1
|
Liu YL, Tang XT, Shu HS, Zou W, Zhou BO. Fibrous periosteum repairs bone fracture and maintains the healed bone throughout mouse adulthood. Dev Cell 2024; 59:1192-1209.e6. [PMID: 38554700 DOI: 10.1016/j.devcel.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Bone is regarded as one of few tissues that heals without fibrous scar. The outer layer of the periosteum is covered with fibrous tissue, whose function in bone formation is unknown. We herein developed a system to distinguish the fate of fibrous-layer periosteal cells (FL-PCs) from the skeletal stem/progenitor cells (SSPCs) in the cambium-layer periosteum and bone marrow in mice. We showed that FL-PCs did not participate in steady-state osteogenesis, but formed the main body of fibrocartilaginous callus during fracture healing. Moreover, FL-PCs invaded the cambium-layer periosteum and bone marrow after fracture, forming neo-SSPCs that continued to maintain the healed bones throughout adulthood. The FL-PC-derived neo-SSPCs expressed lower levels of osteogenic signature genes and displayed lower osteogenic differentiation activity than the preexisting SSPCs. Consistent with this, healed bones were thinner and formed more slowly than normal bones. Thus, the fibrous periosteum becomes the cellular origin of bones after fracture and alters bone properties permanently.
Collapse
Affiliation(s)
- Yiming Liam Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyu Thomas Tang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Sophie Shu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiguo Zou
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Bo O Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China.
| |
Collapse
|
2
|
Kim HY, Shim JH, Kim BK, Heo CY. Vitamin D Attenuates Fibrotic Properties of Fibrous Dysplasia-Derived Cells for the Transit towards Osteocytic Phenotype. Int J Mol Sci 2024; 25:4954. [PMID: 38732172 PMCID: PMC11084186 DOI: 10.3390/ijms25094954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Fibrous dysplasia (FD) poses a therapeutic challenge due to the dysregulated extracellular matrix (ECM) accumulation within affected bone tissues. In this study, we investigate the therapeutic potential of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in managing FD by examining its effects on FD-derived cells in vitro. Our findings demonstrate that 1,25(OH)2D3 treatment attenuates the pro-fibrotic phenotype of FD-derived cells by suppressing the expression of key pro-fibrotic markers and inhibiting cell proliferation and migration. Moreover, 1,25(OH)2D3 enhances mineralization by attenuating pre-osteoblastic cellular hyperactivity and promoting maturation towards an osteocytic phenotype. These results offer valuable insights into potential treatments for FD, highlighting the role of 1,25(OH)2D3 in modulating the pathological properties of FD-derived cells.
Collapse
Affiliation(s)
- Ha-Young Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea;
| | - Jung-Hee Shim
- Department of Research Administration Team, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Baek-Kyu Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Chan-Yeong Heo
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| |
Collapse
|
3
|
Ji L, Yu Y, Zhu F, Huang D, Wang X, Wang J, Liu C. 2-N, 6-O sulfated chitosan evokes periosteal stem cells for bone regeneration. Bioact Mater 2024; 34:282-297. [PMID: 38261845 PMCID: PMC10796814 DOI: 10.1016/j.bioactmat.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Musculoskeletal injuries and bone defects represent a significant clinical challenge, necessitating innovative approaches for effective bone tissue regeneration. In this study, we investigated the potential of harnessing periosteal stem cells (PSCs) and glycosaminoglycan (GAG)-mimicking materials for in situ bone regeneration. Our findings demonstrated that the introduction of 2-N, 6-O sulfated chitosan (26SCS), a GAG-like polysaccharide, enriched PSCs and promoted robust osteogenesis at the defect area. Mechanistically, 26SCS amplifies the biological effect of endogenous platelet-derived growth factor-BB (PDGF-BB) through enhancing the interaction between PDGF-BB and its receptor PDGFRβ abundantly expressed on PSCs, resulting in strengthened PSC proliferation and osteogenic differentiation. As a result, 26SCS effectively improved bone defect repair, even in an osteoporotic mouse model with lowered PDGF-BB level and diminished regenerative potential. Our findings suggested the significant potential of GAG-like biomaterials in regulating PSC behavior, which holds great promise for addressing osteoporotic bone defect repair in future applications.
Collapse
Affiliation(s)
- Luli Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuanman Yu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fuwei Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Dongao Huang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaogang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
4
|
Qiao B, Liu X, Wang B, Wei S. The role of periostin in cardiac fibrosis. Heart Fail Rev 2024; 29:191-206. [PMID: 37870704 DOI: 10.1007/s10741-023-10361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Cardiac fibrosis, which is the buildup of proteins in the connective tissues of the heart, can lead to end-stage extracellular matrix (ECM) remodeling and ultimately heart failure. Cardiac remodeling involves changes in gene expression in cardiac cells and ECM, which significantly leads to the morbidity and mortality in heart failure. However, despite extensive research, the elusive intricacies underlying cardiac fibrosis remain unidentified. Periostin, an extracellular matrix (ECM) protein of the fasciclin superfamily, acts as a scaffold for building complex architectures in the ECM, which improves intermolecular interactions and augments the mechanical properties of connective tissues. Recent research has shown that periostin not only contributes to normal ECM homeostasis in a healthy heart but also serves as a potent inducible regulator of cellular reorganization in cardiac fibrosis. Here, we reviewed the constitutive domain of periostin and its interaction with other ECM proteins. We have also discussed the critical pathophysiological functions of periostin in cardiac remodeling mechanisms, including two distinct yet potentially intertwined mechanisms. Furthermore, we will focus on the intrinsic complexities within periostin research, particularly surrounding the contentious issues observed in experimental findings.
Collapse
Affiliation(s)
- Bao Qiao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xuehao Liu
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
5
|
van Dijk YE, Rutjes NW, Golebski K, Şahin H, Hashimoto S, Maitland-van der Zee AH, Vijverberg SJH. Developments in the Management of Severe Asthma in Children and Adolescents: Focus on Dupilumab and Tezepelumab. Paediatr Drugs 2023; 25:677-693. [PMID: 37658954 PMCID: PMC10600295 DOI: 10.1007/s40272-023-00589-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
Severe asthma in children and adolescents exerts a substantial health, financial, and societal burden. Severe asthma is a heterogeneous condition with multiple clinical phenotypes and underlying inflammatory patterns that might be different in individual patients. Various add-on treatments have been developed to treat severe asthma, including monoclonal antibodies (biologics) targeting inflammatory mediators. Biologics that are currently approved to treat children (≥ 6 years of age) or adolescents (≥ 12 years of age) with severe asthma include: anti-immunoglobulin E (omalizumab), anti-interleukin (IL)-5 (mepolizumab), anti-IL5 receptor (benralizumab), anti-IL4/IL13 receptor (dupilumab), and antithymic stromal lymphopoietin (TSLP) (tezepelumab). However, access to these targeted treatments varies across countries and relies on few and crude indicators. There is a need for better treatment stratification to guide which children might benefit from these treatments. In this narrative review we will assess the most recent developments in the treatment of severe pediatric asthma, as well as potential biomarkers to assess treatment efficacy for this patient population.
Collapse
Affiliation(s)
- Yoni E van Dijk
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Niels W Rutjes
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Korneliusz Golebski
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Havva Şahin
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Simone Hashimoto
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anke-Hilse Maitland-van der Zee
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne J H Vijverberg
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Kim HY, Shim JH, Heo CY. A Rare Skeletal Disorder, Fibrous Dysplasia: A Review of Its Pathogenesis and Therapeutic Prospects. Int J Mol Sci 2023; 24:15591. [PMID: 37958575 PMCID: PMC10650015 DOI: 10.3390/ijms242115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Fibrous dysplasia (FD) is a rare, non-hereditary skeletal disorder characterized by its chronic course of non-neoplastic fibrous tissue buildup in place of healthy bone. A myriad of factors have been associated with its onset and progression. Perturbation of cell-cell signaling networks and response outputs leading to disrupted building blocks, incoherent multi-level organization, and loss of rigid structural motifs in mineralized tissues are factors that have been identified to participate in FD induction. In more recent years, novel insights into the unique biology of FD are transforming our understandings of its pathology, natural discourse of the disease, and treatment prospects. Herein, we built upon existing knowledge with recent findings to review clinical, etiologic, and histological features of FD and discussed known and potential mechanisms underlying FD manifestations. Subsequently, we ended on a note of optimism by highlighting emerging therapeutic approaches aimed at either halting or ameliorating disease progression.
Collapse
Affiliation(s)
- Ha-Young Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jung-Hee Shim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
- Department of Research Administration Team, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Chan-Yeong Heo
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| |
Collapse
|
7
|
Dorafshan S, Razmi M, Safaei S, Gentilin E, Madjd Z, Ghods R. Periostin: biology and function in cancer. Cancer Cell Int 2022; 22:315. [PMID: 36224629 PMCID: PMC9555118 DOI: 10.1186/s12935-022-02714-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Periostin (POSTN), a member of the matricellular protein family, is a secreted adhesion-related protein produced in the periosteum and periodontal ligaments. Matricellular proteins are a nonstructural family of extracellular matrix (ECM) proteins that regulate a wide range of biological processes in both normal and pathological conditions. Recent studies have demonstrated the key roles of these ECM proteins in the tumor microenvironment. Furthermore, periostin is an essential regulator of bone and tooth formation and maintenance, as well as cardiac development. Also, periostin interacts with multiple cell-surface receptors, especially integrins, and triggers signals that promote tumor growth. According to recent studies, these signals are implicated in cancer cell survival, epithelial-mesenchymal transition (EMT), invasion, and metastasis. In this review, we will summarize the most current data regarding periostin, its structure and isoforms, expressions, functions, and regulation in normal and cancerous tissues. Emphasis is placed on its association with cancer progression, and also future potential for periostin-targeted therapeutic approaches will be explored.
Collapse
Affiliation(s)
- Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Erica Gentilin
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, via G. Orus, 2b, 35129, Padua, Italy
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
8
|
Wu J, Chen Y, Liao Z, Liu H, Zhang S, Zhong D, Qiu X, Chen T, Su D, Ke X, Wan Y, Zhou T, Su P. Self-amplifying loop of NF-κB and periostin initiated by PIEZO1 accelerates mechano-induced senescence of nucleus pulposus cells and intervertebral disc degeneration. Mol Ther 2022; 30:3241-3256. [PMID: 35619555 PMCID: PMC9552911 DOI: 10.1016/j.ymthe.2022.05.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 11/21/2022] Open
Abstract
Abnormal mechanical load is a main risk factor of intervertebral disc degeneration (IDD), and cellular senescence is a pathological change in IDD. In addition, extracellular matrix (ECM) stiffness promotes human nucleus pulposus cells (hNPCs) senescence. However, the molecular mechanism underlying mechano-induced cellular senescence and IDD progression is not yet fully elucidated. First, we demonstrated that mechano-stress promoted hNPCs senescence via NF-κB signaling. Subsequently, we identified periostin as the main mechano-responsive molecule in hNPCs through unbiased sequencing, which was transcriptionally upregulated by NF-κB p65; moreover, secreted periostin by senescent hNPCs further promoted senescence and upregulated the catabolic process in hNPCs through activating NF-κB, forming a positive loop. Both Postn (encoding periostin) knockdown via siRNA and periostin inactivation via neutralizing antibodies alleviated IDD and NPCs senescence. Furthermore, we found that mechano-stress initiated the positive feedback of NF-κB and periostin via PIEZO1. PIEZO1 activation by Yoda1 induced severe IDD in rat tails without compression, and Postn knockdown alleviated the Yoda1-induced IDD in vivo. Here, we reported for the first time that self-amplifying loop of NF-κB and periostin initiated via PIEZO1 under mechano-stress accelerated NPCs senescence, leading to IDD. Furthermore, periostin neutralizing antibodies, which may serve as potential therapeutic agents for IDD, interrupted this loop.
