1
|
Nemska S, Gassmann M, Bang ML, Frossard N, Tavakoli R. Antagonizing the CX3CR1 Receptor Markedly Reduces Development of Cardiac Hypertrophy After Transverse Aortic Constriction in Mice. J Cardiovasc Pharmacol 2021; 78:792-801. [PMID: 34882111 DOI: 10.1097/fjc.0000000000001130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/01/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT Left-ventricular hypertrophy, characterized by cardiomyocyte hypertrophy, interstitial cell proliferation, and immune cell infiltration, is a high risk factor for heart failure and death. Chemokines interacting with G protein-coupled chemokine receptors probably play a role in left-ventricular hypertrophy development by promoting recruitment of activated leukocytes and modulating left-ventricular remodeling. Using the minimally invasive model of transverse aortic constriction in mice, we demonstrated that a variety of chemokine and chemokine receptor messenger Ribonucleic Acid are overexpressed in the early and late phase of hypertrophy progression. Among the chemokine receptors, Cx3cr1 and Ccr2 were most strongly overexpressed and were significantly upregulated at 3, 7, and 14 days after transverse aortic constriction. Ligands of CX3CR1 (Cx3cl1) and CCR2 (Ccl2, Ccl7, Ccl12) were significantly overexpressed in the left ventricle at the early stages after mechanical pressure overload. Pharmacological inhibition of CX3CR1 signaling using the antagonist AZD8797 led to a significant reduction of hypertrophy, whereas inhibition of CCR2 with the RS504393 antagonist did not show any effect. Furthermore, AZD8797 treatment reduced the expression of the hypertrophic marker genes Nppa and Nppb as well as the profibrotic genes Tgfb1 and Col1a1 at 14 days after transverse aortic constriction. These findings strongly suggest the involvement of the CX3CR1/CX3CL1 pathway in the pathogenesis of left-ventricular hypertrophy.
Collapse
MESH Headings
- Animals
- Aorta/physiopathology
- Aorta/surgery
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- CX3C Chemokine Receptor 1/antagonists & inhibitors
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Chemokine CX3CL1/genetics
- Chemokine CX3CL1/metabolism
- Collagen Type I, alpha 1 Chain/genetics
- Collagen Type I, alpha 1 Chain/metabolism
- Constriction
- Disease Models, Animal
- Fibrosis
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Male
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Pyrimidines/pharmacology
- Signal Transduction
- Thiazoles/pharmacology
- Time Factors
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Mice
Collapse
Affiliation(s)
- Simona Nemska
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Max Gassmann
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Marie-Louise Bang
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; and
- Institute of Genetic and Biomedical Research (IRGB) - National Research Council (CNR), Milan Unit, Milan, Italy
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Reza Tavakoli
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Kalra K, Eberhard J, Farbehi N, Chong JJ, Xaymardan M. Role of PDGF-A/B Ligands in Cardiac Repair After Myocardial Infarction. Front Cell Dev Biol 2021; 9:669188. [PMID: 34513823 PMCID: PMC8424099 DOI: 10.3389/fcell.2021.669188] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/20/2021] [Indexed: 01/06/2023] Open
Abstract
Platelet-derived growth factors (PDGFs) are powerful inducers of cellular mitosis, migration, angiogenesis, and matrix modulation that play pivotal roles in the development, homeostasis, and healing of cardiac tissues. PDGFs are key signaling molecules and important drug targets in the treatment of cardiovascular disease as multiple researchers have shown that delivery of recombinant PDGF ligands during or after myocardial infarction can reduce mortality and improve cardiac function in both rodents and porcine models. The mechanism involved cannot be easily elucidated due to the complexity of PDGF regulatory activities, crosstalk with other protein tyrosine kinase activators, and diversity of the pathological milieu. This review outlines the possible roles of PDGF ligands A and B in the healing of cardiac tissues including reduced cell death, improved vascularization, and improved extracellular matrix remodeling to improve cardiac architecture and function after acute myocardial injury. This review may highlight the use of recombinant PDGF-A and PDGF-B as a potential therapeutic modality in the treatment of cardiac injury.
