1
|
Weitz J, Nishizaki D, Liau J, Patel J, Ng I, Sun S, Ramms D, Zou J, Wishart B, Rull J, Baumgartner J, Kelly K, White R, Veerapong J, Hosseini M, Patel H, Botta G, Gutkind JS, Tiriac H, Kato S, Lowy AM. Cyclin-Dependent Kinase 4/6 Inhibition as a Novel Therapy for Peritoneal Mucinous Carcinomatosis With GNAS Mutations. J Clin Oncol 2024:JCO2400511. [PMID: 39413348 DOI: 10.1200/jco.24.00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/01/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024] Open
Abstract
PURPOSE Mucinous neoplasms of the gastrointestinal tract are characterized by a propensity for metastasis to the peritoneum, resulting in peritoneal mucinous carcinomatosis (PMC). A subset of these tumors, most often originating in the appendix, harbor mutations in the GNAS oncogene. While the natural history of GNAS-mutant PMC varies, patient outcomes are generally poor, as is response to cytotoxic chemotherapy. The purpose of this study was to evaluate the clinical efficacy of single-agent palbociclib, a cyclin-dependent kinase (CDK)4/6 inhibitor, in patients with GNAS-mutant PMC. PATIENTS AND METHODS We enrolled 16 patients with PMC in a single-arm personalized cancer therapy trial. For all patients, tumor tissue and/or circulating tumor DNA genomic profiling using next-generation sequencing and, when possible, PD-L1 expression, tumor mutational burden, and microsatellite instability status was assessed. Twelve of 16 patients had previous disease progression on at least one previous line of chemotherapy. The primary tumor was appendix in 13 patients, unknown in two patients, and pancreas in one patient. Eleven cases were classified as low grade, and five as high grade. RESULTS In 13 of 16 patients, we observed a decrease in carcinoembryonic antigen (CEA), and in six patients, the CEA declined by >50%. As measured by clinical and modified peritoneal RECIST criteria, 50% of evaluable patients had stable disease after 12 months of palbociclib. At a median follow-up of 17.6 months, median survival has not been reached. Clinical response to CDK4/6 inhibition was mirrored in tumors with GNAS mutation and mucinous histology using an ex vivo preclinical platform. CONCLUSION CDK4/6 inhibition with palbociclib had clinical activity in PMC characterized by mutations in GNAS that was superior to that previously reported with cytotoxic chemotherapy. CDK4/6 inhibition is a novel therapeutic strategy worthy of further evaluation in this subgroup of gastrointestinal neoplasms.
Collapse
Affiliation(s)
- Jonathan Weitz
- Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer Center, La Jolla, CA
| | - Joy Liau
- Department of Radiology, University of California San Diego, La Jolla, CA
| | - Jay Patel
- Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Isabella Ng
- Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Siming Sun
- Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Dana Ramms
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA
| | - Jingjing Zou
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA
- Moores Cancer Center, UCSD, La Jolla, CA
| | - Brian Wishart
- Department of Surgery, University of Wisconsin, Madison, WI
| | - Jordan Rull
- Department of Surgery, University of Wisconsin, Madison, WI
| | - Joel Baumgartner
- Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Kaitlyn Kelly
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA
- Moores Cancer Center, UCSD, La Jolla, CA
| | - Rebekah White
- Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Jula Veerapong
- Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Hitendra Patel
- Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Gregory Botta
- Department of Surgery, University of California, San Diego, La Jolla, CA
| | - J Sylvio Gutkind
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA
| | - Herve Tiriac
- Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer Center, La Jolla, CA
| | - Andrew M Lowy
- Department of Surgery, University of California, San Diego, La Jolla, CA
| |
Collapse
|
2
|
Huang A, Shi J, Sun Z, Yang Y, Gao Z, Gu J. Identification of a prognostic signature and ENTR1 as a prognostic biomarker for colorectal mucinous adenocarcinoma. Front Oncol 2023; 13:1061785. [PMID: 37182178 PMCID: PMC10172661 DOI: 10.3389/fonc.2023.1061785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Background Mucinous adenocarcinoma (MAC) is a unique clinicopathological colorectal cancer (CRC) type that has been recognized as a separate entity from non-mucinous adenocarcinoma (NMAC), with distinct clinical, pathologic, and molecular characteristics. We aimed to construct prognostic signatures and identifying candidate biomarkers for patients with MAC. Methods Differential expression analysis, weighted correlation network analysis (WGCNA), and least absolute shrinkage and selection operator (LASSO)-Cox regression model were used to identify hub genes and construct a prognostic signature based on RNA sequencing data from TCGA datasets. The Kaplan-Meier survival curve, gene set enrichment analysis (GSEA), cell stemness, and immune infiltration were analyzed. Biomarker expression in MAC and corresponding normal tissues from patients operated in 2020 was validated using immunohistochemistry. Results We constructed a prognostic signature based on ten hub genes. Patients in the high-risk group had significantly worse overall survival (OS) than patients in the low-risk group (p < 0.0001). We also found that ENTR1 was closely associated with OS (p = 0.016). ENTR1 expression was significantly positively correlated with cell stemness of MAC (p < 0.0001) and CD8+ T cell infiltration (p = 0.01), whereas it was negatively associated with stromal scores (p = 0.03). Finally, the higher expression of ENTR1 in MAC tissues than in normal tissues was validated. Conclusion We established the first MAC prognostic signature, and determined that ENTR1 could serve as a prognostic marker for MAC.
