1
|
Szyposzynska A, Bielawska-Pohl A, Paprocka M, Bar J, Murawski M, Klimczak A. Comparative Analysis of Primary Ovarian Cancer Cells and Established Cell Lines as a New Tool for Studies on Ovarian Cancer Cell Complexity. Int J Mol Sci 2024; 25:5384. [PMID: 38791431 PMCID: PMC11121816 DOI: 10.3390/ijms25105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Primary cancer cells reflect the genetic background and phenotype of a tumor. Immortalized cells with higher proliferation activity have an advantage over primary cells. The aim of the study was to immortalize the primary ovarian cancer (OvCa) cells using the plasmid-carrying human telomerase reverse transcriptase (hTERT) gene and compare their phenotype and biological activity with the primary cells. The primary OvCa3 A and OvCa7 A cells were isolated from the ascitic fluid of two high-grade serous ovarian cancer patients and were characterized using immunocytochemical methods, flow cytometry, real-time RT-PCR, Western blot, metabolic activity, and migratory potential. Both immortalized ovarian cancer cell lines mirrored the phenotype of primary cancer cells, albeit with modifications. The OvCa3 A hTERT cells kept the mesenchymal stem cell phenotype of CD73/CD90/CD105-positivity and were CD133-negative, whereas the cell population of OvCa7 A hTERT lost CD73 expression, but almost 90% of cells expressed the CD133 characteristic for the CSCs phenotype. Immortalized OvCa cells differed in gene expression level with respect to Sox2 and Oct4, which was associated with stemness properties. The OvCa7 A hTERT cells showed higher metabolic and migratory activity and ALDH1 expression than the corresponding primary OvCa cells. Both primary and immortalized cell lines were able to form spheroids. The newly established unique immortalized cell line OvCa7 A hTERT, with the characteristic of a serous ovarian cancer malignancy feature, and with the accumulation of the p53, Pax8, and overexpression of the CD133 and CD44 molecules, may be a useful tool for research on therapeutic approaches, especially those targeting CSCs in ovarian cancer and in preclinical 2D and 3D models.
Collapse
Affiliation(s)
- Agnieszka Szyposzynska
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| | - Maria Paprocka
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| | - Julia Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Marek Murawski
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-599 Wroclaw, Poland;
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| |
Collapse
|
2
|
Markowska A, Kojs Z, Twardawa D, Pietras J, Markowska J. Selected markers of ovarian cancer and their relation to targeted therapy (Review). Exp Ther Med 2024; 27:236. [PMID: 38628658 PMCID: PMC11019661 DOI: 10.3892/etm.2024.12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Despite advances in surgical treatment techniques and chemotherapy-including anti-angiogenic and immune poly (ADP-ribose) polymerase inhibitors, the 5-year survival rate in ovarian cancer (OC) remains low. The reasons for this are the diagnosis of cancer in advanced clinical stages, chemoresistance and cancer recurrence. New therapeutic approaches are being developed, including the search for new biomarkers that are also targets for targeted therapy. The present review describes new molecular markers with relevance to targeted therapy, which to date have been studied only in experimental research. These include the angiogenic protein angiopoietin-2, the transmembrane glycoprotein ectonucleotide pyrophosphatase/phosphodiesterase 1, the adhesion protein E-cadherin, the TIMP metallopeptidase inhibitor 1 and Kruppel-like factor 7. Drugs affecting cancer stem cells (CSCs) in OC, such as metformin and salinomycin, as well as inhibitors of CSCs markers aldehyde dehydrogenase 1 (with the drug ATRA) and the transcription factor Nanog homeobox (microRNA) are also discussed. A new approach to prevention and possible therapies under investigation such as development of vaccines containing a subpopulation of CD117(+) and CD44(+) stem cells with a promising option for use in women with OC was described.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women's Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Zbigniew Kojs
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland
| | - Damian Twardawa
- Medical Department, Bausch Health Poland, 02-674 Warsaw, Poland
| | - Joanna Pietras
- Department of Perinatology and Women's Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | | |
Collapse
|
3
|
Duong HQ, Hoang MC, Nguyen TH, Nguyen PT, Le VT, Dao TN, Ngo VL, Dang TH. Aldehyde Dehydrogenase-1A1 (ALDH1A1): The Novel Regulator of Chemoresistance in Pancreatic Cancer Cells. Cancer Control 2024; 31:10732748241305835. [PMID: 39611960 PMCID: PMC11607765 DOI: 10.1177/10732748241305835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Aldehyde dehydrogenase-1A1 (ALDH1A1), a member of a superfamily of 19 isozymes, exhibits various biological functions and is involved in several important physiological and pathological processes, including those associated with various diseases including cancers such as pancreatic cancer. Chemotherapy is one of the most important strategies for the treatment of pancreatic cancer; however, the chemoresistance exhibited by pancreatic cancer cells is a leading cause of chemotherapy failure. It has been reported that overexpression of ALDH1A1 significantly correlates with poor prognosis and tumor aggressiveness, and is clinically associated with chemoresistance. Additionally, ALDH1A1 may serve as a novel regulator for the diagnosis and prognosis of cancer resistance. In particular, ALDH1A1 can promote cancer progression by facilitating the manifestation of cancer stem cell properties. However, the molecular mechanism by which ALDH1A1 clinically regulates the development of chemoresistance, and its role in prognosis and cancer stem cells, including pancreatic cancer stem cells, remain unclear. Therefore, the current review aims to summarize the clinical functions of ALDH1A1 as a novel regulator of chemoresistance, prognosis, and cancer stem cell development in pancreatic cancer.