Collapse
Affiliation(s)
- Jinna Wu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Yuyu Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Zhiheng Liao
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Hengyu Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Shun Zhang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Dongmei Zhong
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Taiqiu Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Deying Su
- Guangdong Provincial Key Laboratory of Proteomics and State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaona Ke
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Yong Wan
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Taifeng Zhou
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China.
| | - Peiqiang Su
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China.
| |
Collapse
|
9
|
Schaefer AK, Kiss A, Oszwald A, Nagel F, Acar E, Aliabadi-Zuckermann A, Hackl M, Zuckermann A, Kain R, Jakubowski A, Ferdinandy P, Hallström S, Podesser BK. Single Donor Infusion of S-Nitroso-Human-Serum-Albumin Attenuates Cardiac Isograft Fibrosis and Preserves Myocardial Micro-RNA-126-3p in a Murine Heterotopic Heart Transplant Model. Transpl Int 2022; 35:10057. [PMID: 35497886 PMCID: PMC9045410 DOI: 10.3389/ti.2022.10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
Objectives: Cold ischemia and subsequent reperfusion injury are non-immunologic cornerstones in the development of graft injury after heart transplantation. The nitric oxide donor S-nitroso-human-serum-albumin (S-NO-HSA) is known to attenuate myocardial ischemia-reperfusion (I/R)-injury. We assessed whether donor preservation with S-NO-HSA affects isograft injury and myocardial expression of GATA2 as well as miR-126-3p, which are considered protective against vascular and endothelial injury. Methods: Donor C57BL/6 mice received intravenous (0.1 μmol/kg/h) S-NO-HSA (n = 12), or 0.9% saline (control, n = 11) for 20 min. Donor hearts were stored in cold histidine-tryptophan-α-ketoglutarate-N solution for 12 h and underwent heterotopic, isogenic transplantation, except 5 hearts of each group, which were analysed immediately after preservation. Fibrosis was quantified and expression of GATA2 and miR-126-3p assessed by RT-qPCR after 60 days or immediately after preservation. Results: Fibrosis was significantly reduced in the S-NO-HSA group (6.47% ± 1.76 vs. 11.52% ± 2.16; p = 0.0023; 12 h-S-NO-HSA-hHTX vs. 12 h-control-hHTX). Expression of miR-126-3p was downregulated in all hearts after ischemia compared to native myocardium, but the effect was significantly attenuated when donors received S-NO-HSA (1 ± 0.27 vs. 0.33 ± 0.31; p = 0.0187; 12 h-S-NO-HSA-hHTX vs. 12 h-control-hHTX; normalized expression to U6 snRNA). Conclusion: Donor pre-treatment with S-NO-HSA lead to reduced fibrosis and preservation of myocardial miR-126-3p and GATA2 levels in murine cardiac isografts 60 days after transplantation.
Collapse
Affiliation(s)
- Anne-Kristin Schaefer
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - André Oszwald
- Department of Pathology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Felix Nagel
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Eylem Acar
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | | | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Andrzej Jakubowski
- Department of Pharmacology, Jagiellonian University Medical College, Kraków, Poland.,Department of Anesthesiology and Intensive Care, Małopolska Orthopedic and Rehabilitation Hospital, Kraków, Poland
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Seth Hallström
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
|
11
|
Hopkins C, de Castro LF, Corsi A, Boyce A, Collins MT, Riminucci M, Heegaard AM. Fibrous dysplasia animal models: A systematic review. Bone 2022; 155:116270. [PMID: 34875396 DOI: 10.1016/j.bone.2021.116270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Fibrous dysplasia (FD) is a rare genetic bone disorder resulting in an overproduction of cAMP leading to a structurally unsound tissue, caused by a genetic mutation in the guanine nucleotide-binding protein gene (GNAS). In order to better understand this disease, several animal models have been developed with different strategies and features. OBJECTIVE Conduct a systematic review to analyze and compare animal models with the causative mutation and features of FD. METHODS A PRISMA search was conducted in Scopus, PubMed, and Web of Science. Studies reporting an in vivo model of FD that expressed the causative mutation were included for analysis. Models without the causative mutation, but developed an FD phenotype and models of FD cell implantation were included for subanalysis. RESULTS Seven unique models were identified. The models were assessed and compared for their face validity, construct validity, mosaicism, and induction methods. This was based on the features of clinical FD that were reported within the categories of: macroscopic features, imaging, histology and histomorphometry, histochemical and cellular markers, and blood/urine markers. LIMITATIONS None of the models reported all features of FD and some features were only reported in one model. This made comparing models a challenge, but indicates areas where further research is necessary. CONCLUSION The benefits and disadvantages of every model were assessed from a practical and scientific standpoint. While all published reports lacked complete data, the models have nonetheless informed our understanding of FD and provided meaningful information to guide researchers in bench and clinical research.
Collapse
Affiliation(s)
- Chelsea Hopkins
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Luis Fernandez de Castro
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alison Boyce
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Persichetti A, Milanetti E, Palmisano B, di Filippo A, Spica E, Donsante S, Coletta I, Venti MDS, Ippolito E, Corsi A, Riminucci M, Raimondo D. Nanostring technology on Fibrous Dysplasia bone biopsies. A pilot study suggesting different histology-related molecular profiles. Bone Rep 2021; 16:101156. [PMID: 34950753 PMCID: PMC8671863 DOI: 10.1016/j.bonr.2021.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 12/02/2022] Open
Abstract
Identifying the molecular networks that underlie Fibrous Dysplasia (FD) is key to understand the pathogenesis of the disease, to refine current diagnostic approaches and to develop efficacious therapies. In this study, we used the NanoString nCounter Analysis System to investigate the gene signature of a series of nine Formalin Fixed Decalcified and Paraffin-Embedded (FFDPE) bone biopsies from seven FD patients. We analyzed the expression level of 770 genes. Unsupervised clustering analysis demonstrated partitioning into two clusters with distinct patterns of gene expression. Differentially expressed genes included growth factors, components of the Wnt signaling system, interleukins and some of their cognate receptors, ephrin ligands, matrix metalloproteinases, neurotrophins and genes encoding components of the cAMP-dependent protein kinase. Interestingly, two tissue samples obtained from the same skeletal site of one patient one year apart failed to segregate in the same cluster. Retrospective histological review of the samples revealed different microscopic aspects in the two groups. The results of our pilot study suggest that the genetic signature of FD is heterogeneous and varies according to the histology and, likely, to the age of the lesion. In addition, they show that the Nanostring technology is a valuable tool for molecular translational studies on archival FFDPE material in FD and other rare bone diseases. We used the NanoString technology to analyze Formalin Fixed Decalcified Paraffin Embedded (FFDPE) Fibrous Dysplasia samples. We show that Fibrous Dysplasia lesions may have different molecular profiles consistent with its histological heterogeneity. NanoString technology is a valuable tool for molecular studies on rare bone diseases by using FFDPE archival material.
Collapse
Affiliation(s)
- Agnese Persichetti
- Department of Molecular Medicine, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Edoardo Milanetti
- Department of Physics, Piazzale Aldo Moro 5, 00185 Rome, Italy.,Center for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Biagio Palmisano
- Department of Molecular Medicine, Viale Regina Elena, 324, 00161 Rome, Italy
| | | | - Emanuela Spica
- Department of Molecular Medicine, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Ilenia Coletta
- Department of Molecular Medicine, Viale Regina Elena, 324, 00161 Rome, Italy
| | | | - Ernesto Ippolito
- Department of Orthopaedic Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Domenico Raimondo
- Department of Molecular Medicine, Viale Regina Elena, 324, 00161 Rome, Italy
| |
Collapse
|
13
|
Li G, Liang W, Ding P, Zhao Z. Sutural fibroblasts exhibit the function of vascular endothelial cells upon mechanical strain. Arch Biochem Biophys 2021; 712:109046. [PMID: 34599905 DOI: 10.1016/j.abb.2021.109046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 02/03/2023]
Abstract
Midfacial hypoplasia is a type of facial dysplasia. The technique of trans-sutural distraction osteogenesis promotes midface growth so as to ameliorate this symptom. In the process of distraction osteogenesis, the fiber matrix in the suture acts as a mechanical sensor. Compared with osteogenesis, the formation of collagen fibers by fibroblasts is significant in the early stage of sutural distraction. However the transformation of fibroblasts during sutural bone formation induced by tensile force is poorly characterized. Here, we used single-cell RNA sequencing to define the cell classification of the zygomatic maxillary suture and the changes of cell clusters in the suture before and after seven-day distraction. We identified twenty-nine cell subsets spanning monocyte/macrophages, neutrophils, red blood cells, B cells and fibroblasts. Compared with the control group, Monocle analysis revealed the emergence of a unique fibroblast subset (Cdh5+, Col4a1+, Fat1-, and Acta2-) (cluster 27) that expressed vascular endothelial cell genes within the distracted zygomatic maxillary suture. We constructed the differentiation trajectories of the fibroblast population (cluster 23, 27) in the suture before and after distraction. In addition, we clarified that a subset of fibroblasts (cluster 27) lost expression of Fat1, an upregulator of the Hippo pathway, and upregulated Cyr61, a downstream gene of the Hippo pathway, during the distraction process. Further enrichment analysis suggests that cells of the new subset (cluster 27) are undergoing conversion of their identity into a vascular endothelial cell-like state in response to mechanical stimulation, associated with upregulation of angiogenesis genes along the single-cell trajectory. Further immunofluorescence staining confirmed this phenomenon. A combined general transcriptome RNA sequencing data analysis demonstrated that the fibroblasts expressed a number of extracellular matrix-related genes under mechanical strain. These data together provide a new view of the role of fibroblasts in tension-induced sutural angiogenesis via interaction with the Hippo pathway.
Collapse
Affiliation(s)
- Guan Li
- Peking University Third Hospital, Beijing, China
| | - Wei Liang
- Peking University Third Hospital, Beijing, China
| | | | - Zhenmin Zhao
- Peking University Third Hospital, Beijing, China.
| |
Collapse
|
14
|
Simancas Escorcia V, Guillou C, Abbad L, Derrien L, Rodrigues Rezende Costa C, Cannaya V, Benassarou M, Chatziantoniou C, Berdal A, Acevedo AC, Cases O, Cosette P, Kozyraki R. Pathogenesis of Enamel-Renal Syndrome Associated Gingival Fibromatosis: A Proteomic Approach. Front Endocrinol (Lausanne) 2021; 12:752568. [PMID: 34777248 PMCID: PMC8586505 DOI: 10.3389/fendo.2021.752568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
The enamel renal syndrome (ERS) is a rare disorder featured by amelogenesis imperfecta, gingival fibromatosis and nephrocalcinosis. ERS is caused by bi-allelic mutations in the secretory pathway pseudokinase FAM20A. How mutations in FAM20A may modify the gingival connective tissue homeostasis and cause fibromatosis is currently unknown. We here analyzed conditioned media of gingival fibroblasts (GFs) obtained from four unrelated ERS patients carrying distinct mutations and control subjects. Secretomic analysis identified 109 dysregulated proteins whose abundance had increased (69 proteins) or decreased (40 proteins) at least 1.5-fold compared to control GFs. Proteins over-represented were mainly involved in extracellular matrix organization, collagen fibril assembly, and biomineralization whereas those under-represented were extracellular matrix-associated proteins. More specifically, transforming growth factor-beta 2, a member of the TGFβ family involved in both mineralization and fibrosis was strongly increased in samples from GFs of ERS patients and so were various known targets of the TGFβ signaling pathway including Collagens, Matrix metallopeptidase 2 and Fibronectin. For the over-expressed proteins quantitative RT-PCR analysis showed increased transcript levels, suggesting increased synthesis and this was further confirmed at the tissue level. Additional immunohistochemical and western blot analyses showed activation and nuclear localization of the classical TGFβ effector phospho-Smad3 in both ERS gingival tissue and ERS GFs. Exposure of the mutant cells to TGFB1 further upregulated the expression of TGFβ targets suggesting that this pathway could be a central player in the pathogenesis of the ERS gingival fibromatosis. In conclusion our data strongly suggest that TGFβ -induced modifications of the extracellular matrix contribute to the pathogenesis of ERS. To our knowledge this is the first proteomic-based analysis of FAM20A-associated modifications.