Collapse
Affiliation(s)
- Kunal Kalra
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Joerg Eberhard
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nona Farbehi
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - James J Chong
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Munira Xaymardan
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Villano G, Verardo A, Martini A, Brocco S, Pesce P, Novo E, Parola M, Sacerdoti D, Di Pascoli M, Fedrigo M, Castellani C, Angelini A, Pontisso P, Bolognesi M. Hyperdynamic circulatory syndrome in a mouse model transgenic for SerpinB3. Ann Hepatol 2021; 19:36-43. [PMID: 31607648 DOI: 10.1016/j.aohep.2019.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES SerpinB3 is a cysteine protease inhibitor involved in several biological activities. It is progressively expressed in chronic liver disease, but not in normal liver. The role in vascular reactivity of this serpin, belonging to the same family of Angiotensin II, is still unknown. Our aim was to evaluate the in vivo and in vitro effects of SerpinB3 on systemic and splanchnic hemodynamics. MATERIAL AND METHODS Different hemodynamic parameters were evaluated by ultrasonography in two colonies of mice (transgenic for human SerpinB3 and C57BL/6J controls) at baseline and after chronic carbon tetrachloride (CCl4) treatment. In vitro SerpinB3 effect on mesenteric microvessels of 5 Wistar-Kyoto rats was analyzed measuring its direct action on: (a) preconstricted arteries, (b) dose-response curves to phenylephrine, before and after inhibition of angiotensin II type 1 receptors with irbesartan. Hearts of SerpinB3 transgenic mice and of the corresponding controls were also analyzed by morphometric assessment. RESULTS In SerpinB3 transgenic mice, cardiac output (51.6±21.5 vs 30.1±10.8ml/min, p=0.003), hepatic artery pulsatility index (0.85±0.13 vs 0.65±0.11, p<0.001) and portal vein blood flow (5.3±3.2 vs 3.1±1.8ml/min, p=0.03) were significantly increased, compared to controls. In vitro, recombinant SerpinB3 had no direct hemodynamic effect on mesenteric arteries, but it increased their sensitivity to phenylephrine-mediated vasoconstriction (p<0.01). This effect was suppressed by inhibiting angiotensin II type-1 receptors. CONCLUSIONS In transgenic mice, SerpinB3 is associated with a hyperdynamic circulatory syndrome-like pattern, possibly mediated by angiotensin receptors.
Collapse
Affiliation(s)
- Gianmarco Villano
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | | | - Silvia Brocco
- Dept. of Medicine, University of Padova, Padova, Italy
| | - Paola Pesce
- Dept. of Medicine, University of Padova, Padova, Italy
| | - Erica Novo
- Dept. of Clinical and Biological Sciences, Unit of Experimental Medicine and Interuniversity Center for Liver Pathophysiology, University of Torino, Torino, Italy
| | - Maurizio Parola
- Dept. of Clinical and Biological Sciences, Unit of Experimental Medicine and Interuniversity Center for Liver Pathophysiology, University of Torino, Torino, Italy
| | | | | | - Marny Fedrigo
- Dept. of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Chiara Castellani
- Dept. of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Annalisa Angelini
- Dept. of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
4
|
Castellani C, Fedrigo M, Tavano R, Cappellini R, Fedeli C, Mognato M, Abdel-Mottaleb MMA, Lamprecht A, Tudorancea I, Porumb V, Iliescu R, Angelini A, Papini E, Dimofte G. Tumor-facing hepatocytes significantly contribute to mild hyperthermia-induced targeting of rat liver metastasis by PLGA-NPs. Int J Pharm 2019; 566:541-548. [PMID: 31173801 DOI: 10.1016/j.ijpharm.2019.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 11/26/2022]
Abstract
The effect of mild hyperthermia (MHT) on nanoparticle (NP) accumulation in rat model liver metastasis and the contribution of neoplastic and non-neoplastic cells were characterized. CdSe/ZnS QD-doped poly(lactic-co-glycolic acid) (PLGA) NPs (155 ± 10 nm) were delivered via the ileocolic vein to metastatic livers 15 min after localized MW irradiation (1 min, 41 °C) or in normothermia (37 °C, NT). Quantitative analysis of tissue sections by confocal fluorescence microscopy 1 h after NP injection showed no NP tumor accumulation in NT. On the contrary, MHT increased NP association with tumor, compared to normal tissue. Counterstaining of specific markers showed that the MHT effect is due to an increased NP endocytosis not only by tumor cells, but also by hepatocytes at the growing tumor edge and, to a minor extent, by tumor-associated macrophages. High-NP capturing hepatocytes, close to the tumor, may be a relevant phenomenon in MHT-induced increased targeting of NPs to liver metastasis, influencing their therapeutic efficacy.