Collapse
Affiliation(s)
- Hong-Quan Duong
- Laboratory Center, Hanoi University of Public Health, Hanoi, Vietnam
| | - Minh-Cong Hoang
- Laboratory Department, Yenphong Medical Center, Bacninh, Vietnam
| | - Thi-Hue Nguyen
- Laboratory Department, Bacgiang General Hospital, Bacgiang, Vietnam
| | | | - Van-Thu Le
- Laboratory Center, Hanoi University of Public Health, Hanoi, Vietnam
| | - Thi-Nguyet Dao
- Pathology Department, Ducgiang General Hospital, Hanoi, Vietnam
| | - Van-Lang Ngo
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi, Vietnam
| | - The-Hung Dang
- Laboratory Center, Hanoi University of Public Health, Hanoi, Vietnam
| |
Collapse
|
4
|
Frąszczak K, Barczyński B. The Role of Cancer Stem Cell Markers in Ovarian Cancer. Cancers (Basel) 2023; 16:40. [PMID: 38201468 PMCID: PMC10778113 DOI: 10.3390/cancers16010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer and the eighth most common female cancer. The early diagnosis of ovarian cancer remains a clinical problem despite the significant development of technology. Nearly 70% of patients with ovarian cancer are diagnosed with stages III-IV metastatic disease. Reliable diagnostic and prognostic biomarkers are currently lacking. Ovarian cancer recurrence and resistance to chemotherapy pose vital problems and translate into poor outcomes. Cancer stem cells appear to be responsible for tumour recurrence resulting from chemotherapeutic resistance. These cells are also crucial for tumour initiation due to the ability to self-renew, differentiate, avoid immune destruction, and promote inflammation and angiogenesis. Studies have confirmed an association between CSC occurrence and resistance to chemotherapy, subsequent metastases, and cancer relapses. Therefore, the elimination of CSCs appears important for overcoming drug resistance and improving prognoses. This review focuses on the expression of selected ovarian CSC markers, including CD133, CD44, CD24, CD117, and aldehyde dehydrogenase 1, which show potential prognostic significance. Some markers expressed on the surface of CSCs correlate with clinical features and can be used for the diagnosis and prognosis of ovarian cancer. However, due to the heterogeneity and plasticity of CSCs, the determination of specific CSC phenotypes is difficult.
