigenesis, demonstrating the potential of Jab1/COPS5 to be used as a biomarker for cancer patients, and further support that Jab1/COPS5 may serve as a potential therapeutic target in different cancers.
Collapse
Affiliation(s)
- Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Department of Systems Biology, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Francois X Claret
- Department of Systems Biology, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Chai X, Han Y, Yang J, Zhao X, Liu Y, Hou X, Tang Y, Zhao S, Li X. Identification of the transcriptional regulators by expression profiling infected with hepatitis B virus. Clin Res Hepatol Gastroenterol 2016; 40:57-72. [PMID: 26119596 DOI: 10.1016/j.clinre.2015.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 12/18/2014] [Accepted: 04/28/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND The molecular pathogenesis of infection by hepatitis B virus with human is extremely complex and heterogeneous. To date the molecular information is not clearly defined despite intensive research efforts. Thus, studies aimed at transcription and regulation during virus infection or combined researches of those already known to be beneficial are needed. AIMS With the purpose of identifying the transcriptional regulators related to infection of hepatitis B virus in gene level, the gene expression profiles from some normal individuals and hepatitis B patients were analyzed in our study. METHODS In this work, the differential expressed genes were selected primarily. The several genes among those were validated in an independent set by qRT-PCR. Then the differentially co-expression analysis was conducted to identify differentially co-expressed links and differential co-expressed genes. Next, the analysis of the regulatory impact factors was performed through mapping the links and regulatory data. In order to give a further insight to these regulators, the co-expression gene modules were identified using a threshold-based hierarchical clustering method. Incidentally, the construction of the regulatory network was generated using the computer software. RESULTS A total of 137,284 differentially co-expressed links and 780 differential co-expressed genes were identified. These co-expressed genes were significantly enriched inflammatory response. The results of regulatory impact factors revealed several crucial regulators related to hepatocellular carcinoma and other high-rank regulators. Meanwhile, more than one hundred co-expression gene modules were identified using clustering method. CONCLUSIONS In our study, some important transcriptional regulators were identified using a computational method, which may enhance the understanding of disease mechanisms and lead to an improved treatment of hepatitis B. However, further experimental studies are required to confirm these findings.
Collapse
Affiliation(s)
- Xiaoqiang Chai
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, 610064 Chengdu, PR China
| | - Yanan Han
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, 610064 Chengdu, PR China
| | - Jian Yang
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, 610064 Chengdu, PR China
| | - Xianxian Zhao
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, 610064 Chengdu, PR China
| | - Yewang Liu
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, 610064 Chengdu, PR China
| | - Xugang Hou
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, 610064 Chengdu, PR China
| | - Yiheng Tang
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, 610064 Chengdu, PR China
| | - Shirong Zhao
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, 610064 Chengdu, PR China
| | - Xiao Li
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, 610064 Chengdu, PR China.
| |
Collapse
|
6
|
Wang Y, Yu YN, Song S, Li TJ, Xiang JY, Zhang H, Lu MD, Ji F, Hu LQ. JAB1 and phospho-Ser10 p27 expression profile determine human hepatocellular carcinoma prognosis. J Cancer Res Clin Oncol 2014; 140:969-78. [PMID: 24671224 DOI: 10.1007/s00432-014-1646-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/06/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE To elucidate the clinicopathological significance and the role of Jun Activation Domain-Binding Protein 1 (JAB1), Ser10-phosphorylated p27 (p27S10), and total p27 in human hepatocellular carcinoma (HCC) prognosis. METHODS We evaluated the expression of JAB1 and p27S10 in tissues by immunohistochemical and immunoblot analyses. p27 Ser10 phosphorylation and Ser10 phosphorylation-dependent p27-JAB1 interaction were demonstrated in proliferating Huh7 cells following transfection of pEGFP-p27WT/p27S10A/p27S10D plasmids and pcDNA3.1-p27WT/p27S10A/p27S10D-Myc plasmids. Univariate and multivariate analysis were used to determine their role in HCC prognosis. RESULTS JAB1 and p27S10 are overexpressed in HCC samples compared with paired normal tissues. There was a strong correlation between JAB1 and p27S10 expression (P < 0.001), and expression of both inversely correlated with total p27 levels (P < 0.001). High JAB1 and p27S10 expression correlated with histological grade, vascular invasion, and serum α-fetoprotein (AFP) level (all P < 0.01). Total p27 expression also correlated with histological tumor grade (P = 0.048) and AFP level (P = 0.015). The p27S10(high)/JAB1(high)/p27(1ow) profile was the most reliable indication of poor prognostic. Ser10 phosphorylation increased and total p27 levels decreased in a time-dependent manner in serum-starved Huh7 cells following addition of serum. Immunoprecipitation analysis revealed that p27 Ser-to-Asp substitution at position 10 (S10D) markedly enhanced the interaction between JAB1 and p27, but replacement of S10A reduced binding. CONCLUSIONS This study revealed that combined JAB1, p27S10, and total p27 expression may serve as a prognostic marker for HCC.