Collapse
Affiliation(s)
- An Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jingyi Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhuang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yong Yang
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Jin Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Peking Tsinghua Center for Life Science, Peking University International Cancer Center, Beijing, China
- *Correspondence: Jin Gu,
| |
Collapse
|
3
|
Afolabi HA, Salleh SM, Zakaria Z, Ch’ng ES, Mohd Nafi SN, Abdul Aziz AAB, Irekeola AA, Wada Y, Al-Mhanna SB. A GNAS Gene Mutation's Independent Expression in the Growth of Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14225480. [PMID: 36428574 PMCID: PMC9688108 DOI: 10.3390/cancers14225480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
Globally, colorectal carcinoma CRC is the third most common cancer and the third most common reason for cancer-associated mortality in both genders. The GNAS mutations are significantly linked with poor prognosis and failed treatment outcomes in CRC. A systematic review and meta-analysis of multiple studies executed following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria and registered with PROSPERO (registration number: CRD42021256452). The initial search includes a total of 271 publications; however, only 30 studies that merit the eligibility criteria were eventually chosen. Data analysis via OpenMeta Analyst and comprehensive meta-analysis 3.0 (CMA 3.0) software were used to investigate the prevalence of GNAS gene mutation among CRC patients. The meta-analysis consisted of 10,689 participants with most being males 6068/10,689 (56.8%). Overall, prevalence of GNAS mutations was 4.8% (95% CI: 3.1−7.3) with I2 = 94.39% and (p < 0.001). In 11/30 studies, the frequency of GNAS gene mutations was majorly in codons R201C [40.7% (95% CI: 29.2−53.2%)] and in codon R201H [39.7% (95% CI = 27.1−53.8)]. Overall prevalence of GNAS mutations was highest among the male gender: 53.9% (95% CI: 48.2−59.5%: I2 = 94.00%, (p < 0.001), tumour location (colon): 50.5% (95% CI: 33.2−67.6%: I2 = 97.93%, (p < 0.001), tumour grade (Well): 57.5% (95% CI: 32.4−79.2%: I2 = 98.10%, (p < 0.001) and tumour late stage: 67.9% (95% CI: 49.7−84.3%: I2 = 98.%, (p < 0.001). When stratified according to study location, a higher prevalence was observed in Japan (26.8%) while Italy has the lowest (0.4%). Overall prevalence of GNAS gene mutations was 4.8% with codons R201C and R201H being the most mutated, and the results conformed with numerous published studies on GNAS mutation.
Collapse
Affiliation(s)
- Hafeez Abiola Afolabi
- Department of General Surgery, School of Medical Sciences, Hospital Universiti Sains Malaysia, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Hospital Universiti Sains Malaysia (HUSM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia (USM), Health Campus, Kubang Kerian 16150, Malaysia
- Correspondence: or
| | - Zaidi Zakaria
- Department of General Surgery, School of Medical Sciences, Hospital Universiti Sains Malaysia, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Ewe Seng Ch’ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia USM, Kepala Batas 13200, Malaysia
| | - Siti Norasikin Mohd Nafi
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia (USM), Health Campus, Kubang Kerian 16150, Malaysia
| | - Ahmad Aizat Bin Abdul Aziz
- Department of Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Yusuf Wada
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Sameer Badri Al-Mhanna
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
4
|
Hashimoto T, Takayanagi D, Yonemaru J, Naka T, Nagashima K, Yatabe Y, Shida D, Hamamoto R, Kleeman SO, Leedham SJ, Maughan T, Takashima A, Shiraishi K, Sekine S. Clinicopathological and molecular characteristics of RSPO fusion-positive colorectal cancer. Br J Cancer 2022; 127:1043-1050. [PMID: 35715628 PMCID: PMC9470590 DOI: 10.1038/s41416-022-01880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND RSPO fusions that lead to WNT pathway activation are potential therapeutic targets in colorectal cancer (CRC), but their clinicopathological significance remains unclear. METHODS We screened 1019 CRCs for RSPO fusions using multiplex reverse transcription-PCR. The RSPO fusion-positive tumours were subjected to whole-exome sequencing (WES). RESULTS Our analysis identified 29 CRCs with RSPO fusions (2.8%), consisting of five with an EIF3E-RSPO2 fusion and 24 with PTPRK-RSPO3 fusions. The patients were 17 women and 12 men. Thirteen tumours (45%) were right-sided. Histologically, approximately half of the tumours (13/29, 45%) had a focal or extensive mucinous component that was significantly more frequent than the RSPO fusion-negative tumours (13%; P = 8.1 × 10-7). Four tumours (14%) were mismatch repair-deficient. WES identified KRAS, BRAF, and NRAS mutations in a total of 27 tumours (93%). In contrast, pathogenic mutations in major WNT pathway genes, such as APC, CTNNB1 and RNF43, were absent. RSPO fusion status did not have a statistically significant influence on the overall or recurrence-free survival. These clinicopathological and genetic features were also confirmed in a pooled analysis of previous studies. CONCLUSION RSPO fusion-positive CRCs constitute a rare subgroup of CRCs with several characteristic clinicopathological and genetic features.
Collapse
Affiliation(s)
- Taiki Hashimoto
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Daisuke Takayanagi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Junpei Yonemaru
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoaki Naka
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Dai Shida
- Division of Colorectal Surgery, National Cancer Center Hospital, Tokyo, Japan.,Division of Frontier Surgery, The Institute of Medical Science, Tokyo, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Welcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | | | - Atsuo Takashima
- Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Shigeki Sekine
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan. .,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
5
|
Hasbal-Celikok G, Aksoy-Sagirli P, Altiparmak-Ulbegi G, Can A. Identification of AKT1/β-catenin mutations conferring cetuximab and chemotherapeutic drug resistance in colorectal cancer treatment. Oncol Lett 2021; 21:209. [PMID: 33574948 DOI: 10.3892/ol.2021.12470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
In anticancer therapy, the effectiveness of therapeutics is limited by mutations causing drug resistance. KRAS mutations are the only determinant for cetuximab resistance in patients with colorectal cancer (CRC). However, cetuximab treatment has not been fully successful in the majority of patients with wild-type (WT) KRAS. Therefore, it is important to determine new predictive mutations in CRC treatment. In the present study, the association between AKT1/β-catenin (CTNNB1) mutations with the drug resistance to cetuximab and other chemotherapeutics used in the CRC treatment was investigated by using site-directed mutagenesis, transfection, western blotting and cell proliferation inhibition assay. Cetuximab resistance was higher in the presence of AKT1 E17K, E49K and L52R mutations, as well as CTNNB1 T41A, S45F and S33P mutations compared with that of respective WT proteins. AKT1/CTNNB1 mutations were also associated with oxaliplatin, irinotecan, SN-38 and 5-fluorouracil resistance. Furthermore, mutant cell viability in oxaliplatin treatment was more effectively inhibited compared with that of the other chemotherapeutic drugs. In conclusion, AKT1/CTNNB1 mutations may be used as an important predictive biomarker in CRC treatment.