Collapse
Affiliation(s)
- Chiara Castellani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Italy
| | - Marny Fedrigo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Italy
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padova, Italy
| | | | - Chiara Fedeli
- Department of Biomedical Sciences, University of Padova, Italy
| | | | - Mona M A Abdel-Mottaleb
- PEPITE EA4267, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Alf Lamprecht
- PEPITE EA4267, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Germany.
| | - Ionut Tudorancea
- Department of Internal Medicine, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Romania.
| | - Vlad Porumb
- Department of Surgery, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Regional Institute of Oncology Iasi, Romania
| | - Radu Iliescu
- Department of Pharmacology, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Regional Institute of Oncology Iasi, Romania
| | - Annalisa Angelini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Italy
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padova, Italy.
| | - Gabriel Dimofte
- Department of Internal Medicine, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Romania
| |
Collapse
|
5
|
Nemska S, Monassier L, Gassmann M, Frossard N, Tavakoli R. Kinetic mRNA Profiling in a Rat Model of Left-Ventricular Hypertrophy Reveals Early Expression of Chemokines and Their Receptors. PLoS One 2016; 11:e0161273. [PMID: 27525724 PMCID: PMC4985150 DOI: 10.1371/journal.pone.0161273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/28/2016] [Indexed: 11/29/2022] Open
Abstract
Left-ventricular hypertrophy (LVH), a risk factor for heart failure and death, is characterized by cardiomyocyte hypertrophy, interstitial cell proliferation, and leukocyte infiltration. Chemokines interacting with G protein-coupled chemokine receptors may play a role in LVH development by promoting recruitment of activated leukocytes or modulating left-ventricular remodeling. Using a pressure overload-induced kinetic model of LVH in rats, we examined during 14 days the expression over time of chemokine and chemokine receptor mRNAs in left ventricles from aortic-banded vs sham-operated animals. Two phases were clearly distinguished: an inflammatory phase (D3-D5) with overexpression of inflammatory genes such as il-1ß, tnfa, nlrp3, and the rela subunit of nf-kb, and a hypertrophic phase (D7-D14) where anp overexpression was accompanied by a heart weight/body weight ratio that increased by more than 20% at D14. No cardiac dysfunction was detectable by echocardiography at the latter time point. Of the 36 chemokines and 20 chemokine receptors analyzed by a Taqman Low Density Array panel, we identified at D3 (the early inflammatory phase) overexpression of mRNAs for the monocyte chemotactic proteins CCL2 (12-fold increase), CCL7 (7-fold increase), and CCL12 (3-fold increase), for the macrophage inflammatory proteins CCL3 (4-fold increase), CCL4 (2-fold increase), and CCL9 (2-fold increase), for their receptors CCR2 (4-fold increase), CCR1 (3-fold increase), and CCR5 (3-fold increase), and for CXCL1 (8-fold increase) and CXCL16 (2-fold increase). During the hypertrophic phase mRNA expression of chemokines and receptors returned to the baseline levels observed at D0. Hence, this first exhaustive study of chemokine and chemokine receptor mRNA expression kinetics reports early expression of monocyte/macrophage-related chemokines and their receptors during the development of LVH in rats, followed by regulation of inflammation as LVH progresses.
Collapse
Affiliation(s)
- Simona Nemska
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Laboratoire d’Innovation Thérapeutique, UMR7200, Université de Strasbourg—CNRS, Strasbourg, France
| | - Laurent Monassier
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire EA7296, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Max Gassmann
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Nelly Frossard
- Laboratoire d’Innovation Thérapeutique, UMR7200, Université de Strasbourg—CNRS, Strasbourg, France
- * E-mail: (RT); (NF)
| | - Reza Tavakoli
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Department of Cardiac Surgery, Canton Hospital Lucerne, Lucerne, Switzerland
- * E-mail: (RT); (NF)
| |
Collapse
|
6
|
Li WQ, Li XH, Du J, Zhang W, Li D, Xiong XM, Li YJ. Rutaecarpine attenuates hypoxia-induced right ventricular remodeling in rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:757-67. [PMID: 27052575 DOI: 10.1007/s00210-016-1240-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/29/2016] [Indexed: 01/06/2023]
Abstract
Rutaecarpine has been shown to exhibit wide pharmacological effects in the cardiovascular system via stimulation of calcitonin gene-related peptide (CGRP) release. In the present study, the effect of rutaecarpine on hypoxia-induced right ventricular (RV) remodeling and the underlying mechanisms were evaluated. RV remodeling was induced by hypoxia (10 % O2, 3 weeks) in rats. Rats were treated with rutaecarpine (20 or 40 mg/kg) by intragastric administration. Proliferation of cardiac fibroblasts was induced by TGF-β1 (5 ng/mL) and determined by MTS and EdU incorporation method. Cardiac fibroblasts were treated with exogenous CGRP (10 or 100 nM). The concentrations of CGRP and TGF-β1 in plasma were measured by ELISA. The expression of eIF3a, p27, α-SMA, collagen-I/III, ANP, and BNP were measured by real-time PCR or western blot. Hypoxia induced an increase of right ventricle systolic pressure (RVSP), ration of RV/LV+S, and RV/tibial length in rats, while cardiac hypertrophy, apoptosis, and fibrosis were detected. The expression of ANP, BNP, α-SMA, collagen-I, collagen-III, eIF3a, and TGF-β1 was up-regulated, and the expression of p27 was down-regulated in the right ventricle of hypoxia-treated rats. The plasma concentration of CGRP was decreased and TGF-β1 was increased in hypoxia-treated rats. All of these effects induced by hypoxia were attenuated by rutaecarpine in a dose-dependent manner. In cultured cardiac fibroblasts, TGF-β1 significantly promoted the proliferation and up-regulated the expression of α-SMA and collagen-I/III, while the expression of eIF3a was up-regulated and the expression of p27 was down-regulated. The effects of TGF-β1 were attenuated by CGRP. CGRP8-37, a selective CGRP receptor antagonist, abolished the effects of CGRP. Rutaecarpine attenuates hypoxia-induced RV remodeling via stimulation of CGRP release, and the effects of rutaecarpine involve the eIF3a/p27 pathway.