Collapse
Affiliation(s)
- Victor Simancas Escorcia
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
| | - Clément Guillou
- Normandie Université, PISSARO Proteomic Facility, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- Normandie Université, UMR670 Centre National de la Recherche Scientifique (CNRS), Mont-Saint-Aignan, France
| | - Lilia Abbad
- UMRS1155, INSERM, Sorbonne Université, Paris, France
| | - Louise Derrien
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
| | - Claudio Rodrigues Rezende Costa
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Vidjea Cannaya
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
| | - Mourad Benassarou
- Service de Chirurgie Maxillo-faciale et Stomatologie, Hôpital De la Pitié Salpétrière, Sorbonne Université, Paris, France
| | | | - Ariane Berdal
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
- Centre de Référence Maladies Rares (CRMR) O-RARES, Hôpital Rothshild, Unité de Formation et de Recherche (UFR) d’Odontologie-Garancière, Université de Paris, Paris, France
| | - Ana Carolina Acevedo
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
| | - Pascal Cosette
- Normandie Université, PISSARO Proteomic Facility, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- Normandie Université, UMR670 Centre National de la Recherche Scientifique (CNRS), Mont-Saint-Aignan, France
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
- Centre de Référence Maladies Rares (CRMR) O-RARES, Hôpital Rothshild, Unité de Formation et de Recherche (UFR) d’Odontologie-Garancière, Université de Paris, Paris, France
| |
Collapse
|
15
|
Xiao H, Chen J, Duan L, Li S. Role of emerging vitamin K‑dependent proteins: Growth arrest‑specific protein 6, Gla‑rich protein and periostin (Review). Int J Mol Med 2021; 47:2. [PMID: 33448308 PMCID: PMC7834955 DOI: 10.3892/ijmm.2020.4835] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/21/2020] [Indexed: 01/27/2023] Open
Abstract
Vitamin K‑dependent proteins (VKDPs) are a group of proteins that need vitamin K to conduct carboxylation. Thus far, scholars have identified a total of 17 VKDPs in the human body. In this review, we summarize three important emerging VKDPs: Growth arrest‑specific protein 6 (Gas 6), Gla‑rich protein (GRP) and periostin in terms of their functions in physiological and pathological conditions. As examples, carboxylated Gas 6 and GRP effectively protect blood vessels from calcification, Gas 6 protects from acute kidney injury and is involved in chronic kidney disease, GRP contributes to bone homeostasis and delays the progression of osteoarthritis, and periostin is involved in all phases of fracture healing and assists myocardial regeneration in the early stages of myocardial infarction. However, periostin participates in the progression of cardiac fibrosis, idiopathic pulmonary fibrosis and airway remodeling of asthma. In addition, we discuss the relationship between vitamin K, VKDPs and cancer, and particularly the carboxylation state of VKDPs in cancer.
Collapse
Affiliation(s)
- Huiyu Xiao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| | - Jiepeng Chen
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Lili Duan
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| |
Collapse
|
16
|
Wang Y, Du C, Wan W, He C, Wu S, Wang T, Wang F, Zou R. shRNA knockdown of integrin-linked kinase on hPDLCs migration, proliferation, and apoptosis under cyclic tensile stress. Oral Dis 2020; 26:1747-1754. [PMID: 32531841 DOI: 10.1111/odi.13474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To investigate the roles of integrin-linked kinase (ILK) in mediating the cell migration, proliferation, and apoptosis of human periodontal ligament cells (hPDLCs) in response to cyclic tensile stress. METHODS Primary hPDLCs were obtained through the enzyme digestion and tissue culture method. Short hairpin ILK-expressing hPDLCs were constructed using a recombinant lentiviral vector that specifically targeted ILK gene expression. The silencing of the ILK gene was identified by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. The hPDLCs were seeded on a flexible substrate and loaded with cyclic tensile stress at 0.5 Hz for 0, 2, 4, and 8 hr, consecutively, with the Flexcell Tension System. The response of cell migration was tested by the scratch assay. Cell proliferation was characterized by optical density (OD) value of cell counting kit-8 (CCK-8) test and Ki67 mRNA expression of qRT-PCR. Cell apoptosis was determined by flow cytometry and Caspase-3 mRNA expression of qRT-PCR. RESULTS Knocking down ILK substantially reduces migration and proliferation as well as regulates the sensitivity of hPDLCs to apoptosis under cyclic tensile stress. CONCLUSIONS ILK can promote the proliferation and migration as well as inhibit apoptosis of hPDLCs under cyclic tensile stress.
Collapse
Affiliation(s)
- Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | | | - Wanting Wan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chuan He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shiyang Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Tairan Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Fei Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Gao B, Deng R, Chai Y, Chen H, Hu B, Wang X, Zhu S, Cao Y, Ni S, Wan M, Yang L, Luo Z, Cao X. Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. J Clin Invest 2019; 129:2578-2594. [PMID: 30946695 DOI: 10.1172/jci98857] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The periosteum, a thin tissue that covers almost the entire bone surface, accounts for more than 80% of human bone mass and is essential for bone regeneration. Its osteogenic and bone regenerative abilities are well studied, but much is unknown about the periosteum. In this study, we found that macrophage-lineage cells recruit periosteum-derived cells (PDCs) for cortical bone formation. Knockout of colony stimulating factor-1 eliminated macrophage-lineage cells and resulted in loss of PDCs with impaired periosteal bone formation. Moreover, macrophage-lineage TRAP+ cells induced transcriptional expression of periostin and recruitment of PDCs to the periosteal surface through secretion of platelet-derived growth factor-BB (PDGF-BB), where the recruited PDCs underwent osteoblast differentiation coupled with type H vessel formation. We also found that subsets of Nestin+ and LepR+ PDCs possess multipotent and self-renewal abilities and contribute to cortical bone formation. Nestin+ PDCs are found primarily during bone development, whereas LepR+ PDCs are essential for bone homeostasis in adult mice. Importantly, conditional knockout of Pdgfrβ (platelet-derived growth factor receptor beta) in LepR+ cells impaired periosteal bone formation and regeneration. These findings uncover the essential role of periosteal macrophage-lineage cells in regulating periosteum homeostasis and regeneration.
Collapse
Affiliation(s)
- Bo Gao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruoxian Deng
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yu Chai
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Chen
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bo Hu
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiao Wang
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shouan Zhu
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yong Cao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuangfei Ni
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liu Yang
- Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhuojing Luo
- Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Guerin Lemaire H, Merle B, Borel O, Gensburger D, Chapurlat R. Serum periostin levels and severity of fibrous dysplasia of bone. Bone 2019; 121:68-71. [PMID: 30616028 DOI: 10.1016/j.bone.2019.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 01/16/2023]
Abstract
Fibrous dysplasia of bone (FD) is a rare congenital bone disease, characterized by a fibrous component in the bone marrow. Periostin has been extensively researched because of its implication in various fibrotic or inflammatory diseases. Periostin may be associated with the burden or the severity of FD. The case control PERIOSDYS study aimed at assessing serum periostin levels in FD patients. Sixty four patients with monostotic or polyostotic disease were included, in order to evaluate whether the concentrations were greater in patients than in 128 healthy age, BMI and sex-matched controls and if they were more elevated in patients with the more severe phenotypes. We found that periostin levels were greater in patients with FD compared to controls (mean = 1085 vs 958 pmol/l, p = 0.026), especially in those with a history of fracture (mean = 1475 vs 966 pmol/l, p = 0.0005), polyostotic forms (mean = 1214 vs 955 pmol/l, p = 0.004) or McCune-Albright syndrome (mean = 1585 vs 1023 pmol/l, p = 0.0048). In contrast, high pain levels were not associated with periostin levels (mean = 1137 vs 1036 pmol/l, p = 0.445). Furthermore, patients undergoing bisphosphonate therapy had significantly lower levels than treatment naïve patients (mean = 953 vs 1370 pmol/l, p = 0.002). In conclusion, periostin may be a biochemical marker indicative of the most severe forms of FD and could be used to monitor patients treated with bisphosphonates.
Collapse
Affiliation(s)
- H Guerin Lemaire
- Department of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France.
| | - B Merle
- INSERM UMR 1033, Université de Lyon, Division of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - O Borel
- INSERM UMR 1033, Université de Lyon, Division of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - D Gensburger
- INSERM UMR 1033, Université de Lyon, Division of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Division of Rheumatology, Edouard Herriot University Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| |
Collapse
|
19
|
The Structure of the Periostin Gene, Its Transcriptional Control and Alternative Splicing, and Protein Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:7-20. [PMID: 31037620 DOI: 10.1007/978-981-13-6657-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although many studies have described the role of periostin in various diseases, the functions of periostin derived from alternative splicing and proteinase cleavage at its C-terminus remain unknown. Further experiments investigating the periostin structures that are relevant to diseases are essential for an in-depth understanding of their functions, which would accelerate their clinical applications by establishing new approaches for curing intractable diseases. Furthermore, this understanding would enhance our knowledge of novel functions of periostin related to stemness and response to mechanical stress .
Collapse
|
20
|
Abstract
Periostin is specifically expressed in periosteum that functions in bone modeling and remodeling and bone repair, and is sensitive to mechanical stress. Thus periostin has been expected for controlling these crucial systems in bone. The results from periostin deficient mice demonstrate that periostin acts on bone remodeling though detailed mechanisms are unknown. Recent findings have revealed that periostin is essential for bone repair. In this chapter, I introduce expression and function of periostin in bone.
Collapse
Affiliation(s)
- Akira Kudo
- International Frontier, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan. .,School of Dentistry, Showa University, Tokyo, Japan.
| |
Collapse
|
21
|
Practical Application of Periostin as a Biomarker for Pathological Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:195-204. [PMID: 31037636 DOI: 10.1007/978-981-13-6657-4_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In physiological condition, periostin is expressed in limited tissues such as periodontal ligament, periosteum, and heart valves. Periostin protein is mainly localized on extracellular collagen bundles and in matricellular space. On the other hand, in pathological condition, expression of periostin is induced in disordered tissues of human patients. In tumor development and progression, periostin is elevated mainly in its microenvironment and stromal tissue rich in extracellular matrix. Tumor stromal fibroblasts highly express periostin and organize the tumor-surrounding extracellular matrix architecture. In fibrosis in lung, liver, and kidney, proliferating activated fibroblasts express periostin and replace normal functional tissues with dense connective tissues. In inflammation and allergy, inflammatory cytokines such as IL-4 and IL-13 induce expression of periostin that plays important roles in pathogenesis of these diseases. The elevated levels of periostin in human patients could be detected not only in tissue biopsy samples but also in peripheral bloods using specific antibodies against periostin, because periostin secreted from the disordered tissues is transported into blood vessels and circulates in the cardiovascular system. In this chapter, I introduce the elevated expression of periostin in pathological conditions, and discuss how periostin could be utilized as a biomarker in disease diagnosis.