Collapse
Affiliation(s)
- Gozde Hasbal-Celikok
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Fatih, Istanbul 34116, Turkey
| | - Pinar Aksoy-Sagirli
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Fatih, Istanbul 34116, Turkey
| | - Gulsum Altiparmak-Ulbegi
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Fatih, Istanbul 34116, Turkey
| | - Ayse Can
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Fatih, Istanbul 34116, Turkey
| |
Collapse
|
6
|
Ye ZL, Qiu MZ, Tang T, Wang F, Zhou YX, Lei MJ, Guan WL, He CY. Gene mutation profiling in Chinese colorectal cancer patients and its association with clinicopathological characteristics and prognosis. Cancer Med 2019; 9:745-756. [PMID: 31782259 PMCID: PMC6970031 DOI: 10.1002/cam4.2727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background Gene mutations may play an important role in the development, response to treatment and prognosis of colorectal cancer (CRC). This retrospective study aimed to investigate the mutation profiling of Chinese patients with CRC, and its correlation with clinicopathological features and prognosis. Methods This study included 1190 Chinese CRC patients who were diagnosed between May 1998 and December 2018 and received clinical genetic testing. The OncoCarta Panel was used to test a total of 238 possible mutations in 19 common oncogenes. Results Five hundred and eighty‐two (48.9%) cases were detected with gene mutations. Of the 582 cases, there were 111 cases (19.7%) with two concurrent mutations, and six cases (1.0%) with three concurrent mutations. KRAS was the most common gene mutation that occurred in all cases (429, 36.1%), followed by PIK3CA (121, 10.2%), NRAS (47, 3.9%), BRAF (35, 2.9%), HRAS (11, 0.9%) and epidermal growth factor receptor (EGFR) (11, 0.9%). AKT1, KIT, FGFR1, FGFR3, FLT3, CDK, ERBB2, ABL1, MET, RET and PDGFRA mutations were also detected in several cases. When it came to prognosis, we found that KRAS/NRAS/PIK3CA/BRAF mutation was not associated with prognosis. But BRAF mutation was associated with poor prognosis in patients who accepted anti‐EGFR therapy. Conclusions The molecular testing offered the clinical data and mutation profile of Chinese CRC patients. The information of these mutated genes may help to find out the correlation between mutated genes and the development or prognosis of CRC.
Collapse
Affiliation(s)
- Zu-Lu Ye
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Miao-Zhen Qiu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tao Tang
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Fang Wang
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi-Xin Zhou
- Department of VIP, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Meng-Jie Lei
- Department of VIP, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wen-Long Guan
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cai-Yun He
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Fedorova MS, Krasnov GS, Lukyanova EN, Zaretsky AR, Dmitriev AA, Melnikova NV, Moskalev AA, Kharitonov SL, Pudova EA, Guvatova ZG, Kobelyatskaya AA, Ishina IA, Slavnova EN, Lipatova AV, Chernichenko MA, Sidorov DV, Popov AY, Kiseleva MV, Kaprin AD, Snezhkina AV, Kudryavtseva AV. The CIMP-high phenotype is associated with energy metabolism alterations in colon adenocarcinoma. BMC MEDICAL GENETICS 2019; 20:52. [PMID: 30967137 PMCID: PMC6454590 DOI: 10.1186/s12881-019-0771-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND CpG island methylator phenotype (CIMP) is found in 15-20% of malignant colorectal tumors and is characterized by strong CpG hypermethylation over the genome. The molecular mechanisms of this phenomenon are not still fully understood. The development of CIMP is followed by global gene expression alterations and metabolic changes. In particular, CIMP-low colon adenocarcinoma (COAD), predominantly corresponded to consensus molecular subtype 3 (CMS3, "Metabolic") subgroup according to COAD molecular classification, is associated with elevated expression of genes participating in metabolic pathways. METHODS We performed bioinformatics analysis of RNA-Seq data from The Cancer Genome Atlas (TCGA) project for CIMP-high and non-CIMP COAD samples with DESeq2, clusterProfiler, and topGO R packages. Obtained results were validated on a set of fourteen COAD samples with matched morphologically normal tissues using quantitative PCR (qPCR). RESULTS Upregulation of multiple genes involved in glycolysis and related processes (ENO2, PFKP, HK3, PKM, ENO1, HK2, PGAM1, GAPDH, ALDOA, GPI, TPI1, and HK1) was revealed in CIMP-high tumors compared to non-CIMP ones. Most remarkably, the expression of the PKLR gene, encoding for pyruvate kinase participating in gluconeogenesis, was decreased approximately 20-fold. Up to 8-fold decrease in the expression of OGDHL gene involved in tricarboxylic acid (TCA) cycle was observed in CIMP-high tumors. Using qPCR, we confirmed the increase (4-fold) in the ENO2 expression and decrease (2-fold) in the OGDHL mRNA level on a set of COAD samples. CONCLUSIONS We demonstrated the association between CIMP-high status and the energy metabolism changes at the transcriptomic level in colorectal adenocarcinoma against the background of immune pathway activation. Differential methylation of at least nine CpG sites in OGDHL promoter region as well as decreased OGDHL mRNA level can potentially serve as an additional biomarker of the CIMP-high status in COAD.