Collapse
Affiliation(s)
- Wen-Qun Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiao-Hui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jie Du
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Wang Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Dai Li
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Xiao-Ming Xiong
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
7
|
Pathological Left Ventricular Hypertrophy and Stem Cells: Current Evidence and New Perspectives. Stem Cells Int 2015; 2016:5720758. [PMID: 26798360 PMCID: PMC4699040 DOI: 10.1155/2016/5720758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/17/2015] [Accepted: 09/06/2015] [Indexed: 12/17/2022] Open
Abstract
Left ventricular hypertrophy (LVH) is a strong predictor of adverse cardiovascular outcomes. It is the result of complex mechanisms that include not only an increase in protein synthesis and cell size but also proliferating cardiac progenitor cells and the influx of bone marrow-derived cells developing into cardiomyocytes. Stem and progenitor cells are known to contribute to the renewal of adult mammalian cardiomyocytes in case of myocardial injury or pressure and volume overload. They are activated in LVH and play a regulatory role in myocardial repair. They have high proliferative potential and secrete numerous cytokines, growth factors, and microRNAs that play important roles in cell differentiation, cardiac remodeling, and neovascularization. They are mobilized in response to either mechanical or chemical stimuli, hormones, or pharmacologic agents. Another important source of progenitor cells is the epicardial layer. It appears that precursor cells migrate from the epicardium to the myocardium in order to interact with myocardial cells. In addition, migratory cells participate in the formation of almost all cardiac structures in myocardial hypertrophy. Although the pathophysiological mechanisms are still obscure and further studies are required, their properties may open the door to regenerative cell therapy for the prevention of adverse remodeling.
Collapse
|
8
|
Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J Am Coll Cardiol 2015; 65:2057-66. [PMID: 25975467 DOI: 10.1016/j.jacc.2015.03.520] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/04/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although efforts continue to find new therapies to regenerate infarcted heart tissue, knowledge of the cellular and molecular mechanisms involved remains poor. OBJECTIVES This study sought to identify the origin of cardiac fibroblasts (CFs) in the infarcted heart to better understand the pathophysiology of ventricular remodeling following myocardial infarction (MI). METHODS Permanent genetic tracing of epicardium-derived cell (EPDC) and bone marrow-derived blood cell (BMC) lineages was established using Cre/LoxP technology. In vivo gene and protein expression studies, as well as in vitro cell culture assays, were developed to characterize EPDC and BMC interaction and properties. RESULTS EPDCs, which colonize the cardiac interstitium during embryogenesis, massively differentiate into CFs after MI. This response is disease-specific, because angiotensin II-induced pressure overload does not trigger significant EPDC fibroblastic differentiation. The expansion of epicardial-derived CFs follows BMC infiltration into the infarct site; the number of EPDCs equals that of BMCs 1 week post-infarction. BMC-EPDC interaction leads to cell polarization, packing, massive collagen deposition, and scar formation. Moreover, epicardium-derived CFs display stromal properties with respect to BMCs, contributing to the sustained recruitment of circulating cells to the damaged zone and the cardiac persistence of hematopoietic progenitors/stem cells after MI. CONCLUSIONS EPDCs, but not BMCs, are the main origin of CFs in the ischemic heart. Adult resident EPDC contribution to the CF compartment is time- and disease-dependent. Our findings are relevant to the understanding of post-MI ventricular remodeling and may contribute to the development of new therapies to treat this disease.