Collapse
Affiliation(s)
- You Wang
- Shanghai Key Laboratory of Gynecologic Oncology, Focus Construction Subject of Shanghai Education Department, Shanghai, 200127, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lu F, Xue JX, Hu YC, Gan L, Shi Y, Yang HS, Wei YQ. CARP is a potential tumor suppressor in gastric carcinoma and a single-nucleotide polymorphism in CARP gene might increase the risk of gastric carcinoma. PLoS One 2014; 9:e97743. [PMID: 24870804 PMCID: PMC4037221 DOI: 10.1371/journal.pone.0097743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/24/2014] [Indexed: 02/05/2023] Open
Abstract
Background The caspase-associated recruitment domain-containing protein (CARP) is expressed in almost all tissues. Recently, the tumor-suppressive function of CARP was discovered and attracted increasing attention. This study aimed to investigate the role of CARP in the carcinogenesis of human gastric carcinoma. Methodology/Principal Findings Compared with normal gastric tissue, the downregulation of CARP expression was observed in gastric carcinoma tissue by cDNA array and tissue microarray assay. In vitro, the gastric carcinoma cell line (BGC-823) was stably transfected with pcDNA3.1B-CARP or plus CARP siRNA, and we used MTT, flow cytometry, cell migration on type I collagen, cell-matrix adhesion assay and western blot analysis to investigate the potential anti-tumor effects of CARP. The data showed that overexpressing CARP suppressed the malignancy of gastric carcinoma BGC-823 cell line, including significant increases in apoptosis, as well as obvious decreases in cell proliferation, migration, adhesion ability, and tumor growth. The tumor-suppressive effects of CARP were almost restored by siRNA-directed CARP silence. In addition, overexpression of CARP induced G1 arrest, decreased the expressions of cyclin E and CDK2, and increased the expressions of p27, p53 and p21. In vivo, the tumor-suppressive effect of CARP was also verified. A single-nucleotide polymorphism (SNP) genotype of CARP (rs2297882) was located in the Kozak sequence of the CARP gene. The reporter gene assay showed that rs2297882 TT caused an obvious downregulation of activity of CARP gene promoter in BGC-823 cells. Furthermore, the association between rs2297882 and human gastric carcinoma susceptibility was analyzed in 352 cases and 889 controls. It displayed that the TT genotype of rs2297882 in the CARP gene was associated with an increased risk of gastric carcinoma. Conclusions/Significance CARP is a potential tumor suppressor of gastric carcinoma and the rs2297882 C>T phenotype of CARP may serve as a predictor of gastric carcinoma.