Collapse
|
22
|
Brown JM, Mantoku A, Sabokbar A, Oppermann U, Hassan AB, Kudo A, Athanasou N. Periostin expression in neoplastic and non-neoplastic diseases of bone and joint. Clin Sarcoma Res 2018; 8:18. [PMID: 30202513 PMCID: PMC6123976 DOI: 10.1186/s13569-018-0105-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/04/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Periostin is a matricellular protein that is expressed in bone and joint tissues. To determine the expression of periostin in primary bone tumours and to assess whether it plays a role in tumour progression, we carried out immunohistochemistry and ELISA for periostin in a range of neoplastic and non-neoplastic bone and joint lesions. METHODS 140 formalin-fixed paraffin-embedded sections of bone tumours and tumour-like lesions were stained by an indirect immunoperoxidase technique with a polyclonal anti-periostin antibody. Periostin expression was also assessed in rheumatoid arthritis (RA) and non-inflammatory osteoarthritis (OA) synovium and synovial fluid immunohistochemistry and ELISA respectively. RESULTS Periostin was most strongly expressed in osteoid/woven bone of neoplastic and non-neoplastic bone-forming lesions, including osteoblastoma, osteosarcoma, fibrous dysplasia, osteofibrous dysplasia, fracture callus and myositis ossificans, and mineralised chondroid matrix/woven bone in chondroblastoma and clear cell chondrosarcoma. Reactive host bone at the edge of growing tumours, particularly in areas of increased vascularity and fibrosis, also stained strongly for periostin. Vascular elements in RA synovium strongly expressed periostin, and synovial fluid levels of periostin were higher in RA than OA. CONCLUSIONS In keeping with its known role in modulating the synthesis of collagen and other extracellular matrix proteins in bone, strong periostin expression was noted in benign and malignant lesions forming an osteoid or osteoid-like matrix. Periostin was also noted in other bone tumours and was found in areas of reactive bone and increased vascularity at the edge of growing tumours, consistent with its involvement in tissue remodelling and angiogenesis associated with tumour progression.
Collapse
Affiliation(s)
- Jennifer M. Brown
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7HE UK
| | - Akiro Mantoku
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Afsie Sabokbar
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7HE UK
| | - Udo Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7HE UK
| | - A. Bass Hassan
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7HE UK
| | - Akiro Kudo
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Nick Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7HE UK
| |
Collapse
|
23
|
González-González L, Alonso J. Periostin: A Matricellular Protein With Multiple Functions in Cancer Development and Progression. Front Oncol 2018; 8:225. [PMID: 29946533 PMCID: PMC6005831 DOI: 10.3389/fonc.2018.00225] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/30/2018] [Indexed: 01/19/2023] Open
Abstract
Tumor microenvironment is considered nowadays as one of the main players in cancer development and progression. Tumor microenvironment is highly complex and consists of non-tumor cells (i.e., cancer-associated fibroblast, endothelial cells, or infiltrating leukocytes) and a large list of extracellular matrix proteins and soluble factors. The way that microenvironment components interact among them and with the tumor cells is very complex and only partially understood. However, it is now clear that these interactions govern and modulate many of the cancer hallmarks such as cell proliferation, the resistance to death, the differentiation state of tumor cells, their ability to migrate and metastasize, and the immune response against tumor cells. One of the microenvironment components that have emerged in the last years with strength is a heterogeneous group of multifaceted proteins grouped under the name of matricellular proteins. Matricellular proteins are a family of non-structural matrix proteins that regulate a variety of biological processes in normal and pathological situations. Many components of this family such as periostin (POSTN), osteopontin (SPP1), or the CNN family of proteins have been shown to regulate key aspect of tumor biology, including proliferation, invasion, matrix remodeling, and dissemination to pre-metastatic niches in distant organs. Matricellular proteins can be produced by tumor cells themselves or by tumor-associated cells, and their synthesis can be affected by intrinsic and/or extrinsic tumor cell factors. In this review, we will focus on the role of POSTN in the development and progression of cancer. We will describe their functions in normal tissues and the mechanisms involved in their regulation. We will analyze the tumors in which their expression is altered and their usefulness as a biomarker of tumor progression. Finally, we will speculate about future directions for research and therapeutic approaches targeting POSTN.
Collapse
Affiliation(s)
- Laura González-González
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Bai S, Li D, Xu L, Duan H, Yuan J, Wei M. Recombinant mouse periostin ameliorates coronal sutures fusion in Twist1 +/- mice. J Transl Med 2018; 16:103. [PMID: 29665811 PMCID: PMC5905175 DOI: 10.1186/s12967-018-1454-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/16/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Saethre-Chotzen syndrome is an autosomal dominantly inherited disorder caused by mutations in the twist family basic helix-loop-helix transcription factor 1 (TWIST1) gene. Surgical procedures are frequently required to reduce morphological and functional defects in patients with Saethre-Chotzen syndrome. Therefore, the development of noninvasive procedures to treat Saethre-Chotzen syndrome is critical. We identified that periostin, which is an extracellular matrix protein that plays an important role in both bone and connective tissues, is downregulated in craniosynostosis patients. METHODS We aimed to verify the effects of different concentrations (0, 50, 100, and 200 μg/l) of recombinant mouse periostin in Twist1+/- mice (a mouse model of Saethre-Chotzen syndrome) coronal suture cells in vitro and in vivo. Cell proliferation, migration, and osteogenic differentiation were observed and detected. Twist1+/- mice were also injected with recombinant mouse periostin to verify the treatment effects. RESULTS Cell Counting Kit-8 results showed that recombinant mouse periostin inhibited the proliferation of suture-derived cells in a time- and concentration-dependent manner. Cell migration was also suppressed when treated with recombinant mouse periostin. Real-time quantitative PCR and Western blotting results suggested that messenger ribonucleic acid and protein expression of alkaline phosphatase, bone sialoprotein, collagen type I, and osteocalcin were all downregulated after treatment with recombinant mouse periostin. However, the expression of Wnt-3a, Wnt-1, and β-catenin were upregulated. The in vivo results demonstrated that periostin-treated Twist1+/- mice showed patent coronal sutures in comparison with non-treated Twist1+/- mice which have coronal craniosynostosis. CONCLUSION Our results suggest that recombinant mouse periostin can inhibit coronal suture cell proliferation and migration and suppress osteogenic differentiation of suture-derived cells via Wnt canonical signaling, as well as ameliorate coronal suture fusion in Twist1+/- mice.
Collapse
Affiliation(s)
- Shanshan Bai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Dong Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Liang Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Huichuan Duan
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Jie Yuan
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Min Wei
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
25
|
Kudo A. Introductory review: periostin-gene and protein structure. Cell Mol Life Sci 2017; 74:4259-4268. [PMID: 28884327 PMCID: PMC11107487 DOI: 10.1007/s00018-017-2643-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023]
Abstract
Although many studies have described the role of periostin in various diseases, the function of the periostin protein structures derived from alternative splicing and proteinase cleavage at the C-terminal remain unknown. Further experiments revealing the protein structures that are highly related to diseases are essential to understand the function of periostin in depth, which would accelerate its clinical application by establishing new approaches for curing intractable diseases. Furthermore, this understanding would enhance our knowledge of novel functions of periostin related to stemness and response to mechanical stress.
Collapse
Affiliation(s)
- Akira Kudo
- International Frontier, Tokyo Institute of Technology, S3-8, 2-12-1 Oookayama, Meguro-ku, Tokyo, 152-8550, Japan.
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo, 142-8555, Japan.
| |
Collapse
|
26
|
Kii I, Ito H. Periostin and its interacting proteins in the construction of extracellular architectures. Cell Mol Life Sci 2017; 74:4269-4277. [PMID: 28887577 PMCID: PMC11107766 DOI: 10.1007/s00018-017-2644-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 12/25/2022]
Abstract
Periostin is a matricellular protein that is composed of a multi-domain structure with an amino-terminal EMI domain, a tandem repeat of four FAS 1 domains, and a carboxyl-terminal domain. These distinct domains have been demonstrated to bind to many proteins including extracellular matrix proteins (Collagen type I and V, fibronectin, tenascin, and laminin), matricellular proteins (CCN3 and βig-h3), and enzymes that catalyze covalent crosslinking between extracellular matrix proteins (lysyl oxidase and BMP-1). Adjacent binding sites on periostin have been suggested to put the interacting proteins in close proximity, promoting intermolecular interactions between each protein, and leading to their assembly into extracellular architectures. These extracellular architectures determine the mechanochemical properties of connective tissues, in which periostin plays an important role in physiological homeostasis and disease progression. In this review, we introduce the proteins that interact with periostin, and discuss how the multi-domain structure of periostin functions as a scaffold for the assembly of interacting proteins, and how it underlies construction of highly sophisticated extracellular architectures.
Collapse
Affiliation(s)
- Isao Kii
- Common Facilities Unit, Integrated Research Group, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| | - Harumi Ito
- Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
27
|
Kudo A, Kii I. Periostin function in communication with extracellular matrices. J Cell Commun Signal 2017; 12:301-308. [PMID: 29086200 DOI: 10.1007/s12079-017-0422-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Periostin is a secretory protein with a multi-domain structure, comprising an amino-terminal cysteine-rich EMI domain, four internal FAS 1 domains, and a carboxyl-terminal hydrophilic domain. These adjacent domains bind to extracellular matrix proteins (type I collagen, fibronectin, tenascin-C, and laminin γ2), and BMP-1 that catalyzes crosslinking of type I collagen, and proteoglycans, which play a role in cell adhesion. The binding sites on periostin have been demonstrated to contribute to the mechanical strength of connective tissues, enhancing intermolecular interactions in close proximity and their assembly into extracellular matrix architectures, where periostin plays further essential roles in physiological maintenance and pathological progression. Furthermore, periostin also binds to Notch 1 and CCN3, which have functions in maintenance of stemness, thus opening up a new field of periostin action.
Collapse
Affiliation(s)
- Akira Kudo
- International Frontier, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan. .,Showa University, Tokyo, 142-8555, Japan.
| | - Isao Kii
- Common Facilities Unit, Integrated Research Group, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chūō-ku, Kobe, Hyogo, 650-0047, Japan.,Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| |
Collapse
|
28
|
Gadermaier E, Tesarz M, Suciu AAM, Wallwitz J, Berg G, Himmler G. Characterization of a sandwich ELISA for the quantification of all human periostin isoforms. J Clin Lab Anal 2017; 32. [PMID: 28493527 DOI: 10.1002/jcla.22252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/07/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Periostin (osteoblast-specific factor OSF-2) is a secreted protein occurring in seven known isoforms, and it is involved in a variety of biological processes in osteology, tissue repair, oncology, cardiovascular and respiratory systems or allergic manifestations. To analyze functional aspects of periostin, or the ability of periostin as potential biomarker in physiological and pathological conditions, there is the need for a precise, well-characterized assay that detects periostin in peripheral blood. METHODS In this study the development of a sandwich ELISA using monoclonal and affinity-purified polyclonal anti-human periostin antibodies was described. Antibodies were characterized by mapping of linear epitopes with microarray technology, and by analyzing cross-reactive binding to human periostin isoforms with western blot. The assay was validated according to ICH/EMEA guidelines. RESULTS The monoclonal coating antibody binds to a linear epitope conserved between the isoforms. The polyclonal detection antibody recognizes multiple conserved linear epitopes. Therefore, the periostin ELISA detects all known human periostin isoforms. The assay is optimized for human serum and plasma and covers a calibration range between 125 and 4000 pmol/L for isoform 1. Assay characteristics, such as precision (intra-assay: ≤3%, inter-assay: ≤6%), spike-recovery (83%-106%), dilution linearity (95%-126%), as well as sample stability meet the standards of acceptance. Periostin levels of apparently healthy individuals are 864±269 pmol/L (serum) and 817±170 pmol/L (plasma) respectively. CONCLUSION This ELISA is a reliable and accurate tool for determination of all currently known periostin isoforms in human healthy and diseased samples.