Collapse
Affiliation(s)
- Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrew R. Zaretsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey L. Kharitonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena A. Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Zulfiya G. Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Irina A. Ishina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Slavnova
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria A. Chernichenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry V. Sidorov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Marina V. Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Siena S, Sartore-Bianchi A, Garcia-Carbonero R, Karthaus M, Smith D, Tabernero J, Van Cutsem E, Guan X, Boedigheimer M, Ang A, Twomey B, Bach BA, Jung AS, Bardelli A. Dynamic molecular analysis and clinical correlates of tumor evolution within a phase II trial of panitumumab-based therapy in metastatic colorectal cancer. Ann Oncol 2019; 29:119-126. [PMID: 28945848 PMCID: PMC5834114 DOI: 10.1093/annonc/mdx504] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Mutations in rat sarcoma (RAS) genes may be a mechanism of secondary resistance in epidermal growth factor receptor inhibitor-treated patients. Tumor-tissue biopsy testing has been the standard for evaluating mutational status; however, plasma testing of cell-free DNA has been shown to be a more sensitive method for detecting clonal evolution. Materials and methods Archival pre- and post-treatment tumor biopsy samples from a phase II study of panitumumab in combination with irinotecan in patients with metastatic colorectal cancer (mCRC) that also collected plasma samples before, during, and after treatment were analyzed for emergence of mutations during/post-treatment by next-generation sequencing and BEAMing. Results The rate of emergence of tumor tissue RAS mutations was 9.5% by next-generation sequencing (n = 21) and 6.3% by BEAMing (n = 16). Plasma testing of cell-free DNA by BEAMing revealed a mutant RAS emergence rate of 36.7% (n = 39). Exploratory outcomes analysis of plasma samples indicated that patients who had emergent RAS mutations at progression had similar median progression-free survival to those patients who remained wild-type at progression. Serial analysis of plasma samples showed that the first detected emergence of RAS mutations preceded progression by a median of 3.6 months (range, −0.3 to 7.5 months) and that there did not appear to be a mutant RAS allele frequency threshold that could predict near-term outcomes. Conclusions This first prospective analysis in mCRC showed that serial plasma biopsies are more inclusive than tissue biopsies for evaluating global tumor heterogeneity; however, the clinical utility of plasma testing in mCRC remains to be further explored. ClinicalTrials.gov Identifier NCT00891930
Collapse
Affiliation(s)
- S Siena
- Department of Hematology and Oncology, Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - A Sartore-Bianchi
- Department of Hematology and Oncology, Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - R Garcia-Carbonero
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, CNIO, CIBERONC, Universidad Complutense, Madrid, Spain
| | - M Karthaus
- Department for Hematology and Oncology, Staedt Klinikum Neuperlach and Harlaching, Munich, Germany
| | - D Smith
- Department of Gastroenterology, University Hospital of Bordeaux, Hopital Haut Levaeque, Bordeaux, France
| | - J Tabernero
- Department of Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), CIBERONC, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - E Van Cutsem
- Department of Gastroenterology and Digestive Oncology, University Hospitals Leuven, Leuven, Belgium.,KU Leuven, Leuven, Belgium
| | - X Guan
- Amgen Inc., Thousand Oaks, CA, USA
| | | | - A Ang
- Amgen Inc., Thousand Oaks, CA, USA
| | - B Twomey
- Amgen Inc., Thousand Oaks, CA, USA
| | - B A Bach
- Amgen Inc., Thousand Oaks, CA, USA
| | - A S Jung
- Amgen Inc., Thousand Oaks, CA, USA
| | - A Bardelli
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| |
Collapse
|
9
|
Wang D, Liang S, Zhang X, Dey SK, Li Y, Xu C, Yu Y, Li M, Zhao G, Zhang Z. Targeted next-generation sequencing approach for molecular genetic diagnosis of hereditary colorectal cancer: Identification of a novel single nucleotide germline insertion in adenomatous polyposis coli gene causes familial adenomatous polyposis. Mol Genet Genomic Med 2018; 7:e00505. [PMID: 30523670 PMCID: PMC6382451 DOI: 10.1002/mgg3.505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Background Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited disease which primarily manifested with developing adenomas or polyps in colon or rectum. It is caused by the germline mutations in adenomatous polyposis coli (APC) gene. Patients with FAP are usually manifested with “hundreds or even thousands” adenomas or polyps in colon or rectum. However, without proper clinical diagnosis and timely surgical interventions, colorectal adenomas, or polyps gradually increase in size and in numbers which finally leads to colorectal cancer (CRC) at the mean age of 36 years of the patient. Methods In this study, we identified a family with FAP. In this family, FAP has been diagnosed clinically based on symptoms, medical test reports, and positive family history for three generations. In order to unveil the molecular genetic consequences underlying the disease phenotype, we performed next‐generation sequencing with a customized and designed panel of genes reported to be associated with hereditary CRC. The variant identified by next‐generation sequencing has been validated by Sanger sequencing. Results A heterozygous novel insertion [c.3992_3993insA; p.Thr1332Asnfs*10] in exon 16 of APC gene has been identified. This novel insertion is cosegregated well with the FAP phenotype among all the affected members of this family. This mutation causes a frameshift by the formation of a premature stop codon which finally results in the formation of a truncated APC protein of 1,342 amino acids instead of the wild type APC protein of 2,843 amino acids. Hence, this is a loss‐of‐function mutation. This mutation was not found in unaffected family members or in normal control individuals. Conclusion Our present study emphasizes the importance of a novel approach of the gene panel‐based high‐throughput sequencing technology for easy and rapid screening for patients with FAP or CRC which will help the clinician for follow‐up and management.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pathology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shengyun Liang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Subrata Kumar Dey