Collapse
Affiliation(s)
- Fang Lu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, P.R. China
| | - Jian-xin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yu-chang Hu
- Institute of Pathology, China Three Gorges University, Yichang, P.R. China
| | - Lu Gan
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, P.R. China
| | - Han-shuo Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
- * E-mail:
| | - Yu-quan Wei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
8
|
Dynamic Changes of Jab1 and p27kip1 Expression in Injured Rat Sciatic Nerve. J Mol Neurosci 2013; 51:148-58. [DOI: 10.1007/s12031-013-9969-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/21/2013] [Indexed: 02/07/2023]
|
9
|
Schütz AK, Hennes T, Jumpertz S, Fuchs S, Bernhagen J. Role of CSN5/JAB1 in Wnt/β-catenin activation in colorectal cancer cells. FEBS Lett 2012; 586:1645-51. [DOI: 10.1016/j.febslet.2012.04.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/12/2012] [Accepted: 04/18/2012] [Indexed: 11/16/2022]
|
10
|
Pan Y, Zhang Q, Tian L, Wang X, Fan X, Zhang H, Claret FX, Yang H. Jab1/CSN5 negatively regulates p27 and plays a role in the pathogenesis of nasopharyngeal carcinoma. Cancer Res 2012; 72:1890-900. [PMID: 22350412 DOI: 10.1158/0008-5472.can-11-3472] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus-associated malignancy most common in East Asia and Africa. Aberrant expression of Jab1/CSN5, a negative regulator of the cell-cycle inhibitor p27, is correlated with reduced p27 expression and associated with advanced tumor stage and poor prognosis in several human cancers. In this study, we examined the functional relationship between Jab1 and p27 protein expression in NPC. Immunohistochemical analysis showed an inverse association between Jab1 and p27 in NPC tissue samples, and overexpression of Jab1 correlated with poor survival in patients with NPC. Mechanistically, Jab1 and p27 were found to interact directly in NPC cells, with Jab1 mediating p27 degradation in a proteasome-dependent manner. Knockdown of Jab1 resulted in a remarkable increase in p27 levels and inhibition of cell proliferation, indicating that Jab1 targets p27 for degradation, thereby controlling its stability. Jab1 depletion also enhanced the antitumor effects of cisplatin in NPC cells. Together, our findings suggest that Jab1 overexpression plays an important role in the pathogenesis of NPC through Jab1-mediated p27 degradation. Jab1 therefore represents a novel diagnostic marker and therapeutic target in patients with NPC.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Jun activation domain-binding protein 1 expression in oral squamous cell carcinomas inversely correlates with the cell cycle inhibitor p27. Med Oncol 2012; 29:2499-504. [PMID: 22311264 DOI: 10.1007/s12032-012-0177-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 01/21/2012] [Indexed: 01/15/2023]
Abstract
The Jun activation domain-binding protein 1 (Jab1) may be involved in degradation of the cyclin-dependent kinase inhibitor p27, but it has not been clarified. In this study, we observed expression levels of Jab1 and p27 in oral squamous cell carcinoma (OSCC) and normal oral mucosa tissue and evaluated whether the Jab1 expression is correlated with p27 protein levels and how it is clinically relevant OSCC. The clinicopathological features and immunohistochemical expression levels of Jab1 and p27 proteins were immunohistochemically studied in 206 specimens from patients who underwent surgical resection for OSCC. Survival analyses were performed by using the Kaplan-Meier method. Jab1 overexpression was detected in 83% (171 of 206) of OSCCs and 19% (4 of 21) of normal oral mucosa. While p27 expression was 60% in OSCCs. We found an inverse correlation between Jab1 and p27 expression levels (P<0.001). Kaplan-Meier survival analysis showed that Jab1 overexpression and p27 low expression were significantly associated with poor prognosis of patients. Our findings suggest that Jab1 expression is inversely correlated with p27 expression levels, suggesting that Jab1 overexpression contributes to pathogenesis of OSCC by degradating p27 expression. Furthermore, control of Jab1 could be a novel target of therapy in OSCCs.
Collapse
|
12
|
Tanaka T, Nakatani T, Kamitani T. Inhibition of NEDD8-conjugation pathway by novel molecules: potential approaches to anticancer therapy. Mol Oncol 2012; 6:267-75. [PMID: 22306028 DOI: 10.1016/j.molonc.2012.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 11/25/2022] Open
Abstract
Cancer cells can survive through the upregulation of cell cycle and the escape from apoptosis induced by numerous cellular stresses. In the normal cells, these biological cascades depend on scheduled proteolytic degradation of regulatory proteins via the ubiquitin-proteasome pathway. Therefore, interruption of regulated proteolytic pathways leads to abnormal cell-proliferation. Ubiquitin ligases called SCF complex (consisting of Skp-1, cullin, and F-box protein) or CRL (cullin-RING ubiquitin ligase) are predominant in a family of E3 ubiquitin ligases that control a final step in ubiquitination of diverse substrates. To a great extent, the ubiquitin ligase activity of the SCF complex requires the conjugation of NEDD8 to cullins, i.e. scaffold proteins. This review is anticipated to review the downregulation system of NEDD8 conjugation by several factors including a chemical compound such as MLN4924 and protein molecules (e.g. COP9 signalosome, inactive mutant of Ubc12, and NUB1/NUB1L). Since the downregulation of NEDD8 conjugation affects cell-cycle progression by inhibiting the ligase activity of SCF complexes, such knowledge in the NEDD8-conjugation pathway will contribute to the more magnificent therapies that selectively suppress tumorigenesis.