Collapse
Affiliation(s)
| | | | | | | | - Gabriela Berg
- The Antibody Lab GmbH, Vienna, Austria.,Biomedica Medizinprodukte GmbH & Co KG, Vienna, Austria
| | | |
Collapse
|
29
|
The influence of controlled surface nanotopography on the early biological events of osseointegration. Acta Biomater 2017; 53:559-571. [PMID: 28232253 DOI: 10.1016/j.actbio.2017.02.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 01/09/2023]
Abstract
The early cell and tissue interactions with nanopatterned titanium implants are insufficiently described in vivo. A limitation has been to transfer a pre-determined, well-controlled nanotopography to 3D titanium implants, without affecting other surface parameters, including surface microtopography and chemistry. This in vivo study aimed to investigate the early cellular and molecular events at the bone interface with screw-shaped titanium implants superimposed with controlled nanotopography. Polished and machined titanium implants were firstly patterned with 75-nm semispherical protrusions. Polished and machined implants without nano-patterns were designated as controls. Thereafter, all nanopatterned and control implants were sputter-coated with a 30nm titanium layer to unify the surface chemistry. The implants were inserted in rat tibiae and samples were harvested after 12h, 1d and 3d. In one group, the implants were unscrewed and the implant-adherent cells were analyzed using quantitative polymerase chain reaction. In another group, implants with surrounding bone were harvested en bloc for histology and immunohistochemistry. The results showed that nanotopography downregulated the expression of monocyte chemoattractant protein-1 (MCP-1), at 1d, and triggered the expression of osteocalcin (OC) at 3d. This was in parallel with a relatively lower number of recruited CD68-positive macrophages in the tissue surrounding the nanopatterned implants. Moreover, a higher proportion of newly formed osteoid and woven bone was found at the nanopatterned implants at 3d. It is concluded that nanotopography, per se, attenuates the inflammatory process and enhances the osteogenic response during the early phase of osseointegration. This nanotopography-induced effect appeared to be independent of the underlying microscale topography. STATEMENT OF SIGNIFICANCE This study provides a first line of evidence that pre-determined nanopatterns on clinically relevant, screw-shaped, titanium implants can be recognized by cells in the complex in vivo environment. Until now, most of the knowledge relating to cell interactions with nanopatterned surfaces has been acquired from in vitro studies involving mostly two-dimensional nanopatterned surfaces of varying chemical composition. We have managed to superimpose pre-determined nanoscale topography on polished and micro-rough, screw-shaped, implants, without changes in the microscale topography or chemistry. This was achieved by colloidal lithography in combination with a thin titanium film coating on top of both nanopatterned and control implants. The early events of osseointegration were evaluated at the bone interface to these implants. The results revealed that nanotopography, as such, elicits downregulatory effects on the early recruitment and activity of inflammatory cells while enhancing osteogenic activity and woven bone formation.
Collapse
|
30
|
Zhu B, Liu W, Liu Y, Zhao X, Zhang H, Luo Z, Jin Y. Jawbone microenvironment promotes periodontium regeneration by regulating the function of periodontal ligament stem cells. Sci Rep 2017; 7:40088. [PMID: 28053317 PMCID: PMC5215380 DOI: 10.1038/srep40088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/01/2016] [Indexed: 12/23/2022] Open
Abstract
During tooth development, the jawbone interacts with dental germ and provides the development microenvironment. Jawbone-derived mesenchymal stem cells (JBMSCs) maintain this microenvironment for root and periodontium development. However, the effect of the jawbone microenvironment on periodontium tissue regeneration is largely elusive. Our previous study showed that cell aggregates (CAs) of bone marrow mesenchymal stem cells promoted periodontium regeneration on the treated dentin scaffold. Here, we found that JBMSCs enhanced not only the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) but also their adhesion to titanium (Ti) material surface. Importantly, the compound CAs of PDLSCs and JBMSCs regenerated periodontal ligament-like fibers and mineralized matrix on the Ti scaffold surface, both in nude mice ectopic and minipig orthotopic transplantations. Our data revealed that an effective regenerative microenvironment, reconstructed by JBMSCs, promoted periodontium regeneration by regulating PDLSCs function on the Ti material.
Collapse
Affiliation(s)
- Bin Zhu
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Orthopedics Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Stomatology, PLA Xizang Military Region General Hospital, Lhasa, Tibet, People's Republic of China
| | - Wenjia Liu
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yihan Liu
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Stomatology, PLA 301th Hospital, Beijing, People's Republic of China
| | - Xicong Zhao
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhuojing Luo
- Department of Orthopedics Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
31
|
Moue T, Tajika Y, Ishikawa S, Kanada Y, Okumo T, Asano K, Hisamitsu T. Influence of IL13 on Periostin Secretion by Synoviocytes in Osteoarthritis. In Vivo 2017; 31:79-85. [PMID: 28064224 PMCID: PMC5354151 DOI: 10.21873/invivo.11028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Our previous research provided evidence of periostin increase in parallel with interleukin-13 (IL13) increase in the synovial fluid of patients with osteoarthritis (OA). The reaction cascade from IL13 to periostin, however, remains unidentified. We, therefore, tested the hypothesis that periostin secretion is affected downstream of IL13. MATERIALS AND METHODS OA synoviocytes were cultured under different concentrations of IL13. Periostin content in culture supernatants and the level of signal transducer and activator of transcription 6 (STAT6) in the cultured cells were measured using enzyme-linked immunosorbent assay (ELISA). Moreover, the influence of dexamethasone and leflunomide on periostin production in relation to the effect of IL13 on the cells was also examined. RESULTS Periostin content in culture supernatants and the level of STAT6 in cultured cells were significantly increased by IL13. The increase of periostin was significantly inhibited by dexamethasone and leflunomide. CONCLUSION Periostin may be up-regulated in OA synoviocytes via STAT6 downstream of IL13.
Collapse
Affiliation(s)
- Tatsuya Moue
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Yutaro Tajika
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Shintaro Ishikawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Yasuaki Kanada
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Takayuki Okumo
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Kazuhito Asano
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Tadashi Hisamitsu
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
32
|
Characterization of Cellular and Molecular Heterogeneity of Bone Marrow Stromal Cells. Stem Cells Int 2016; 2016:9378081. [PMID: 27610142 PMCID: PMC5004045 DOI: 10.1155/2016/9378081] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/26/2016] [Indexed: 01/04/2023] Open
Abstract
Human bone marrow-derived stromal stem cells (hBMSC) exhibit multiple functions, including differentiation into skeletal cells (progenitor function), hematopoiesis support, and immune regulation (nonprogenitor function). We have previously demonstrated the presence of morphological and functional heterogeneity of hBMSC cultures. In the present study, we characterized in detail two hTERT-BMSC clonal cell populations termed here CL1 and CL2 that represent an opposing phenotype with respect to morphology, markers expression: alkaline phosphatase (ALP) and CD146, and ex vivo differentiation potential. CL1 differentiated readily to osteoblasts, adipocytes, and chondrocytes as shown by expression of lineage specific genes and proteins. Whole genome transcriptome profiling of CL1 versus CL2 revealed enrichment in CL1 of bone-, mineralization-, and skeletal muscle-related genes, for example, ALP, POSTN, IGFBP5 BMP4, and CXCL12. On the other hand, CL2 transcriptome was enriched in immune modulatory genes, for example, CD14, CD99, NOTCH3, CXCL6, CFB, and CFI. Furthermore, gene expression microarray analysis of osteoblast differentiated CL1 versus CL2 showed significant upregulation in CL1 of bone development and osteoblast differentiation genes which included several homeobox genes: TBX15, HOXA2 and HOXA10, and IGF1, FGFR3, BMP6, MCAM, ITGA10, IGFBP5, and ALP. siRNA-based downregulation of the ALP gene in CL1 impaired osteoblastic and adipocytic differentiation. Our studies demonstrate the existence of molecular and functional heterogeneity in cultured hBMSC. ALP can be employed to identify osteoblastic and adipocytic progenitor cells in the heterogeneous hBMSC cultures.
Collapse
|
33
|
Weekes D, Kashima TG, Zandueta C, Perurena N, Thomas DP, Sunters A, Vuillier C, Bozec A, El-Emir E, Miletich I, Patiño-Garcia A, Lecanda F, Grigoriadis AE. Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1. Oncogene 2016; 35:2852-61. [PMID: 26387545 PMCID: PMC4688957 DOI: 10.1038/onc.2015.344] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/05/2015] [Accepted: 07/24/2015] [Indexed: 12/13/2022]
Abstract
Osteosarcoma is the most common primary malignancy of the skeleton and is prevalent in children and adolescents. Survival rates are poor and have remained stagnant owing to chemoresistance and the high propensity to form lung metastases. In this study, we used in vivo transgenic models of c-fos oncogene-induced osteosarcoma and chondrosarcoma in addition to c-Fos-inducible systems in vitro to investigate downstream signalling pathways that regulate osteosarcoma growth and metastasis. Fgfr1 (fibroblast growth factor receptor 1) was identified as a novel c-Fos/activator protein-1(AP-1)-regulated gene. Induction of c-Fos in vitro in osteoblasts and chondroblasts caused an increase in Fgfr1 RNA and FGFR1 protein expression levels that resulted in increased and sustained activation of mitogen-activated protein kinases (MAPKs), morphological transformation and increased anchorage-independent growth in response to FGF2 ligand treatment. High levels of FGFR1 protein and activated pFRS2α signalling were observed in murine and human osteosarcomas. Pharmacological inhibition of FGFR1 signalling blocked MAPK activation and colony growth of osteosarcoma cells in vitro. Orthotopic injection in vivo of FGFR1-silenced osteosarcoma cells caused a marked twofold to fivefold decrease in spontaneous lung metastases. Similarly, inhibition of FGFR signalling in vivo with the small-molecule inhibitor AZD4547 markedly reduced the number and size of metastatic nodules. Thus deregulated FGFR signalling has an important role in osteoblast transformation and osteosarcoma formation and regulates the development of lung metastases. Our findings support the development of anti-FGFR inhibitors as potential antimetastatic therapy.