Collapse
|
9
|
Bone marrow-derived, neural-like cells have the characteristics of neurons to protect the peripheral nerve in microenvironment. Stem Cells Int 2015; 2015:941625. [PMID: 25861281 PMCID: PMC4378708 DOI: 10.1155/2015/941625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/27/2015] [Indexed: 11/18/2022] Open
Abstract
Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that "neural-like cells" may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were injected into the distal end of severed rabbit peripheral nerves that were no longer integrated with the central nervous system. Electromyography (EMG), immunohistochemistry, and transmission electron microscopy (TEM) were employed to analyze the development of the cells in the peripheral nerve environment. The CMAP amplitude appeared during the 5th week following surgery, at which time morphological characteristics of myelinated nerve fiber formation were observed. Bone marrow-derived neural-like cells could protect the disintegration and destruction of the injured peripheral nerve.
Collapse
|
10
|
Marketou ME, Parthenakis FI, Kalyva A, Pontikoglou C, Maragkoudakis S, Kontaraki JE, Zacharis EA, Chlouverakis G, Patrianakos A, Papadaki HA, Vardas PE. Increased mobilization of mesenchymal stem cells in patients with essential hypertension: the effect of left ventricular hypertrophy. J Clin Hypertens (Greenwich) 2014; 16:883-8. [PMID: 25329239 PMCID: PMC8031608 DOI: 10.1111/jch.12426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 02/04/2023]
Abstract
Stem cells have great clinical significance in many cardiovascular diseases. However, there are limited data regarding the involvement of mesenchymal stem cells (MSCs) in the pathophysiology of arterial hypertension. The aim of this study was to investigate the circulation of MSCs in patients with essential hypertension. The authors included 24 patients with untreated essential hypertension and 19 healthy individuals. Using flow cytometry, MSCs in peripheral blood, as a population of CD45-/CD34-/CD90+ cells and also as a population of CD45-/CD34-/CD105+ cells, were measured. The resulting counts were translated into the percentage of MSCs in the total cells. Hypertensive patients were shown to have increased circulating CD45-/CD34-/CD90+ compared with controls (0.0069%±0.012% compared with 0.00085%±0.0015%, respectively; P=.039). No significant difference in circulating CD45-/CD34-/CD105+ cells was found between hypertensive patients' and normotensive patients' peripheral blood (0.018%±0.013% compared with 0.015%±0.014%, respectively; P=.53). Notably, CD45-/CD34-/CD90+ circulating cells were positively correlated with left ventricular mass index (LVMI) (r=0.516, P<.001). Patients with essential hypertension have increased circulating MSCs compared with normotensive patients, and the number of MSCs is correlated with LVMI. These findings contribute to the understanding of the pathophysiology of hypertension and might suggest a future therapeutic target.
Collapse
Affiliation(s)
| | | | - Athanasia Kalyva
- Molecular Cardiology LaboratorySchool of MedicineUniversity of CreteCreteGreece
| | | | | | - Joanna E. Kontaraki
- Molecular Cardiology LaboratorySchool of MedicineUniversity of CreteCreteGreece
| | | | | | | | | | - Panos E. Vardas
- Department of CardiologyHeraklion University HospitalCreteGreece
| |
Collapse
|
11
|
Arnold RR, Loukanov T, Gorenflo M. Hypoplastic left heart syndrome - unresolved issues. Front Pediatr 2014; 2:125. [PMID: 25426478 PMCID: PMC4225740 DOI: 10.3389/fped.2014.00125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/27/2014] [Indexed: 12/03/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is one of the most challenging congenital heart defects. At present, it is expected that - at best - 70% of newborns with HLHS will reach adulthood. This review addresses the problems of right ventricular (RV) failure and insufficient growth of pulmonary vasculature in these patients. In order to further improve long-term prognosis translational research to control RV function, growth of pulmonary arteries and progress in chronic circulatory support are clearly needed to provide a further improvement for adults with HLHS.