Collapse
Affiliation(s)
- Tomoaki Tanaka
- Department of Urology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan.
| | | | | |
Collapse
|
13
|
Yachida S, Imaida K, Yokohira M, Hashimoto N, Suzuki S, Okano K, Wakabayashi H, Maeta H, Suzuki Y. Jun Activation Domain Binding Protein 1 is Overexpressed from the Very Early Stages of Hepatocarcinogenesis. Ann Surg Oncol 2010; 17:3386-3393. [DOI: 10.1245/s10434-010-1197-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
14
|
Shackleford TJ, Claret FX. JAB1/CSN5: a new player in cell cycle control and cancer. Cell Div 2010; 5:26. [PMID: 20955608 PMCID: PMC2976740 DOI: 10.1186/1747-1028-5-26] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/18/2010] [Indexed: 12/20/2022] Open
Abstract
c-Jun activation domain-binding protein-1 (Jab1) acts as a modulator of intracellular signaling and affects cellular proliferation and apoptosis, through its existence as a monomer or as the fifth component of the constitutive photomorphogenic-9 signalosome (CSN5). Jab1/CSN5 is involved in transcription factor specificity, deneddylation of NEDD8, and nuclear-to-cytoplasmic shuttling of key molecules. Jab1/CSN5 activities positively and negatively affect a number of pathways, including integrin signaling, cell cycle control, and apoptosis. Also, more recent studies have demonstrated the intriguing roles of Jab1/CSN5 in regulating genomic instability and DNA repair. The effects of Jab1/CSN5's multiple protein interactions are generally oncogenic in nature, and overexpression of Jab1/CSN5 in cancer provides evidence that it is involved in the tumorigenic process. In this review, we highlight our current knowledge of Jab1/CSN5 function and the recent discoveries in dissecting the Jab1 signaling pathway. Further, we also discuss the regulation of Jab1/CSN5 in cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Terry J Shackleford
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.
| | | |
Collapse
|
15
|
Magerl C, Ellinger J, Braunschweig T, Kremmer E, Koch LK, Höller T, Büttner R, Lüscher B, Gütgemann I. H3K4 dimethylation in hepatocellular carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas and correlates with expression of the methylase Ash2 and the demethylase LSD1. Hum Pathol 2009; 41:181-9. [PMID: 19896696 DOI: 10.1016/j.humpath.2009.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 07/07/2009] [Accepted: 08/04/2009] [Indexed: 12/29/2022]
Abstract
Methylation of core histones regulates chromatin structure and gene expression. Recent studies have demonstrated that these methylation patterns have prognostic value for some tumors. Therefore, we investigated dimethylation of histone H3 at lysine 4 (H3K4diMe) and H3K4 methylating (Ash2 complex) and demethylating enzymes (LSD1) in carcinomas of the hepatic and gastrointestinal tract. High levels of H3K4diMe were rarely observed in 15.7% of hepatocellular carcinoma (8/51) unlike other carcinomas including, in ascending order, cholangiocellular carcinoma/adenocarcinoma of the extrahepatic biliary tract, gastric carcinoma, pancreatic ductal adenocarcinoma, and neuroendocrine carcinoma (P < .001). Ash2 was expressed in 84.4% of hepatocellular carcinomas (38/45) and correlated directly with H3K4diMe modification (correlation coefficient r = 0.53) and LSD1 expression (r = 0.35). In contrast to other carcinomas, 65.9% (29/44) of hepatocellular carcinomas analyzed showed no LSD1 expression (P < .001). Interestingly, hepatocellular carcinomas without LSD1 expression appeared to be frequently Ash2 and H3K4diMe weak or negative (P = .004). In summary, high H3K4diMe expression is rare in hepatocellular carcinoma compared with other carcinomas (negative predictive value 92.3%), which may aid in the differential diagnosis. Lack of H3K4diMe is possibly due to complex epigenetic regulation involving Ash2 and LSD1.