Collapse
Affiliation(s)
- Daniel Weekes
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, UK
| | - Takeshi G Kashima
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, UK
| | - Carolina Zandueta
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Naiara Perurena
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - David P Thomas
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, UK
| | - Andrew Sunters
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, UK
| | - Céline Vuillier
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, UK
| | - Aline Bozec
- Department of Rheumatology and Immunology, Universitätsklinikum Erlangen, Germany
| | - Ethaar El-Emir
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, UK
| | - Isabelle Miletich
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, UK
| | - Ana Patiño-Garcia
- Laboratory of Pediatrics, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Fernando Lecanda
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | | |
Collapse
|
34
|
Liu GX, Xi HQ, Sun XY, Geng ZJ, Yang SW, Lu YJ, Wei B, Chen L. Isoprenaline Induces Periostin Expression in Gastric Cancer. Yonsei Med J 2016; 57:557-64. [PMID: 26996552 PMCID: PMC4800342 DOI: 10.3349/ymj.2016.57.3.557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Periostin mediates critical steps in gastric cancer and is involved in various signaling pathways. However, the roles of periostin in promoting gastric cancer metastasis are not clear. The aim of this study was to investigate the relevance between periostin expression and gastric cancer progression and the role of stress-related hormones in the regulation of cancer development and progression. MATERIALS AND METHODS Normal, cancerous and metastatic gastric tissues were collected from patients diagnosed with advanced gastric cancer. The in vivo expression of periostin was evaluated by in situ hybridization and immunofluorescent staining. Meanwhile, human gastric adenocarcinoma cell lines MKN-45 and BGC-803 were used to detect the in vitro expression of periostin by using quantitative real-time polymerase chain reaction (PCR) and western blotting. RESULTS Periostin is expressed in the stroma of the primary gastric tumors and metastases, but not in normal gastric tissue. In addition, we observed that periostin is located mainly in pericryptal fibroblasts, but not in the tumor cells, and strongly correlated to the expression of α-smooth muscle actin (SMA). Furthermore, the distribution patterns of periostin were broader as the clinical staging of tumors progressed. We also identified a role of stress-related signaling in promoting cancer development and progression, and found that isoprenaline upregulated expression levels of periostin in gastric cancer cells. CONCLUSION These findings suggest that the distribution pattern of periostin was broader as the clinical staging of the tumor progressed and found that isoprenaline upregulated expression levels of periostin in gastric cancer cells.
Collapse
Affiliation(s)
- Guo-Xiao Liu
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Hong-Qing Xi
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Yan Sun
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Trauma Center of Postgraduate Medical School, Chinese PLA General Hospital, Beijing, China
| | - Zhi-Jun Geng
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Trauma Center of Postgraduate Medical School, Chinese PLA General Hospital, Beijing, China
| | - Shao-Wei Yang
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Trauma Center of Postgraduate Medical School, Chinese PLA General Hospital, Beijing, China
| | - Yan-Jie Lu
- Department of Pathology, Chengde Medical College, Chengde, Hebei Province, China
| | - Bo Wei
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China.
| | - Lin Chen
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
35
|
Bossley CJ, Fleming L, Ullmann N, Gupta A, Adams A, Nagakumar P, Bush A, Saglani S. Assessment of corticosteroid response in pediatric patients with severe asthma by using a multidomain approach. J Allergy Clin Immunol 2016; 138:413-420.e6. [PMID: 27061250 DOI: 10.1016/j.jaci.2015.12.1347] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/12/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND There is no agreed upon definition of systemic corticosteroid response in asthmatic children. Moreover, pediatric severe therapy-resistant asthma (STRA) is heterogeneous, and thus response to steroids is unlikely to be uniform in all patients. OBJECTIVE We sought to evaluate the utility of a multidomain approach incorporating symptoms, lung function, and inflammation to determine steroid responsiveness in pediatric patients with STRA. METHODS Eighty-two children (median age, 12 years) with STRA received a clinically indicated dose of intramuscular steroid. Changes in 4 separate domains were assessed 4 weeks after intramuscular triamcinolone acetonide: normalization of (1) symptoms (Asthma Control Test score, >19/25 or 50% increase), (2) spirometric results (FEV1 ≥80% of predicted value or ≥15% increase), (3) fraction of exhaled nitric oxide levels (<24 ppb), and (4) sputum eosinophil counts (<2.5%). Fifty-four of 82 children had complete data in all 4 domains. RESULTS Twenty-three (43%) of 54 children had a symptom response, 29 (54%) of 54 had a lung function response, 28 (52%) of 54 had a fraction of exhaled nitric oxide response, and 29 (54%) of 54 had a sputum eosinophil response. Although a similar proportion of children responded to systemic corticosteroids in each domain, there were no reliable predictors of a response pattern. Seven (13%) of 54 were complete responders (response in all domains), 8 (15%) of 54 were nonresponders (no response in any domain), and 39 (72%) of 54 were partial responders (response in ≥1 domain). CONCLUSIONS A multidomain evaluation of systemic steroid responsiveness using pragmatic clinical assessments confirms childhood STRA is heterogeneous and that a complete response in symptoms and inflammatory and physiologic parameters is rare. Individual response patterns to systemic steroids might be useful in guiding the choice of add-on therapies in each child as a step toward achieving personalized medicine.
Collapse
Affiliation(s)
- Cara J Bossley
- Respiratory Paediatrics, Royal Brompton Hospital and National Heart & Lung Institute, Imperial College London, London, United Kingdom; Respiratory Paediatrics, Kings College Hospital, London, United Kingdom
| | - Louise Fleming
- Respiratory Paediatrics, Royal Brompton Hospital and National Heart & Lung Institute, Imperial College London, London, United Kingdom; Leukocyte Biology, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Nicola Ullmann
- Respiratory Paediatrics, Royal Brompton Hospital and National Heart & Lung Institute, Imperial College London, London, United Kingdom; Leukocyte Biology, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Atul Gupta
- Leukocyte Biology, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Alexandra Adams
- Respiratory Paediatrics, Royal Brompton Hospital and National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Prasad Nagakumar
- Respiratory Paediatrics, Royal Brompton Hospital and National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew Bush
- Respiratory Paediatrics, Royal Brompton Hospital and National Heart & Lung Institute, Imperial College London, London, United Kingdom; Leukocyte Biology, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Sejal Saglani
- Respiratory Paediatrics, Royal Brompton Hospital and National Heart & Lung Institute, Imperial College London, London, United Kingdom; Leukocyte Biology, National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
36
|
Kim JH, Kang MS, Eltohamy M, Kim TH, Kim HW. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering. PLoS One 2016; 11:e0149967. [PMID: 26989897 PMCID: PMC4798756 DOI: 10.1371/journal.pone.0149967] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/08/2016] [Indexed: 11/18/2022] Open
Abstract
Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration—culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch.
Collapse
Affiliation(s)
- Joong-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Min Sil Kang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Mohamed Eltohamy
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- * E-mail:
| |
Collapse
|
37
|
Cobo T, Viloria CG, Solares L, Fontanil T, González-Chamorro E, De Carlos F, Cobo J, Cal S, Obaya AJ. Role of Periostin in Adhesion and Migration of Bone Remodeling Cells. PLoS One 2016; 11:e0147837. [PMID: 26809067 PMCID: PMC4725750 DOI: 10.1371/journal.pone.0147837] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/08/2016] [Indexed: 12/27/2022] Open
Abstract
Periostin is an extracellular matrix protein highly expressed in collagen-rich tissues subjected to continuous mechanical stress. Functionally, periostin is involved in tissue remodeling and its altered function is associated to numerous pathological processes. In orthodontics, periostin plays key roles in the maintenance of dental tissues and it is mainly expressed in those areas where tension or pressing forces are taking place. In this regard, high expression of periostin is essential to promote migration and proliferation of periodontal ligament fibroblasts. However little is known about the participation of periostin in migration and adhesion processes of bone remodeling cells. In this work we employ the mouse pre-osteoblastic MC3T3-E1 and the macrophage-like RAW 264.7 cell lines to overexpress periostin and perform different cell-based assays to study changes in cell behavior. Our data indicate that periostin overexpression not only increases adhesion capacity of MC3T3-E1 cells to different matrix proteins but also hampers their migratory capacity. Changes on RNA expression profile of MC3T3-E1 cells upon periostin overexpression have been also analyzed, highlighting the alteration of genes implicated in processes such as cell migration, adhesion or bone metabolism but not in bone differentiation. Overall, our work provides new evidence on the impact of periostin in osteoblasts physiology.
Collapse
Affiliation(s)
- Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Cristina G. Viloria
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Laura Solares
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Elena González-Chamorro
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Félix De Carlos
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Juan Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
- Instituto Universitario de Oncología (IUOPA), Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Alvaro J. Obaya
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
- Instituto Universitario de Oncología (IUOPA), Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
- * E-mail:
| |
Collapse
|
38
|
Elgali I, Turri A, Xia W, Norlindh B, Johansson A, Dahlin C, Thomsen P, Omar O. Guided bone regeneration using resorbable membrane and different bone substitutes: Early histological and molecular events. Acta Biomater 2016; 29:409-423. [PMID: 26441123 DOI: 10.1016/j.actbio.2015.10.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/03/2015] [Accepted: 10/02/2015] [Indexed: 11/26/2022]
Abstract
Bone insufficiency remains a major challenge for bone-anchored implants. The combination of guided bone regeneration (GBR) and bone augmentation is an established procedure to restore the bone. However, a proper understanding of the interactions between the bone substitute and GBR membrane materials and the bone-healing environment is lacking. This study aimed to investigate the early events of bone healing and the cellular activities in response to a combination of GBR membrane and different calcium phosphate (CaP) materials. Defects were created in the trabecular region of rat femurs, and filled with deproteinized bovine bone (DBB), hydroxyapatite (HA) or strontium-doped HA (SrHA) or left empty (sham). All the defects were covered with an extracellular matrix membrane. Defects were harvested after 12h, 3d and 6d for histology/histomorphometry, immunohistochemistry and gene expression analyses. Histology revealed new bone, at 6d, in all the defects. Larger amount of bone was observed in the SrHA-filled defect. This was in parallel with the reduced expression of osteoclastic genes (CR and CatK) and the osteoblast-osteoclast coupling gene (RANKL) in the SrHA defects. Immunohistochemistry indicated fewer osteoclasts in the SrHA defects. The observations of CD68 and periostin-expressing cells in the membrane per se indicated that the membrane may contribute to the healing process in the defect. It is concluded that the bone-promoting effects of Sr in vivo are mediated by a reduction in catabolic and osteoblast-osteoclast coupling processes. The combination of a bioactive membrane and CaP bone substitute material doped with Sr may produce early synergistic effects during GBR. STATEMENT OF SIGNIFICANCE The study provides novel molecular, cellular and structural evidence on the promotion of early bone regeneration in response to synthetic strontium-containing hydroxyapatite (SrHA) substitute, in combination with a resorbable, guided bone regeneration (GBR) membrane. The prevailing view, based mainly upon in vitro data, is that the beneficial effects of Sr are exerted by the stimulation of bone-forming cells (osteoblasts) and the inhibition of bone-resorbing cells (osteoclasts). In contrast, the present study demonstrates that the local effect of Sr in vivo is predominantly via the inhibition of osteoclast number and activity and the reduction of osteoblast-osteoclast coupling. This experimental data will form the basis for clinical studies, using this material as an interesting bone substitute for guided bone regeneration.