- Department of Biotechnology, Centre for Genetic Studies, School of Biotechnology and Biological Sciences, Maulana Abul Kalam Azad University of Technology (Formerly West Bengal University of Technology), Salt Lake City, Kolkata, India
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Mingsen Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Guoru Zhao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhao Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
10
|
Yang Y, Wang D, Jin L, Wu G, Bai Z, Wang J, Yao H, Zhang Z. Prognostic value of the combination of microsatellite instability and BRAF mutation in colorectal cancer. Cancer Manag Res 2018; 10:3911-3929. [PMID: 30310312 PMCID: PMC6165775 DOI: 10.2147/cmar.s169649] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of this study was to investigate the prognostic value of the combination of microsatellite instability (MSI) and BRAF V600E mutation in colorectal cancer (CRC). Materials and methods We compare the prognosis difference among CRC patients with four subtypes according to MSI and BRAF mutation, ie, microsatellite stable/BRAF wild type (MSS/BRAFwt), MSS/BRAF mutation (MSS/BRAFmut), MSI/BRAFwt, and MSI/BRAFmut, by pooling the previous related reports and public available data sets till December 2017 for the first time. Results Twenty-seven independent studies comprising 24,067 CRC patients were included. Meta-analysis suggested that, compared with MSS/BRAFwt subtype, MSS/BRAFmut was associated with shorter overall survival (OS) (N=25, HR = 2.018, 95% CI = 1.706-2.388, P=2.220E-16), while there was a trend of association of MSI/BRAFmut with OS (N=13, HR = 1.324, 95% CI = 0.938-1.868, P=1.096E-01) and no association of MSI/BRAFwt with OS (N=17, HR = 0.996, 95% CI = 0.801-1.240, P=9.761E-01). Compared with MSI/ BRAFwt subtype, MSI/BRAFmut was a poor factor for OS (N=22, HR = 1.470, 95% CI = 1.243-1.740, P=7.122E-06). Compared with MSS/BRAFmut subtype, both MSI/BRAFwt (N=11, HR = 0.560, 95% CI = 0.433-0.725, P=1.034E-05) and MSI/BRAFmut (N=16, HR = 0.741, 95% CI = 0.567-0.968, P=2.781E-02) were favorable for OS. Subgroup analysis revealed similar results in all subgroups except the subgroup of stage IV cancer, in which MSI showed poor effects on OS in BRAF wild-type patients (N=6, HR = 1.493, 95% CI = 1.187-1.879, P=6.262E-04) but not in BRAF-mutated patients (N=5, HR = 1.143, 95% CI = 0.789-1.655, P=4.839E-01). Meta-analysis regression and test of interaction revealed no interaction of MSI with BRAF mutation when evaluating the associations of MSI/BRAF mutation subtypes with OS in CRC. Conclusion Among the four subtypes according to MSI and BRAF mutation, MSS/BRAFmut was a poor prognostic factor, while MSS/BRAFwt and MSI/BRAFwt were comparable and favorable and MSI/BRAFmut was moderate in CRC. The combination of MSI/BRAF mutations could facilitate the planning of individualized treatment strategies and prognosis improvement in CRC.
Collapse
Affiliation(s)
- Yingchi Yang
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China,
| | - Dong Wang
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China,
| | - Lan Jin
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China,
| | - Guocong Wu
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China,
| | - Zhigang Bai
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China,
| | - Jin Wang
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China,
| | - Hongwei Yao
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China,
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China,
| |
Collapse
|
11
|
Wen KW, Grenert JP, Joseph NM, Shafizadeh N, Huang A, Hosseini M, Kakar S. Genomic profile of appendiceal goblet cell carcinoid is distinct compared to appendiceal neuroendocrine tumor and conventional adenocarcinoma. Hum Pathol 2018; 77:166-174. [PMID: 29634977 DOI: 10.1016/j.humpath.2018.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/08/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
Goblet cell carcinoid (GCC) is a rare appendiceal tumor with unique morphologic features that shows glandular and neuroendocrine differentiation on immunohistochemistry. An additional component of adenocarcinoma (AC) can be present (GCC-AC). Both GCC and GCC-AC are staged and treated like AC. The histogenesis and genetic alterations underlying GCC and GCC-AC are unclear. Capture-based next-generation DNA sequencing targeting 479 cancer genes was performed on 19 appendiceal tumors: 4 GCC, 9 GCC-AC, 3 neuroendocrine tumors (NET), and 3 AC (2 conventional, 1 mucinous). Somatic coding mutations were not seen in any NET. Pathogenic (P)/likely pathogenic (LP) mutations were present in 1 GCC, 8 GCC-AC and all 3 AC cases. P/LP mutations in chromatin remodeling genes were seen in 4 (44.4%) GCC-AC cases, but not in NET, GCC or AC. In GCC-AC, P/LP mutations in ARID1A and RHOA were each present in 3 cases, and KDM6A and SOX9 mutations were each seen in 2 cases. APC and KRAS mutations were present in 1 conventional AC case, but were not observed in any GCC or GCC-AC. This limited series reveals mutations in SOX9, RHOA, and chromatin-modifier genes in goblet cell tumors, and shows that the mutational profile of GCC/GCC-AC is distinct from NET and conventional appendiceal AC.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology, University of California, San Francisco, San Francisco, CA 91343, United States
| | - James P Grenert
- Department of Pathology, University of California, San Francisco, San Francisco, CA 91343, United States
| | - Nancy M Joseph
- Department of Pathology, University of California, San Francisco, San Francisco, CA 91343, United States
| | | | - Anne Huang
- Vista Pathology, Medford, OR 97504, United States
| | - Mojgan Hosseini
- University of California, San Diego, San Diego, CA 92093, United States
| | - Sanjay Kakar
- Department of Pathology, University of California, San Francisco, San Francisco, CA 91343, United States.