Collapse
Affiliation(s)
- Christian Magerl
- Department of Pathology, University of Bonn, Sigmund-Freud-Strabetae 25, 53127 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Liu Y, Shah SV, Xiang X, Wang J, Deng ZB, Liu C, Zhang L, Wu J, Edmonds T, Jambor C, Kappes JC, Zhang HG. COP9-associated CSN5 regulates exosomal protein deubiquitination and sorting. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1415-25. [PMID: 19246649 DOI: 10.2353/ajpath.2009.080861] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ubiquitinated endosomal proteins that are deposited into the lumens of multivesicular bodies are either sorted for lysosomal-mediated degradation or secreted as exosomes into the extracellular milieu. The mechanisms that underlie the sorting of cellular cargo proteins are currently unknown. In this study, we show that the COP9 signalosome (CSN)-associated protein CSN5 quantitatively regulated proteins that were sorted into exosomes. Western blot analysis of exosomal proteins indicated that small interfering (si)RNA knockdown of CSN5 results in increased levels of both ubiquitinated and non-ubiquitinated exosomal proteins, including heat shock protein 70, in comparison with exosomes isolated from the supernatants of 293 cells transfected with scrambled siRNA. Furthermore, 293 cells transfected with JAB1/MPN/Mov34 metalloenzyme domain-deleted CSN5 produced exosomes with higher levels of ubiquitinated heat shock protein 70, which did not affect non-ubiquitinated heat shock protein 70 levels. The loss of COP9-associated deubiquitin activity of CSN5 also led to the enhancement of HIV Gag that was sorted into exosomes as well as the promotion of HIV-1 release, suggesting that COP9-associated CSN5 regulates the sorting of a number of exosomal proteins in both a CSN5 JAB1/MPN/Mov34 metalloenzyme domain-dependent and -independent manner. We propose that COP9-associated CSN5 regulates exosomal protein sorting in both a deubiquitinating activity-dependent and -independent manner, which is contrary to the current idea of ubiquitin-dependent sorting of proteins to exosomes.
Collapse
Affiliation(s)
- Yuelong Liu
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hashimoto N, Yachida S, Okano K, Wakabayashi H, Imaida K, Kurokohchi K, Masaki T, Kinoshita H, Tominaga M, Ajiki T, Ku Y, Okabayashi T, Hanazaki K, Hiroi M, Izumi S, Mano S, Okada S, Karasawa Y, Maeba T, Suzuki Y. Immunohistochemically detected expression of p27(Kip1) and Skp2 predicts survival in patients with intrahepatic cholangiocarcinomas. Ann Surg Oncol 2008; 16:395-403. [PMID: 19034576 DOI: 10.1245/s10434-008-0236-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/17/2008] [Accepted: 10/17/2008] [Indexed: 01/18/2023]
Abstract
In intrahepatic cholangiocarcinomas (ICCs), the prognostic significance of p27(Kip1), a cyclin-dependent kinase inhibitor, remains controversial, and there have been no studies of degradation pathway associated proteins, S-phase kinase-interacting protein (Skp2), and Jun activation domain-binding protein-1 (Jab1). In the present study of 74 patients with ICC-mass forming type (ICC-MF) undergoing radical surgery, we determined immunohistochemical expression of p27(Kip1), Skp2, and Jab1 and examined relationships with clinicopathologic findings and patient survival. On the basis of the average of labeling indices, we set cutoff values to define high and low expressors and divided the cases into two groups. A statistically significant correlation was found between low p27(Kip1) expression and lymph node metastasis (P = .009). Patient survival in the low p27(Kip1) expression group (n = 25) was also significantly worse than that in the high p27(Kip1) expression group (n = 49, P = .0007). A significant inverse correlation was found between p27(Kip1) and Skp2 expression (P = .016). High Skp2 expression (n = 36) was significantly associated with poor prognosis (P = .0046). High Jab1 expression was observed in 32 cases, but there was no statistically significant relationship with clinicopathologic findings or patient survival. The multivariate analysis revealed that low p27(Kip1) and high Skp2 expression are independent and significant factors of poor prognosis. The results suggest that low p27(Kip1) and high Skp2 expression are associated with aggressive tumor behavior, and these cell-cycle regulators are useful markers to predict outcome of patients with ICC-MF.
Collapse
Affiliation(s)
- Nozomi Hashimoto
- Departments of Gastroenterological Surgery, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Midorikawa Y, Sugiyama Y, Aburatani H. Screening of liver-targeted drugs. Expert Opin Drug Discov 2008; 3:643-54. [DOI: 10.1517/17460441.3.6.643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|