Collapse
|
39
|
Kim BJ, Rhee Y, Kim CH, Baek KH, Min YK, Kim DY, Ahn SH, Kim H, Lee SH, Lee SY, Kang MI, Koh JM. Plasma periostin associates significantly with non-vertebral but not vertebral fractures in postmenopausal women: Clinical evidence for the different effects of periostin depending on the skeletal site. Bone 2015; 81:435-441. [PMID: 26297442 DOI: 10.1016/j.bone.2015.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/28/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Periostin is preferentially expressed by the periosteum, which mainly covers the long bones. Therefore, the role of periostin in osteoporotic fracture (OF) may differ depending on bone type. We performed a case-control study to investigate whether periostin can serve as a predictor of OF risk, particularly after dividing OFs into non-vertebral and vertebral fractures. METHODS Among 532 consecutive postmenopausal women not taking any drug or without any disease that could affect bone metabolism, 133 cases with OF (i.e., non-vertebral and/or vertebral fractures) and 133 age- and body mass index-matched controls were enrolled. Non-vertebral (i.e., forearm, humerus, hip, and pelvis; n=81) and morphological vertebral (n=62) fractures were identified by an interviewer-assisted questionnaire and lateral thoracolumbar radiographs, respectively. Bone mineral density (BMD) and plasma periostin levels were also measured. RESULTS Plasma periostin was markedly higher in subjects with non-vertebral fracture than their controls even after adjustment for BMD and potential confounders (P=0.006). Each standard deviation increment of plasma periostin was associated with a multivariable-adjusted odds ratio of 1.59 for non-vertebral fracture. The odds for non-vertebral fracture were 2.48-fold higher in subjects in the highest periostin tertile compared with those in the lowest periostin tertile (95% confidence interval=1.10-5.61). However, associations between plasma periostin and vertebral fracture were not observed, regardless of the adjustment model used. Consistently, plasma periostin levels were inversely associated with proximal femur BMD (P=0.007 to 0.030) but not lumbar spine BMD. In subgroup analyses, plasma periostin had no correlation with the levels of classical bone turnover markers. CONCLUSIONS Plasma periostin may be a potential biomarker of the risk of OF, especially in non-spinal skeletal sites, such as the limbs, rather than spine.
Collapse
Affiliation(s)
- Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Yumie Rhee
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Chong Hwa Kim
- Department of Internal Medicine, Sejong General Hospital, Bucheon 422-711, Republic of Korea
| | - Ki Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul 137-701, Republic of Korea
| | - Yong-Ki Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| | - Deog-Yoon Kim
- Department of Nuclear Medicine, Kyunghee University School of Medicine, Seoul 130-872, Republic of Korea
| | - Seong Hee Ahn
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Hyeonmok Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Sun-Young Lee
- Asan Institute for Life Sciences, Seoul 138-736, Republic of Korea
| | - Moo-Il Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul 137-701, Republic of Korea.
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea.
| |
Collapse
|
40
|
Zhu B, Liu W, Zhang H, Zhao X, Duan Y, Li D, Jin Y. Tissue-specific composite cell aggregates drive periodontium tissue regeneration by reconstructing a regenerative microenvironment. J Tissue Eng Regen Med 2015; 11:1792-1805. [PMID: 26455905 DOI: 10.1002/term.2077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/17/2015] [Accepted: 06/16/2015] [Indexed: 12/18/2022]
Abstract
Periodontitis is the most common cause of periodontium destruction. Regeneration of damaged tissue is the expected treatment goal. However, the regeneration of a functional periodontal ligament (PDL) insertion remains a difficulty, due to complicated factors. Recently, periodontal ligament stem cells (PDLSCs) and bone marrow-derived mesenchymal stem cells (BMMSCs) have been shown to participate in PDL regeneration, both pathologically and physiologically. Besides, interactions affect the biofunctions of different derived cells during the regenerative process. Therefore, the purpose of this study was to discuss the different derived composite cell aggregate (CA) systems of PDLSCs and BMMSCs (iliac-derived or jaw-derived) for periodontium regeneration under regenerative microenvironment reconstruction. Our results showed although all three mono-MSC CAs were compacted and the cells arranged regularly in them, jaw-derived BMMSC (JBMMSC) CAs secreted more extracellular matrix than the others. Furthermore, PDLSC/JBMMSC compound CAs highly expressed ALP, Col-I, fibronectin, integrin-β1 and periostin, suggesting that their biofunction is more appropriate for periodontal structure regeneration. Inspiringly, PDLSC/JBMMSC compound CAs regenerated more functional PDL-like tissue insertions in both nude mice ectopic and minipig orthotopic transplantation. The results indicated that the different derived CAs of PDLSCs/JBMMSCs provided an appropriate regenerative microenvironment facilitating a more stable and regular regeneration of functional periodontium tissue. This method may provide a possible strategy to solve periodontium defects in periodontitis and powerful experimental evidence for clinical applications in the future. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bin Zhu
- State Key Laboratory of Military Stomatology, Department of Implantation, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Wenjia Liu
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Research and Development Centre for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xicong Zhao
- State Key Laboratory of Military Stomatology, Department of Implantation, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yan Duan
- State Key Laboratory of Military Stomatology, Department of Implantation, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Dehua Li
- State Key Laboratory of Military Stomatology, Department of Implantation, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Research and Development Centre for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
41
|
Chiappori A, De Ferrari L, Folli C, Mauri P, Riccio AM, Canonica GW. Biomarkers and severe asthma: a critical appraisal. Clin Mol Allergy 2015; 13:20. [PMID: 26430389 PMCID: PMC4590266 DOI: 10.1186/s12948-015-0027-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/04/2015] [Indexed: 01/17/2023] Open
Abstract
Severe asthma (SA) is a clinically and etiologically heterogeneous respiratory disease which affects among 5–10 % of asthmatic patients. Despite high-dose therapy, a large patients percentage is not fully controlled and has a poor quality of life. In this review, we describe the biomarkers actually known in scientific literature and used in clinical practice for SA assessment and management: neutrophils, eosinophils, periostin, fractional exhaled nitric oxide, exhaled breath condensate and galectins. Moreover, we give an overview on clinical and biological features characterizing severe asthma, paying special attention to the potential use of these ones as reliable markers. We finally underline the need to define different biomarkers panels to select patients affected by severe asthma for specific and personalized therapeutic approach.
Collapse
Affiliation(s)
- Alessandra Chiappori
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Laura De Ferrari
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Chiara Folli
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, CNR, Segrate, Milan, Italy
| | - Anna Maria Riccio
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| | - Giorgio Walter Canonica
- DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S.Martino-IST, Genoa, Italy
| |
Collapse
|
42
|
Rousseau JC, Sornay-Rendu E, Bertholon C, Garnero P, Chapurlat R. Serum periostin is associated with prevalent knee osteoarthritis and disease incidence/progression in women: the OFELY study. Osteoarthritis Cartilage 2015; 23:1736-42. [PMID: 26072384 DOI: 10.1016/j.joca.2015.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 04/28/2015] [Accepted: 05/12/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Our aim was to investigate the relationships between serum periostin (POSTN) and both prevalence and incidence/progression of knee osteoarthritis (OA) in women. METHODS We investigated 594 women (62.7 ± 11.2 yr) from the OFELY cohort. Knee radiographs were scored according to the Kellgren & Lawrence (KL) grading system at baseline and 4 years later. Spine, hip and hand OA were assessed at baseline. Prevalent knee OA was defined by a KL score higher or equal in 2. Progression of KL was defined as an increase of the KL score ≥1 during the 4 years follow-up. Serum POSTN was measured at baseline by ELISA. RESULTS By non-parametric tests, POSTN was significantly lower in 83 women with a KL score ≥2 at baseline, compared to those with a KL score <2 (n = 511; 1101 ± 300 vs 1181 ± 294 ng/ml, P = 0.002) after adjustment for age, body mass index (BMI), treatments and diseases, prevalent hand OA and prevalent lumbar spine OA. By logistic regression analyses, the odds-ratio of knee OA incidence/progression was significantly reduced by 21% (P = 0.043) for each quartile increase in serum POSTN at baseline, after adjustment for age, BMI, prevalent knee OA, prevalent hand OA and prevalent lumbar spine OA. CONCLUSIONS We show for the first time that serum POSTN is associated with prevalence and the risk of development/progression of knee OA in women.
Collapse
Affiliation(s)
- J C Rousseau
- INSERM Research Unit 1033, Université de Lyon, 69437 Lyon Cedex 03, France.
| | - E Sornay-Rendu
- INSERM Research Unit 1033, Université de Lyon, 69437 Lyon Cedex 03, France; Service de rhumatologie et pathologie osseuse, Hôpital E.-Herriot, Université de Lyon, 69437 Lyon Cedex 03, France.
| | - C Bertholon
- INSERM Research Unit 1033, Université de Lyon, 69437 Lyon Cedex 03, France.
| | - P Garnero
- INSERM Research Unit 1033, Université de Lyon, 69437 Lyon Cedex 03, France; Cisbio Bioassays, Codolet, France; Service de rhumatologie et pathologie osseuse, Hôpital E.-Herriot, Université de Lyon, 69437 Lyon Cedex 03, France.
| | - R Chapurlat
- INSERM Research Unit 1033, Université de Lyon, 69437 Lyon Cedex 03, France; Service de rhumatologie et pathologie osseuse, Hôpital E.-Herriot, Université de Lyon, 69437 Lyon Cedex 03, France.
| |
Collapse
|
43
|
Chijimatsu R, Kunugiza Y, Taniyama Y, Nakamura N, Tomita T, Yoshikawa H. Expression and pathological effects of periostin in human osteoarthritis cartilage. BMC Musculoskelet Disord 2015; 16:215. [PMID: 26289167 PMCID: PMC4545863 DOI: 10.1186/s12891-015-0682-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/13/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most common joint diseases in elderly people, however, the underlying mechanism of OA pathogenesis is not completely clear. Periostin, the extracellular protein, has been shown by cDNA array analysis to be highly expressed in OA, but its function is not fully understood. The purpose of this study was to examine the expression and function of periostin in human OA. METHODS Human cartilage and synovia samples were used for the analysis of periostin expression and function. The human cartilage samples were obtained from the knees of patients undergoing total knee arthroplasty as OA samples and from the femoral bone head of patients with femoral neck fracture as control samples. Quantitative RT-PCR, ELISA, and immunohistochemistry were used for analysis of periostin expression in cartilage and synovia. Human primary chondrocytes isolated from control cartilage were stimulated by periostin, and the alteration of OA related gene expression was examined using quantitative RT-PCR. Immunocytochemistry of p65 was performed for the analysis of nuclear factor kappa B (NFκB) activation. RESULTS The periostin mRNA was significantly higher in OA cartilage than in control cartilage. Immunohistochemical analysis of periostin showed that the main positive signal was localized in chondrocytes and their periphery matrix near the erosive area, with less immunoreactivity in deeper zones. There was positive correlation between Mankin score and periostin immunoreactivity. The periostin expression was also detected in the fibrotic cartilage and tissue of subchondral bone. In cultured human chondrocytes, periostin induced the expression of interleukin (IL)-6, IL-8, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, and nitric oxide synthase-2 (NOS2) in a dose- and time-dependent manner. The activation of NFκB signaling was recognized by the nuclear translocation of p65. Periostin-induced upregulation of these genes was suppressed by NFκB inactivation in chondrocytes. CONCLUSION Periostin was upregulated in OA cartilage, and it may amplify inflammatory events and accelerate OA pathology.