Collapse
Affiliation(s)
| | - Bartłomiej Barczyński
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
5
|
Lin TC, Wang KH, Chuang KH, Kao AP, Kuo TC. Oct-4 induces cisplatin resistance and tumor stem cell-like properties in endometrial carcinoma cells. Taiwan J Obstet Gynecol 2023; 62:16-21. [PMID: 36720532 DOI: 10.1016/j.tjog.2022.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Research has suggested that tumor-initiating tumor stem cells are derived from normal stem cells and that tumor cells undergo progressive de-differentiation to achieve a stem cell-like state. Tumor stem cells are characterized by high proliferation ability, high plasticity, expression of multi-drug resistance proteins, and the ability to seed new tumors. Octamer-binding transcription factor 4 (Oct-4) and its activation targets are overexpressed in the tumor stem cells of various types of tumors, and this expression is associated with the pathogenesis, development, and poor prognosis of tumors. The primary objective of this study was to test if a stably transfected with Oct-4 gene cell line, RL95-2/Oct-4, has the characteristics of tumor stem cells. MATERIALS AND METHODS Human endometrial carcinoma cells (RL95-2) were transfected with a plasmid carrying genes for Oct-4 and green fluorescent protein (GFP). The stably transfected cells, RL95-2/Oct-4, were selected using G418 and observed to express the GFP reporter gene under the control of the Oct-4 promoter. GFP expression levels of RL95-2/Oct-4 cells were measured using flow cytometry. The proliferation potential of cells was determined according to cumulative population doubling and colony-formation efficiency. Gene expression was analyzed using reverse transcription-polymerase chain reaction. RESULTS RL95-2/Oct-4 cells not only exhibited increased expression of the three most important stem cell genes, Oct-4, Nanog, and Sox2, but also had increased expression of the endometrial tumor stem cell genes CD133 and ALDH1. Furthermore, enhanced expression of these genes in the RL95-2/Oct-4 cells was associated with higher colony-forming ability and growth rate than in parental RL95-2 cells. We also observed that cisplatin induced less cell death in RL95-2/Oct-4 cells than in RL95-2 cells, indicating that RL95-2/Oct-4 cells were more resistant to chemotherapeutic agents. CONCLUSION The study findings contribute to investigate the effects of Oct-4 on tumor stem cell origins.
Collapse
Affiliation(s)
- Ta-Chin Lin
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| | - Kai-Hung Wang
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan; Department of Laboratory Medicine, Kuo General Hospital, Tainan, Taiwan.
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - An-Pei Kao
- Stemforce Biotechnology Co., Ltd, Chiayi, Taiwan
| | - Tsung-Cheng Kuo
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| |
Collapse
|
6
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
7
|
Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:850-872. [PMID: 36627897 PMCID: PMC9771762 DOI: 10.20517/cdr.2022.20] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 01/13/2023]
Abstract
Resistance to anticancer agents and apoptosis results in cancer relapse and is associated with cancer mortality. Substantial data have provided convincing evidence establishing that human cancers emerge from cancer stem cells (CSCs), which display self-renewal and are resistant to anticancer drugs, radiation, and apoptosis, and express enhanced epithelial to mesenchymal progression. CSCs represent a heterogeneous tumor cell population and lack specific cellular targets, which makes it a great challenge to target and eradicate them. Similarly, their close relationship with the tumor microenvironment creates greater complexity in developing novel treatment strategies targeting CSCs. Several mechanisms participate in the drug and apoptosis resistance phenotype in CSCs in various cancers. These include enhanced expression of ATP-binding cassette membrane transporters, activation of various cytoprotective and survival signaling pathways, dysregulation of stemness signaling pathways, aberrant DNA repair mechanisms, increased quiescence, autophagy, increased immune evasion, deficiency of mitochondrial-mediated apoptosis, upregulation of anti-apoptotic proteins including c-FLIP [cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein], Bcl-2 family members, inhibitors of apoptosis proteins, and PI3K/AKT signaling. Studying such mechanisms not only provides mechanistic insights into these cells that are unresponsive to drugs, but may lead to the development of targeted and effective therapeutics to eradicate CSCs. Several studies have identified promising strategies to target CSCs. These emerging strategies may help target CSC-associated drug resistance and metastasis in clinical settings. This article will review the CSCs drug and apoptosis resistance mechanisms and how to target CSCs.
Collapse
Affiliation(s)
- Ahmad R. Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Yue H, Hu Z, Hu R, Guo Z, Zheng Y, Wang Y, Zhou Y. ALDH1A1 in Cancers: Bidirectional Function, Drug Resistance, and Regulatory Mechanism. Front Oncol 2022; 12:918778. [PMID: 35814382 PMCID: PMC9256994 DOI: 10.3389/fonc.2022.918778] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 01/16/2023] Open
Abstract
Aldehyde dehydrogenases 1 family member A1(ALDH1A1) gene codes a cytoplasmic enzyme and shows vital physiological and pathophysiological functions in many areas. ALDH1A1 plays important roles in various diseases, especially in cancers. We reviewed and summarized representative correlative studies and found that ALDH1A1 could induce cancers via the maintenance of cancer stem cell properties, modification of metabolism, promotion of DNA repair. ALDH1A1 expression is regulated by several epigenetic processes. ALDH1A1 also acted as a tumor suppressor in certain cancers. The detoxification of ALDH1A1 often causes chemotherapy failure. Currently, ALDH1A1-targeted therapy is widely used in cancer treatment, but the mechanism by which ALDH1A1 regulates cancer development is not fully understood. This review will provide insight into the status of ALDH1A1 research and new viewpoint for cancer therapy.