| |
Collapse
|
12
|
Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget 2018; 7:48832-48841. [PMID: 27223063 PMCID: PMC5217053 DOI: 10.18632/oncotarget.9453] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/24/2016] [Indexed: 12/15/2022] Open
Abstract
Tissue biopsy is the standard diagnostic procedure for cancers and also provides a material for genotyping, which can assist in the targeted therapies of cancers. However, tissue biopsy-based cancer diagnostic procedures have limitations in their assessment of cancer development, prognosis and genotyping, due to tumor heterogeneity and evolution. Circulating tumor DNA (ctDNA) is single- or double-stranded DNA released by the tumor cells into the blood and it thus harbors the mutations of the original tumor. In recent years, liquid biopsy based on ctDNA analysis has shed a new light on the molecular diagnosis and monitoring of cancer. Studies found that the screening of genetic mutations using ctDNA is highly sensitive and specific, suggesting that ctDNA analysis may significantly improve current systems of tumor diagnosis, even facilitating early-stage detection. Moreover, ctDNA analysis is capable of accurately determining the tumor progression, prognosis and assisting in targeted therapy. Therefore, using ctDNA as a liquid biopsy may herald a revolution for tumor management. Herein, we review the biology of ctDNA, its detection methods and potential applications in tumor diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Feifei Cheng
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,School of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Li Su
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Qian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
13
|
Jung CK, Jung SH, Yim SH, Jung JH, Choi HJ, Kang WK, Park SW, Oh ST, Kim JG, Lee SH, Chung YJ. Predictive microRNAs for lymph node metastasis in endoscopically resectable submucosal colorectal cancer. Oncotarget 2017; 7:32902-15. [PMID: 27096956 PMCID: PMC5078061 DOI: 10.18632/oncotarget.8766] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/28/2016] [Indexed: 12/19/2022] Open
Abstract
Accurate prediction of regional lymph node metastasis (LNM) in endoscopically resected T1-stage colorectal cancers (CRCs) can reduce unnecessary surgeries. To identify miRNA markers that can predict LNM in T1-stage CRCs, the study was conducted in two phases; (I) miRNA classifier construction by miRNA-array and quantitative reverse transcription PCR (qRT-PCR) using 36 T1-stage CRC samples; (II) miRNA classifier validation in an independent set of 20 T1-stage CRC samples. The expression of potential downstream target genes of miRNAs was assessed by immunohistochemistry. In the discovery analysis by miRNA microarray, expression of 66 miRNAs were significantly different between LNM-positive and negative CRCs. After qRT-PCR validation, 11 miRNAs were consistently significant in the combined classifier construction set. Among them, miR-342-3p was the most significant one (P=4.3×10-4). Through logistic regression analysis, we developed a three-miRNA classifier (miR-342-3p, miR-361-3p, and miR-3621) for predicting LNM in T1-stage CRCs, yielding the area under the curve of 0.947 (94% sensitivity, 85% specificity and 89% accuracy). The discriminative ability of this system was consistently reliable in the independent validation set (83% sensitivity, 64% specificity and 70% of accuracy). Of the potential downstream targets of the three-miRNAs, expressions of E2F1, RAP2B, and AKT1 were significantly associated with LNM. In conclusion, this classifier can predict LNM more accurately than conventional pathologic criteria and our study results may be helpful to avoid unnecessary bowel surgery after endoscopic resection in early CRC.
Collapse
Affiliation(s)
- Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung-Hyun Jung
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seon-Hee Yim
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji-Han Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyun Joo Choi
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Won-Kyung Kang
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung-Won Park
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seong-Taek Oh
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Gi Kim
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sug Hyung Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yeun-Jun Chung
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
14
|
Li ZZ, Wang F, Zhang ZC, Wang F, Zhao Q, Zhang DS, Wang FH, Wang ZQ, Luo HY, He MM, Wang DS, Jin Y, Ren C, Qiu MZ, Ren J, Pan ZZ, Li YH, Shao JY, Xu RH. Mutation profiling in chinese patients with metastatic colorectal cancer and its correlation with clinicopathological features and anti-EGFR treatment response. Oncotarget 2017; 7:28356-68. [PMID: 27050078 PMCID: PMC5053731 DOI: 10.18632/oncotarget.8541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
An increasing number of studies reveal the significance of genetic markers in guiding target treatment and refining prognosis. This retrospective observational study aims to assess the mutation profile of metastatic colorectal cancer (mCRC) in Chinese population with the help of MassARRAY® technique platform and OncoCarta™ Panel. 322 Chinese patients with mCRC who received clinical molecular testing as part of their standard care were investigated. 80 patients received cetuximab palliative treatment. 238 common hot-spot mutations of 19 cancer related genes in the OncoCarta™ Panel were tested. 44 mutations in 11 genes were detected in 156 cases (48.4%). At least one mutation was identified in 38.5% (124/322) of all tested cases, two concomitant mutations in 9.0% (29/322) and three mutations in 3 cases (<1%). KRAS was the most frequently mutated gene (34.8%), followed by PIK3CA (9.6%), NRAS (4.3%), BRAF (3.4%), EGFR (2.5%) and HRAS (1.2%). Less frequent mutations were detected in PDGFRA, RET, AKT1, FGFR1, and ERBB2. Co-mutation of RAS family subtypes was observed in 5 patients, and KRAS and BRAF concurrent mutation in 1 patient. KRAS, NRAS, BRAF and PIK3CA mutations had association with some clinicopathological features statistically. Patients identified as wild-type in all 19 genes had better objective response rate when treated with cetuximab. The clinical molecular testing with OncoCarta™ Panel supplemented the limited data of mCRC in Chinese population, and offered a clearer landscape of multiple gene mutational profile in not only clinically prognostic KRAS, NRAS, BRAF and PIK3CA genes, but also less frequent mutated genes. Knowledge of these multiple gene mutation patterns may give clues in exploring interesting accompanying co-occurrence relationship or mutually exclusive relationship between mutated genes, as well as in predicting benefit of all-wild-type patients from anti-EGFR treatment.