Collapse
Affiliation(s)
- Ryota Chijimatsu
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan. .,Department of Orthopaedic Surgery, Osaka University Graduate School of Frontier Bio Science, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | - Yasuo Kunugiza
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan. .,Department of Orthopaedic Surgery, Japan Community Healthcare Organization Hoshigaoka Medical Center, 4-8-1 Hoshigaoka, Hirakata, Osaka, Japan.
| | - Yoshiaki Taniyama
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan. .,Department of Rehabilitation Science, Osaka Health Science University, 1-9-27 Kita-ku Tenma, Osaka, Japan.
| | - Tetsuya Tomita
- Department of Orthopaedic Biomaterial Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|
44
|
Gao H, Li B, Zhao L, Jin Y. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration. Int J Nanomedicine 2015; 10:4009-27. [PMID: 26150714 PMCID: PMC4484652 DOI: 10.2147/ijn.s83357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Periodontal regeneration is an important part of regenerative medicine, with great clinical significance; however, the effects of nanotopography on the functions of periodontal ligament (PDL) stem cells (PDLSCs) and on PDLSC sheet based periodontal regeneration have never been explored. Titania nanotubes (NTs) layered on titanium (Ti) provide a good platform to study this. In the current study, the influence of NTs of different tube size on the functions of PDLSCs was observed. Afterward, an ectopic implantation model using a Ti/cell sheets/hydroxyapatite (HA) complex was applied to study the effect of the NTs on cell sheet based periodontal regeneration. The NTs were able to enhance the initial PDLSC adhesion and spread, as well as collagen secretion. With the Ti/cell sheets/HA complex model, it was demonstrated that the PDLSC sheets were capable of regenerating the PDL tissue, when combined with bone marrow mesenchymal stem cell (BMSC) sheets and HA, without the need for extra soluble chemical cues. Simultaneously, the NTs improved the periodontal regeneration result of the ectopically implanted Ti/cell sheets/HA complex, giving rise to functionally aligned collagen fiber bundles. Specifically, much denser collagen fibers, with abundant blood vessels as well as cementum-like tissue on the Ti surface, which well-resembled the structure of natural PDL, were observed in the NT5 and NT10 sample groups. Our study provides the first evidence that the nanotopographical cues obviously influence the functions of PDLSCs and improve the PDLSC sheet based periodontal regeneration size dependently, which provides new insight to the periodontal regeneration. The Ti/cell sheets/HA complex may constitute a good model to predict the effect of biomaterials on periodontal regeneration.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China ; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China ; Department of Stomatology, PLA 309th Hospital, Beijing, People's Republic of China
| | - Bei Li
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China ; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China ; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
45
|
Aneurysmal bone cyst with fibrous dysplasia resulting in partial third nerve palsy. Can J Ophthalmol 2015; 50:e27-9. [PMID: 25863863 DOI: 10.1016/j.jcjo.2014.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 11/18/2014] [Accepted: 12/03/2014] [Indexed: 11/22/2022]
|
46
|
Gerbaix M, Vico L, Ferrari SL, Bonnet N. Periostin expression contributes to cortical bone loss during unloading. Bone 2015; 71:94-100. [PMID: 25445447 DOI: 10.1016/j.bone.2014.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/19/2014] [Accepted: 10/15/2014] [Indexed: 01/26/2023]
Abstract
Periostin (a product of Postn gene) is a matricellular protein which is increased in periosteal osteoblasts and osteocytes upon mechanical stimulation. We previously reported that periostin-deficient mice (Postn(-/-)) have low bone mass and a diminished response to physical activity due to a lack of sclerostin (a product of Sost gene) inhibition by mechanical loading. Here we hypothesized that periostin could play a central role in the control of bone loss during unloading induced by hindlimb suspension (HU). In Postn(+/+) mice (wildtype littermate), HU significantly decreased femur BMD, as well as trabecular BV/TV and thickness (Tb.Th). Cortical bone volume and thickness at the femoral midshaft, also significantly decreased. These changes were explained by an inhibition of endocortical and periosteal bone formation activity and correlated with a decrease of Postn expression and a consecutive increase in Sost early after HU. Whereas trabecular bone loss in Postn(-/-) mice was comparable to Postn(+/+) mice, HU did not significantly alter cortical bone microstructure and strength in Postn(-/-) mice. Bone formation remained unchanged in these mice, as Sost did not increase in the absence of periostin. In contrast, changes in Dkk1, Rankl and Opg expression in response to HU were similar to Postn(+/+) mice, indicating that changes in periostin expression were quite specifically related to changes in Sost. In conclusion, HU inhibits periostin expression, which in turn plays an important role in cortical bone loss through an increase in Sost. These results further indicate that periostin is an essential mediator of cortical bone response to mechanical forces (loading and unloading).
Collapse
Affiliation(s)
- Maude Gerbaix
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva 14, Switzerland
| | - Laurence Vico
- Institute National de la Santé et de la Recherche Médicale (INSERM), Unité 1059, Laboratoire de Biologie Intégrée du Tissu Osseux, Université de Lyon, St-Etienne, France
| | - Serge L Ferrari
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva 14, Switzerland
| | - Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva 14, Switzerland.
| |
Collapse
|
47
|
Anyanechi CE, Saheeb BD. Inflammatory Morbidity due to Compound Mandibular Body Fractures: Does It Have a Relationship with Treatment Outcome? Med Princ Pract 2015; 24:238-43. [PMID: 25791420 PMCID: PMC5588288 DOI: 10.1159/000376581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/29/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the relationship between the degree of preoperative pain and trismus with the development of complications following the repair of isolated unilateral compound mandibular body fractures using a closed reduction technique. SUBJECTS AND METHODS This was a 7-year prospective study carried out at the Dental and Maxillofacial Surgery Clinic of the University of Calabar Teaching Hospital, Calabar, Nigeria. Of a total of 97 patients, 83 (85.6%) subjects (66 males, 17 females, ratio 5:1) were preoperatively evaluated for trismus and pain in a blinded manner by a single examiner, and complications were recorded postoperatively. The data obtained were statistically analyzed with EPI Info 2008 software. RESULTS Of the 83 patients treated, 13 (15.7%) developed complications. The fractures were most common in the age range of 21-40 years (n = 45, 54.2%). The age (p = 0.02) and gender (p = 0.01) distribution of the subjects was significant. The more severe the limitation of mouth opening (p = 0.03) and pain (p = 0.04) before treatment, the more complications developed, and these significantly affected treatment outcome. Impaired mastication and facial asymmetry (n = 17, 41.5%) were the most common complications. CONCLUSION This study showed that posttrauma pain and trismus due to unilateral mandibular body fractures may be associated with the development of complications. An adequately powered prospective study treating patients at 5 or 7 days is required in order to make the case for later intervention.
Collapse
Affiliation(s)
- Charles E. Anyanechi
- Department of Dental Surgery, University of Calabar Teaching Hospital, Calabar, Nigeria
- *Dr. Charles E. Anyanechi, Department of Dental Surgery, University of Calabar Teaching Hospital, Eastern Highway, Calabar 540001 (Nigeria), E-Mail
| | - Birch D. Saheeb
- Department of Oral and Maxillofacial Surgery, University of Benin Teaching Hospital, Benin City, Nigeria
| |
Collapse
|
48
|
Molecular, phenotypic aspects and therapeutic horizons of rare genetic bone disorders. BIOMED RESEARCH INTERNATIONAL 2014; 2014:670842. [PMID: 25530967 PMCID: PMC4230237 DOI: 10.1155/2014/670842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/12/2014] [Accepted: 08/24/2014] [Indexed: 12/21/2022]
Abstract
A rare disease afflicts less than 200,000 individuals, according to the National Organization for Rare Diseases (NORD) of the United States. Over 6,000 rare disorders affect approximately 1 in 10 Americans. Rare genetic bone disorders remain the major causes of disability in US patients. These rare bone disorders also represent a therapeutic challenge for clinicians, due to lack of understanding of underlying mechanisms. This systematic review explored current literature on therapeutic directions for the following rare genetic bone disorders: fibrous dysplasia, Gorham-Stout syndrome, fibrodysplasia ossificans progressiva, melorheostosis, multiple hereditary exostosis, osteogenesis imperfecta, craniometaphyseal dysplasia, achondroplasia, and hypophosphatasia. The disease mechanisms of Gorham-Stout disease, melorheostosis, and multiple hereditary exostosis are not fully elucidated. Inhibitors of the ACVR1/ALK2 pathway may serve as possible therapeutic intervention for FOP. The use of bisphosphonates and IL-6 inhibitors has been explored to be useful in the treatment of fibrous dysplasia, but more research is warranted. Cell therapy, bisphosphonate polytherapy, and human growth hormone may avert the pathology in osteogenesis imperfecta, but further studies are needed. There are still no current effective treatments for these bone disorders; however, significant promising advances in therapeutic modalities were developed that will limit patient suffering and treat their skeletal disabilities.
Collapse
|
49
|
Hu F, Wang W, Zhou HC, Shang XF. High expression of periostin is dramatically associated with metastatic potential and poor prognosis of patients with osteosarcoma. World J Surg Oncol 2014; 12:287. [PMID: 25224568 PMCID: PMC4247611 DOI: 10.1186/1477-7819-12-287] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023] Open
Abstract
Background Recent studies have found that periostin (PN), as a kind of secreted glycoprotein, is closely related to the metastatic potential and prognosis of many kinds of tumors. This study aimed to examine the expression of PN in patients with osteosarcoma and explore the relationship of PN expression with clinicopathologic factors and prognosis. Methods PN was detected by histopathological and immunohistochemical methods in 62 cases of osteosarcoma and 62 of osteochondroma. Detailed pathological and clinical data were collected by reviewing medical records. Results The results showed that increased PN protein expression was prevalent in osteosarcoma and was significantly associated with pathologic subtype (P =0.000), tumor size (P =0.016) and Enneking stage (P =0.047). Additionally, expression of PN was found to be an independent prognostic factor in osteosarcoma patients. High expression of PN protein is closely correlated to the tumor progression and poor survival of osteosarcoma. Conclusions Our data suggest that PN is a promising biomarker for identifying individuals with poor prognostic potential and suggests its possible use as a prognostic marker in patients with osteosarcoma.
Collapse
Affiliation(s)
- Fei Hu
- Department of Orthopedics, Anhui Provincial Hospital, Anhui Medical University, 17# Lujiang Road, Hefei 230001, People's Republic of China.
| | | | | | | |
Collapse
|
50
|
Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis 2014; 5:e1366. [PMID: 25118926 PMCID: PMC4454305 DOI: 10.1038/cddis.2014.330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 11/09/2022]
Abstract
Caspase-3 and -7 are generally known for their central role in the execution of apoptosis. However, their function is not limited to apoptosis and under specific conditions activation has been linked to proliferation or differentiation of specialised cell types. In the present study, we followed the localisation of the activated form of caspase-7 during intramembranous (alveolar and mandibular bones) and endochondral (long bones of limbs) ossification in mice. In both bone types, the activated form of caspase-7 was detected from the beginning of ossification during embryonic development and persisted postnatally. The bone status was investigated by microCT in both wild-type and caspase-7-deficient adult mice. Intramembranous bone in mutant mice displayed a statistically significant decrease in volume while the mineral density was not altered. Conversely, endochondral bone showed constant volume but a significant decrease in mineral density in caspase-7 knock-out mice. Cleaved caspase-7 was present in a number of cells that did not show signs of apoptosis. PCR array analysis of the mandibular bone of caspase-7-deficient versus wild-type mice pointed to a significant decrease in mRNA levels for Msx1 and Smad1 in early bone formation. These observations might explain the decrease in the alveolar bone volume of adult knock-out mice. In conclusion, this study is the first to report a non-apoptotic function of caspase-7 in osteogenesis and also demonstrates further specificities in endochondral versus intramembranous ossification.
Collapse
|