Collapse
Affiliation(s)
- Hanxun Yue
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zenan Hu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zeying Guo
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Ya Zheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yongning Zhou, ; Yuping Wang,
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yongning Zhou, ; Yuping Wang,
| |
Collapse
|
9
|
Nowacka M, Ginter-Matuszewska B, Świerczewska M, Sterzyńska K, Nowicki M, Januchowski R. Effect of ALDH1A1 Gene Knockout on Drug Resistance in Paclitaxel and Topotecan Resistant Human Ovarian Cancer Cell Lines in 2D and 3D Model. Int J Mol Sci 2022; 23:3036. [PMID: 35328460 PMCID: PMC8950618 DOI: 10.3390/ijms23063036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the most common cause of gynecological cancer death. Cancer Stem Cells (CSCs) characterized by drug transporters and extracellular matrix (ECM) molecules expression are responsible for drug resistance development. The goal of our study was to examine the role of aldehyde dehydrogenase 1A1 (ALDH1A1) expression in paclitaxel (PAC) and topotecan (TOP) resistant ovarian cancer cell lines. In both cell lines, we knocked out the ALDH1A1 gene using the CRISPR/Cas9 technique. Additionally, we derived an ALDH1A1 positive TOP-resistant cell line with ALDH1A1 expression in all cells via clonal selection. The effect of ALDH1A1 gene knockout or clonal selection on the expression of ALDH1A1, drug transporters (P-gp and BCRP), and ECM (COL3A1) was determined by Q-PCR, Western blot and immunofluorescence. Using MTT assay, we compared drug resistance in two-dimensional (2D) and three-dimensional (3D) cell culture conditions. We did not observe any effect of ALDH1A1 gene knockout on MDR1/P-gp expression and drug resistance in the PAC-resistant cell line. The knockout of ALDH1A1 in the TOP-resistant cell line resulted in a moderate decrease of BCRP and COL3A1 expression and weakened TOP resistance. The clonal selection of ALDH1A1 cells resulted in very strong downregulation of BCPR and COL3A1 expression and overexpression of MDR1/P-gp. This finally resulted in decreased resistance to TOP but increased resistance to PAC. All spheroids were more resistant than cells growing as monolayers, but the resistance mechanism differs. The spheroids' resistance may result from the presence of cell zones with different proliferation paces, the density of the spheroid, ECM expression, and drug capacity to diffuse into the spheroid.
Collapse
Affiliation(s)
- Marta Nowacka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznan, Poland; (M.Ś.); (K.S.); (M.N.)
| | - Barbara Ginter-Matuszewska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiency, Poznan University of Medical Sciences, 61-003 Poznan, Poland;
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznan, Poland; (M.Ś.); (K.S.); (M.N.)
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznan, Poland; (M.Ś.); (K.S.); (M.N.)
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznan, Poland; (M.Ś.); (K.S.); (M.N.)