Collapse
Affiliation(s)
- Zhe-Zhen Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Zi-Chen Zhang
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Fang Wang
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Qi Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Dong-Sheng Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Zhi-Qiang Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Ming-Ming He
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - De-Shen Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Ying Jin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Chao Ren
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Jian Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhi-Zhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Yu-Hong Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Jiao-Yong Shao
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| |
Collapse
|
15
|
GNAS mutations in primary mucinous and non-mucinous lung adenocarcinomas. Mod Pathol 2017; 30:1720-1727. [PMID: 28776576 DOI: 10.1038/modpathol.2017.88] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/08/2017] [Accepted: 06/18/2017] [Indexed: 01/03/2023]
Abstract
GNAS mutations have been described in mucinous and non-mucinous epithelial neoplasms of the appendix, pancreas, and colon, with hotspot GNAS mutations found in up to two-thirds of pancreatic intraductal papillary mucinous neoplasms. Additionally, many GNAS-mutated tumors have concurrent mutations in the Ras/Raf pathway. The clinicopathologic features of GNAS-mutated lung carcinomas, however, have not yet been characterized. Primary lung carcinomas from Brigham and Women's Hospital (n=1282) or Massachusetts General Hospital (n=1070) were genotyped on a targeted massively parallel sequencing panel of oncogenes and tumor suppressor genes including GNAS. Clinical and pathological features were reviewed, and TTF-1 immunohistochemistry was performed when material was available. Nineteen lung adenocarcinomas with hotspot GNAS mutations were identified (19/2352, 0.8%) including 14 at codon 201 and 5 at codon 227. GNAS-mutated lung adenocarcinomas occurred predominantly in female patients (16/19, 84%). Ten (10) were classified as invasive mucinous adenocarcinomas (IMA), and nine (9) were non-mucinous adenocarcinomas. All IMAs had GNAS codon 201 mutations and concurrent Ras/Raf pathway mutations (9 KRAS, 1 BRAF). No tumors with GNAS codon 227 mutations had mucinous histological features. 86% of GNAS-mutated non-mucinous adenocarcinomas (6/7) were positive for TTF-1 immunohistochemistry, while only 25% of GNAS-mutated IMAs (1/4) were positive for TTF-1. Patients with GNAS-mutated non-mucinous adenocarcinomas were more likely to have a history of smoking (9/9, 100%) compared to patients with GNAS-mutated IMAs (2/10, 20%) (P<0.001). Hotspot GNAS mutations can occur in primary lung adenocarcinomas. When associated with concurrent mutations in the Ras/Raf pathway, these neoplasms often present as IMAs. GNAS mutations are not specific to neoplasms of the gastrointestinal tract, and clinicopathologic correlation is necessary in GNAS-mutated adenocarcinomas in the lung to determine the primary site of origin.
Collapse
|
16
|
Liu C, McKeone DM, Walker NI, Bettington ML, Leggett BA, Whitehall VLJ. GNAS mutations are present in colorectal traditional serrated adenomas, serrated tubulovillous adenomas and serrated adenocarcinomas with adverse prognostic features. Histopathology 2017; 70:1079-1088. [PMID: 28164369 DOI: 10.1111/his.13180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/28/2016] [Accepted: 01/31/2017] [Indexed: 01/02/2023]
Abstract
AIMS Activating mutations in GNAS are important in the development of a range of neoplasms, including a small proportion of conventional adenomas and colorectal carcinomas (CRCs). However, their contribution to serrated pathway neoplasia is unclear, as mutations have only been examined in small series of sessile serrated adenomas (SSAs) and traditional serrated adenomas (TSAs), and not in serrated tubulovillous adenomas (sTVAs). The aim of this study was to investigate the frequency and significance of GNAS mutations in colorectal adenomas and CRCs. METHODS AND RESULTS Using a large, well-characterized series, we identified GNAS mutations in 9.2% (18 of 196) of TSAs, 7.1% (four of 56) of sTVAs and 2.0% (nine of 459) of CRCs. Mutations were absent in SSAs (none of 43), tubular adenomas (none of 50) and conventional tubulovillous adenomas (none of 50). A BRAF or KRAS mutation was seen in 77.4% of GNAS mutant lesions, suggesting a synergistic effect with the mitogen-activated protein kinase pathway. In CRCs, GNAS mutations were associated with mucinous differentiation and serrated morphological features. CONCLUSIONS GNAS mutations contribute significantly to the development of a subset of serrated adenomas and CRCs.