Collapse
Affiliation(s)
- Raoul Roman Arnold
- Clinic for Paediatric and Congenital Cardiac Cardiology, University Medical Centre , Heidelberg , Germany
| | - Tsvetomir Loukanov
- Congenital Cardiac Surgery Section, Clinic for Cardiothoracic Surgery, University Medical Centre , Heidelberg , Germany
| | - Matthias Gorenflo
- Clinic for Paediatric and Congenital Cardiac Cardiology, University Medical Centre , Heidelberg , Germany
| |
Collapse
|
12
|
Castellani C, Vescovo G, Ravara B, Franzin C, Pozzobon M, Tavano R, Gorza L, Papini E, Vettor R, De Coppi P, Thiene G, Angelini A. The contribution of stem cell therapy to skeletal muscle remodeling in heart failure. Int J Cardiol 2013; 168:2014-21. [PMID: 23453873 DOI: 10.1016/j.ijcard.2013.01.168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/12/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND The aim of our study was to investigate whether stem cell (SC) therapy with human amniotic fluid stem cells (hAFS, fetal stem cells) and rat adipose tissue stromal vascular fraction cells-GFP positive cells (rSVC-GFP) was able to produce favorable effects on skeletal muscle (SM) remodeling in a well-established rat model of right heart failure (RHF). METHODS RHF was induced by monocrotaline (MCT) in Sprague-Dawley rats. Three weeks later, four millions of hAFS or rSVC-GFP cells were injected via tail vein. SM remodeling was assessed by Soleus muscle fiber cross sectional area (CSA), myocyte apoptosis, myosin heavy chain (MHC) composition, satellite cells pattern, and SC immunohistochemistry. RESULTS hAFS and rSVC-GFP injection produced significant SC homing in Soleus (0.68 ± 1.0 and 0.67 ± 0.75% respectively), with a 50% differentiation toward smooth muscle and endothelial cells. Pro-inflammatory cytokines were down regulated to levels similar to those of controls. SC-treated (SCT) rats showed increased CSA (p<0.004 vs MCT) similarly to controls with a reshift toward the slow MHC1 isoform. Apoptosis was significantly decreased (11.12.± 8.8 cells/mm(3) hAFS and 13.1+7.6 rSVC-GFP) (p<0.001 vs MCT) and similar to controls (5.38 ± 3.0 cells/mm(3)). RHF rats showed a dramatic reduction of satellite cells(MCT 0.2 ± 0.06% Pax7 native vs controls 2.60 ± 2.46%, p<0.001), while SCT induced a repopulation of both native and SC derived satellite cells (p<0.005). CONCLUSIONS SC treatment led to SM remodeling with satellite cell repopulation, decreased atrophy and apoptosis. Modulation of the cytokine milieu might play a crucial pathophysiological role with a possible scenario for autologous transplantation of SC in pts with CHF myopathy.
Collapse
Affiliation(s)
- Chiara Castellani
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Padalino MA, Castellani C, Dedja A, Fedrigo M, Vida VL, Thiene G, Stellin G, Angelini A. Extracellular matrix graft for vascular reconstructive surgery: evidence of autologous regeneration of the neoaorta in a murine model. Eur J Cardiothorac Surg 2012; 42:e128-35. [DOI: 10.1093/ejcts/ezs462] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Pressure overload leads to an increase of cardiac resident stem cells. Basic Res Cardiol 2012; 107:252. [PMID: 22361741 DOI: 10.1007/s00395-012-0252-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/29/2011] [Accepted: 02/06/2012] [Indexed: 01/13/2023]
Abstract
Recent studies suggest that the mammalian heart possesses some capacity for cardiac regeneration. This regenerative capacity is primarily documented postnatally and after myocardial infarction or pressure overload. Although the cell type that mediates endogenous regeneration is unclear, cardiac stem cells might be considered as potential candidates. To determine the number of c-kit + cardiac resident cells under conditions of pressure overload, we evaluated specimens derived from n = 8 patients with pressure overloaded single right ventricles in comparison to n = 4 explanted hearts from patients with dilated cardiomyopathy and n = 14 biopsies from children after heart transplantation. The age of the patients ranged from 16 days to 19 years. For quantification of cardiac stem cells, c-kit+/mast cell tryptase-/CD45- cells were counted and expressed as percent of the total nuclei. In specimens from patients with dilated cardiomyopathy, 0.13 ± 0.09% c-kit +/mast cell tryptase-/CD45- cells were detected. However, in specimens from patients with pressure overloaded single right ventricles, the numbers of c-kit+/mast cell tryptase-/CD45- cells were significantly higher (0.41 ±0.24%, p < 0.05). Under conditions of pressure overload, the right ventricle shows an approximately three-fold increase in c-kit+/mast cell tryptase-/CD45- cardiac resident cells. Despite the fact that this increased number of c-kit+ cells is not sufficient to prevent the failing heart from congestive heart failure, understanding the mechanism that leads to an increase of presumably cardiac resident stem cells under conditions of pressure overload might help to develop new strategies to enhance endogenous repair.