| | - Radosław Januchowski
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28 St., 65-046 Zielona Gora, Poland;
| |
Collapse
|
10
|
Li J, Garavaglia S, Ye Z, Moretti A, Belyaeva OV, Beiser A, Ibrahim M, Wilk A, McClellan S, Klyuyeva AV, Goggans KR, Kedishvili NY, Salter EA, Wierzbicki A, Migaud ME, Mullett SJ, Yates NA, Camacho CJ, Rizzi M, Sobol RW. A specific inhibitor of ALDH1A3 regulates retinoic acid biosynthesis in glioma stem cells. Commun Biol 2021; 4:1420. [PMID: 34934174 PMCID: PMC8692581 DOI: 10.1038/s42003-021-02949-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/07/2021] [Indexed: 01/31/2023] Open
Abstract
Elevated aldehyde dehydrogenase (ALDH) activity correlates with poor outcome for many solid tumors as ALDHs may regulate cell proliferation and chemoresistance of cancer stem cells (CSCs). Accordingly, potent, and selective inhibitors of key ALDH enzymes may represent a novel CSC-directed treatment paradigm for ALDH+ cancer types. Of the many ALDH isoforms, we and others have implicated the elevated expression of ALDH1A3 in mesenchymal glioma stem cells (MES GSCs) as a target for the development of novel therapeutics. To this end, our structure of human ALDH1A3 combined with in silico modeling identifies a selective, active-site inhibitor of ALDH1A3. The lead compound, MCI-INI-3, is a selective competitive inhibitor of human ALDH1A3 and shows poor inhibitory effect on the structurally related isoform ALDH1A1. Mass spectrometry-based cellular thermal shift analysis reveals that ALDH1A3 is the primary binding protein for MCI-INI-3 in MES GSC lysates. The inhibitory effect of MCI-INI-3 on retinoic acid biosynthesis is comparable with that of ALDH1A3 knockout, suggesting that effective inhibition of ALDH1A3 is achieved with MCI-INI-3. Further development is warranted to characterize the role of ALDH1A3 and retinoic acid biosynthesis in glioma stem cell growth and differentiation.
Collapse
Affiliation(s)
- Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Zhaofeng Ye
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Andrea Moretti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Alison Beiser
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Md Ibrahim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Anna Wilk
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Steve McClellan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - E Alan Salter
- Department of Chemistry, University of South Alabama, 6040 USA South Drive, Mobile, AL, 36688, USA
| | - Andrzej Wierzbicki
- Department of Chemistry, University of South Alabama, 6040 USA South Drive, Mobile, AL, 36688, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Steven J Mullett
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Nathan A Yates
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy.
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA.
| |
Collapse
|
11
|
Yoshino J, Akiyama Y, Shimada S, Ogura T, Ogawa K, Ono H, Mitsunori Y, Ban D, Kudo A, Yamaoka S, Tanabe M, Tanaka S. Loss of ARID1A induces a stemness gene ALDH1A1 expression with histone acetylation in the malignant subtype of cholangiocarcinoma. Carcinogenesis 2020; 41:734-742. [PMID: 31665232 DOI: 10.1093/carcin/bgz179] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/21/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Genomic analyses have recently discovered the malignant subtype of human intrahepatic cholangiocarcinoma (ICC) characterized by frequent mutations of chromatin remodeling gene ARID1A; however, the biological and molecular functions still remain obscure. We here examined the clinical and biological significances of ARID1A deficiency in human ICC. Immunohistochemical analysis demonstrated that the loss of ARID1A was an independent prognostic factor for overall survival of ICC patients (P = 0.023). We established ARID1A-knockout (KO) cells by using the CRISPR/Cas9 system from two human cholangiocarcinoma cell lines. ARID1A-KO cells exhibited significantly enhanced migration, invasion, and sphere formation activity. Microarray analysis revealed that ALDH1A1, a stemness gene, was the most significantly elevated genes in ARID1A-KO cells. In addition, ALDH enzymatic activity as a hallmark of cancer stem cells was markedly high in the KO cells. ARID1A and histone deacetylase 1 were directly recruited to the ALDH1A1 promoter region in cholangiocarcinoma cells with undetectable ALDH1A1 expression by chromatin immunoprecipitation assay. The histone H3K27 acetylation level at the ALDH1A1 promoter region was increased in cells when ARID1A was disrupted (P < 0.01). Clinically, inverse correlation between ARID1A and ALDH1A1 expression was also identified in primary ICC (P = 0.018), and ARID1A-negative and ALDH1A1-positve ICCs showed worse prognosis than only ARID1A-negative cases (P = 0.002). In conclusion, ARID1A may function as a tumor suppressor in ICC through transcriptional downregulation of ALDH1A1 expression with decreasing histone H3K27 acetylation. Our studies provide the basis for the development of new epigenetic approaches to ARID1A-negative ICC. Immunohistochemical loss of ARID1A is an independent prognostic factor in intrahepatic cholangiocarcinoma patients. ARID1A recruits HDAC1 to the promoter region of ALDH1A1, a stemness gene, and epigenetically suppresses ALDH1A1 expression with decreasing histone H3K27 acetylation in cholangiocarcinoma cells.