Collapse
Affiliation(s)
- Cheng Liu
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,The School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Diane M McKeone
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Neal I Walker
- The School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Mark L Bettington
- The School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Barbara A Leggett
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,The School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Department of Anatomical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Vicki L J Whitehall
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,The School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Department of Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Prognostic value of BRAF V600E mutation and microsatellite instability in Japanese patients with sporadic colorectal cancer. J Cancer Res Clin Oncol 2016; 143:151-160. [DOI: 10.1007/s00432-016-2275-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/20/2016] [Indexed: 01/02/2023]
|
18
|
Jesinghaus M, Pfarr N, Endris V, Kloor M, Volckmar AL, Brandt R, Herpel E, Muckenhuber A, Lasitschka F, Schirmacher P, Penzel R, Weichert W, Stenzinger A. Genotyping of colorectal cancer for cancer precision medicine: Results from the IPH Center for Molecular Pathology. Genes Chromosomes Cancer 2016; 55:505-21. [PMID: 26917275 DOI: 10.1002/gcc.22352] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer precision medicine has opened up new avenues for the treatment of colorectal cancer (CRC). To fully realize its potential, high-throughput sequencing platforms that allow genotyping beyond KRAS need to be implemented and require performance assessment. We comprehensively analyzed first-year data of 202 consecutive formalin-fixed paraffin embedded (FFPE) CRC samples for which prospective genotyping at our institution was requested. Deep targeted genotyping was done using a semiconductor-based sequencing platform and a self-designed panel of 30 CRC-related genes. Additionally, microsatellite status (MS) was determined. Ninety-seven percent of tumor samples were suitable for sequencing and in 88% MS could be assessed. The minimal drop-out rates of 6 and 25 cases, respectively were due to too low amounts or heavy degradation of DNA. Of 557 nonsynonymous mutations, 90 (16%) have not been described in COSMIC at the time of data query. Forty-three cases (22%) had double- or triple mutations affecting a single gene. Sixty-four percent had genetic alterations influencing oncological therapy. Eight percent of patients (MSI phenotype: 6%; mutated POLE: 2%) were potentially eligible for treatment with immune checkpoint inhibitors. Of 56% of KRASwt CRC that potentially qualified for anti-EGFR treatment, 30% presented with mutations in BRAF/NRAS. Mutated PIK3CA was detected in 21%. In conclusion, we here present real-life routine diagnostics data that not only demonstrate the robustness and feasibility of deep targeted sequencing and MS-analysis of FFPE CRC samples but also contribute to the understanding of CRC genetics. Most importantly, in more than half of the patients our approach enabled the selection of the best treatment currently available. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Moritz Jesinghaus
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany.,Institute of Pathology, Technical University Munich (TUM), Munich, 81675, Germany
| | - Nicole Pfarr
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany.,Institute of Pathology, Technical University Munich (TUM), Munich, 81675, Germany
| | - Volker Endris
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Matthias Kloor
- Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Anna-Lena Volckmar
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Regine Brandt
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany.,NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | - Felix Lasitschka
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Roland Penzel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Wilko Weichert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany.,Institute of Pathology, Technical University Munich (TUM), Munich, 81675, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Member of the German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,National Center for Tumor Diseases-Heidelberg School of Oncology (NCT-HSO), Heidelberg, Germany
| |
Collapse
|
19
|
Malapelle U, Pisapia P, Sgariglia R, Vigliar E, Biglietto M, Carlomagno C, Giuffrè G, Bellevicine C, Troncone G. Less frequently mutated genes in colorectal cancer: evidences from next-generation sequencing of 653 routine cases. J Clin Pathol 2016; 69:767-71. [PMID: 26797410 PMCID: PMC5036215 DOI: 10.1136/jclinpath-2015-203403] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Abstract
AIMS The incidence of RAS/RAF/PI3KA and TP53 gene mutations in colorectal cancer (CRC) is well established. Less information, however, is available on other components of the CRC genomic landscape, which are potential CRC prognostic/predictive markers. METHODS Following a previous validation study, ion-semiconductor next-generation sequencing (NGS) was employed to process 653 routine CRC samples by a multiplex PCR targeting 91 hotspot regions in 22 CRC significant genes. RESULTS A total of 796 somatic mutations in 499 (76.4%) tumours were detected. Besides RAS/RAF/PI3KA and TP53, other 12 genes showed at least one mutation including FBXW7 (6%), PTEN (2.8%), SMAD4 (2.1%), EGFR (1.2%), CTNNB1 (1.1%), AKT1 (0.9%), STK11 (0.8%), ERBB2 (0.6%), ERBB4 (0.6%), ALK (0.2%), MAP2K1 (0.2%) and NOTCH1 (0.2%). CONCLUSIONS In a routine diagnostic setting, NGS had the potential to generate robust and comprehensive genetic information also including less frequently mutated genes potentially relevant for prognostic assessments or for actionable treatments.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Roberta Sgariglia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Chiara Carlomagno
- Department of Surgical and Clinical Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Giuffrè
- Department of "Patologia Umana dell'Adulto e dell'età evolutiva, G.Barresi", University of Messina, Messina, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
20
|
Okugawa Y, Grady WM, Goel A. Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers. Gastroenterology 2015; 149:1204-1225.e12. [PMID: 26216839 PMCID: PMC4589488 DOI: 10.1053/j.gastro.2015.07.011] [Citation(s) in RCA: 525] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/13/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. One of the fundamental processes driving the initiation and progression of CRC is the accumulation of a variety of genetic and epigenetic changes in colonic epithelial cells. Over the past decade, major advances have been made in our understanding of cancer epigenetics, particularly regarding aberrant DNA methylation, microRNA (miRNA) and noncoding RNA deregulation, and alterations in histone modification states. Assessment of the colon cancer "epigenome" has revealed that virtually all CRCs have aberrantly methylated genes and altered miRNA expression. The average CRC methylome has hundreds to thousands of abnormally methylated genes and dozens of altered miRNAs. As with gene mutations in the cancer genome, a subset of these epigenetic alterations, called driver events, are presumed to have a functional role in CRC. In addition, the advances in our understanding of epigenetic alterations in CRC have led to these alterations being developed as clinical biomarkers for diagnostic, prognostic, and therapeutic applications. Progress in this field suggests that these epigenetic alterations will be commonly used in the near future to direct the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Gastroenterology, University of Washington School of Medicine, Seattle, Washington.
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas.
| |
Collapse
|