Collapse
|
15
|
Angelini A, Castellani C, Ravara B, Franzin C, Pozzobon M, Tavano R, Libera LD, Papini E, Vettor R, De Coppi P, Thiene G, Vescovo G. Stem-cell therapy in an experimental model of pulmonary hypertension and right heart failure: role of paracrine and neurohormonal milieu in the remodeling process. J Heart Lung Transplant 2012; 30:1281-93. [PMID: 21989772 DOI: 10.1016/j.healun.2011.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/04/2011] [Accepted: 07/28/2011] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In this study we investigated the effect of human amniotic fluid stem (hAFS) cells and rat adipose tissue stromal vascular fraction GFP-positive cell (rSVC-GFP) therapy and the contribution of the paracrine and neurohormonal milieu to cardiac and pulmonary vascular remodeling in a rat model of pulmonary hypertension (PH) and right heart failure (RHF). METHODS Sprague-Dawley rats were injected with monocrotaline (MCT). Four million hAFS or rSVC-GFP cells were injected via the tail vein 3 weeks after MCT. RHF was confirmed by RV hypertrophy/dilation and by brain natriuretic peptide (BNP) level. Cytokine profile was assessed by Multiplex array. Stem cell (SC) differentiation was studied by immunofluorescence. RESULTS MCT rats showed eccentric RV hypertrophy with increased RV dilation (measured as right ventricular mass/right ventricular volume [RVM/RVV]: MCT, 1.46 ± 0.12; control, 2.33 ± 0.24; p = 0.01), and increased RV hypertrophy (measured as LVM/RVM: MCT, 1.58 ± 0.06; control, 2.83 ± 0.1; p < 0.00001), increased BNP (MCT, 5.2 ± 1.2; control, 1.5 ± 0.1; p < 0.001) and both pro- and anti-inflammatory cytokines. SC produced a fall of BNP (hAFS, 2.1 ± 0.7; rSVC-GFP, 1.98 ± 1.3; p < 0.001) and pro-inflammatory cytokines. Positive RV remodeling with decreased RV dilation (RVM/RVV: hAFS, 1.87 ± 0.44; rSVC-GFP, 2.12 ± 0.24; p < 0.03 and p < 0.05 vs MCT) and regression of RV hypertrophy (LVM/RVM: hAFS, 2.06 ± 0.08; rSVC-GFP, 2.16 ± 0.08; p < 0.00001 vs MCT) was seen together with a decrease in medial wall thickness of pulmonary arterioles (hAFS, 35.33 ± 2.78%; rSVC-GFP, 37.15 ± 2.92%; p = 0.0001 vs MCT). CONCLUSIONS SC engrafted in the lung, heart and skeletal muscle modulated the pro- and anti-inflammatory cytokine milieu, and produced a positive neurohormonal response. This was accompanied by positive cardiac and pulmonary vascular remodeling, with formation mainly of new vascular cells.
Collapse
Affiliation(s)
- Annalisa Angelini
- Department of Medico-Diagnostic Sciences and Special Therapies, University of Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mimeault M, Batra SK. Great promise of tissue-resident adult stem/progenitor cells in transplantation and cancer therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 741:171-86. [PMID: 22457110 DOI: 10.1007/978-1-4614-2098-9_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recent progress in tissue-resident adult stem/progenitor cell research has inspired great interest because these immature cells from your own body can act as potential, easily accessible cell sources for cell transplantation in regenerative medicine and cancer therapies. The use of adult stem/progenitor cells endowed with a high self-renewal ability and multilineage differentiation potential, which are able to regenerate all the mature cells in the tissues from their origin, offers great promise in replacing non-functioning or lost cells and regenerating diseased and damaged tissues. The presence of a small subpopulation of adult stem/progenitor cells in most tissues and organs provides the possibility of stimulating their in vivo differentiation, or of using their ex vivo expanded progenies for cell-replacement and gene therapies with multiple applications in humans without a high-risk of graft rejection and major side effects. Among the diseases that could be treated by adult stem cell-based therapies are hematopoietic and immune disorders, multiple degenerative disorders such as Parkinson's and Alzheimer's diseases, Types 1 and 2 diabetes mellitus as well as skin, eye, liver, lung, tooth and cardiovascular disorders. In addition, a combination of the current cancer treatments with an adjuvant treatment consisting of an autologous or allogeneic adult stem/progenitor cell transplantation also represents a promising strategy for treating and even curing diverse aggressive, metastatic, recurrent and lethal cancers. In this chapter, we reviewed the most recent advancements on the characterization of phenotypic and functional properties of adult stem/progenitor cell types found in bone marrow, heart, brain and other tissues and discussed their therapeutic implications in the stem cell-based transplantation therapy.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | | |
Collapse
|
17
|
Stellos K, Rahmann A, Kilias A, Ruf M, Sopova K, Stamatelopoulos K, Jorbenadze R, Weretka S, Geisler T, Gawaz M, Weig HJ, Bigalke B. Expression of platelet-bound stromal cell-derived factor-1 in patients with non-valvular atrial fibrillation and ischemic heart disease. J Thromb Haemost 2012; 10:49-55. [PMID: 22044645 DOI: 10.1111/j.1538-7836.2011.04547.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Blood cell infiltration and inflammation are involved in atrial remodelling during atrial fibrillation (AF) although the exact mechanisms of inflammatory cell recruitment remain poorly understood. Platelet-bound stromal cell-derived factor-1 (SDF-1) is increased in cases of ischemic myocardium and regulates recruitment of CXCR4(+) cells on the vascular wall. Whether platelet-bound SDF-1 expression is differentially influenced by non-valvular paroxysmal or permanent atrial fibrillation (AF) in patients with stable angina pectoris (SAP) or acute coronary syndrome (ACS) has not been reported so far. METHODS AND RESULTS A total of 1291 consecutive patients with coronary artery disease (CAD) undergoing coronary angiography were recruited. Among the patients with SAP, platelet-bound-SDF-1 is increased in patients with paroxysmal AF compared with SR or to persistent/permanent AF (P < 0.05 for both). Platelet-bound SDF-1 correlated with plasma SDF-1 (r = 0.488, P = 0.013) in patients with AF and ACS, which was more pronounced among patients with persistent AF (r = 0.842, P = 0.009). Plasma SDF-1 was increased in persistent/permanent AF compared with SR. Patients with ACS presented with enhanced platelet-bound-SDF-1 compared with SAP. Interestingly, among patients with ACS, patients with paroxysmal or persistent/permanent AF presented with an impaired platelet-bound SDF-1 expression compared with patients with SR. CONCLUSIONS Differential expression of platelet-bound and plasma SDF-1 was observed in patients with AF compared with SR which may be involved in progenitor cell mobilization and inflammatory cell recruitment in patients with AF and ischemic heart disease. Further in vivo studies are required to elucidate the role of SDF-1 in atrial remodeling and the atrial fibrillation course.
Collapse
Affiliation(s)
- Konstantinos Stellos
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls-Universität Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol Res Int 2011; 2011:564089. [PMID: 21766025 PMCID: PMC3135112 DOI: 10.1155/2011/564089] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/20/2011] [Accepted: 03/31/2011] [Indexed: 12/14/2022] Open
Abstract
Therapy with mesenchymal stem cells (MSCs) has showed to be promising due to its immunomodulatory function. Traumatic brain injury (TBI) triggers immune response and release of inflammatory mediators, mainly cytokines, by glial cells creating a hostile microenvironment for endogenous neural stem cells (NSCs). We investigated the effects of factors secreted by MSCs on NSC in vitro and analyzed cytokines expression in vitro in a TBI model. Our in vitro results show that MSC-secreted factors increase NSC proliferation and induce higher expression of GFAP, indicating a tendency toward differentiation into astrocytes. In vivo experiments showed that MSC injection at an acute model of brain injury diminishes a broad profile of cytokines in the tissue, suggesting that MSC-secreted factors may modulate the inflammation at the injury site, which may be of interest to the development of a favorable microenvironment for endogenous NSC and consequently to repair the injured tissue.
Collapse
|
19
|
Yu L, Hales CA. Effect of chemokine receptor CXCR4 on hypoxia-induced pulmonary hypertension and vascular remodeling in rats. Respir Res 2011; 12:21. [PMID: 21294880 PMCID: PMC3042398 DOI: 10.1186/1465-9921-12-21] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 02/04/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND CXCR4 is the receptor for chemokine CXCL12 and reportedly plays an important role in systemic vascular repair and remodeling, but the role of CXCR4 in development of pulmonary hypertension and vascular remodeling has not been fully understood. METHODS In this study we investigated the role of CXCR4 in the development of pulmonary hypertension and vascular remodeling by using a CXCR4 inhibitor AMD3100 and by electroporation of CXCR4 shRNA into bone marrow cells and then transplantation of the bone marrow cells into rats. RESULTS We found that the CXCR4 inhibitor significantly decreased chronic hypoxia-induced pulmonary hypertension and vascular remodeling in rats and, most importantly, we found that the rats that were transplanted with the bone marrow cells electroporated with CXCR4 shRNA had significantly lower mean pulmonary pressure (mPAP), ratio of right ventricular weight to left ventricular plus septal weight (RV/(LV+S)) and wall thickness of pulmonary artery induced by chronic hypoxia as compared with control rats. CONCLUSIONS The hypothesis that CXCR4 is critical in hypoxic pulmonary hypertension in rats has been demonstrated. The present study not only has shown an inhibitory effect caused by systemic inhibition of CXCR4 activity on pulmonary hypertension, but more importantly also has revealed that specific inhibition of the CXCR4 in bone marrow cells can reduce pulmonary hypertension and vascular remodeling via decreasing bone marrow derived cell recruitment to the lung in hypoxia. This study suggests a novel therapeutic approach for pulmonary hypertension by inhibiting bone marrow derived cell recruitment.
Collapse
Affiliation(s)
- Lunyin Yu
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|