Collapse
Affiliation(s)
- Jun Yoshino
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo.,Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Toshiro Ogura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Kosuke Ogawa
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Hiroaki Ono
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Yusuke Mitsunori
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Daisuke Ban
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Atsushi Kudo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo.,Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| |
Collapse
|
12
|
Wang L, Li X, Mu Y, Lu C, Tang S, Lu K, Qiu X, Wei A, Cheng Y, Wei W. The iron chelator desferrioxamine synergizes with chemotherapy for cancer treatment. J Trace Elem Med Biol 2019; 56:131-138. [PMID: 31466045 DOI: 10.1016/j.jtemb.2019.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cisplatin (CDDP) resistance remains a major obstacle for treatment of ovarian cancer. Iron contributes to the growth and reproduction of malignant cells, thus iron chalators can inhibit the growth of tumor cells by depleting the intracellular iron pool. The iron chelator, desferrioxamine (DFO), has performed anticancer in previous study. The aim of our study is to determine the correlation between iron-deprivation and tumor chemosensitivity in ovarian cancer. METHODS To investigate the prognostic value of ferritin light (FTL), ferroportin (FPN), hepcidin (HAMP) and divalent metal-ion transporter-1 (DMT1) in ovarian cancer, the Kaplan-Meier analysis and the Gene Expression Profiling Interactive Analysis (GEPIA) were used. The ovarian cancer cell lines (SKOV-3 and OVCAR-3) were exposed to a gradient concentration of DFO (10, 20, 50, 100, 200 μM) and CDDP (1, 5, 10, 50,100 μM) for 24 h. The protein expression of FTL was tested. The expression of cancer stem cell (CSC) markers, including Sox2, Nanog and C-myc, were downregulated with treatment of DFO. Also, the mamosphere formation and the plation of CD44+/high/CD133+/high and Aldehyde dehydrogenase (ALDH)+/high SKOV-3 cells were reduced after treatment for 7d. Furthermore, we detected the expression of p53, BCL-2, BAX, and caspase-8. RESULTS The survival analysis revealed that high expression of FTL, DMT1, HAMP, showed poor overall survival (OS) in ovarian cancer patients. Our combined data found that DFO could effectively inhibit CSCs, improve the resistance to chemotherapy, and significantly enhanced the efficacy of CDDP therapy in vitro in promoting apoptosis. Besides, targeting molecular targets, including BAX, BCL-2, p53 and caspase-8 could serve as the clinical biomarkers to evaluate the effects of ovarian cancer. It is reasonable to believe that DFO adjuvant therapy in combination with CDDP chemotherapy can promote the improvement of treatment response in ovarian cancer patients. CONCLUSION Our research suggests the experimental evidence for DFO and CDDP as a new effective combination therapy to enhance the efficacy of chemical therapy in ovarian cancer.
Collapse
Affiliation(s)
- Lingjuan Wang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaoqing Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China
| | - Yanxi Mu
- Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220, China
| | - Chang Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China
| | - Shiqian Tang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China
| | - Kun Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaoming Qiu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China
| | - Aili Wei
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China
| | - Yongjiu Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Wei
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
13
|
De La Motte Rouge T, Corné J, Cauchois A, Le Boulch M, Poupon C, Henno S, Rioux-Leclercq N, Le Pabic E, Laviolle B, Catros V, Levêque J, Fautrel A, Le Gallo M, Legembre P, Lavoué V. Serum CD95L Level Correlates with Tumor Immune Infiltration and Is a Positive Prognostic Marker for Advanced High-Grade Serous Ovarian Cancer. Mol Cancer Res 2019; 17:2537-2548. [DOI: 10.1158/1541-7786.mcr-19-0449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022]
|
14
|
Ovarian Cancer Stem Cells: Role in Metastasis and Opportunity for Therapeutic Targeting. Cancers (Basel) 2019; 11:cancers11070934. [PMID: 31277278 PMCID: PMC6678643 DOI: 10.3390/cancers11070934] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 02/08/2023] Open
Abstract
Ovarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Cancer stem cells (CSCs) that exist within the bulk tumor survive first-line chemotherapy and contribute to resistant disease with metastasis. Understanding the key features of CSC biology provides valuable opportunities to develop OCSC-directed therapeutics, which will eventually improve the clinical outcomes of patients. Although significant developments have occurred since OCSCs were first described, the involvement of CSCs in ovarian tumor metastasis is not fully understood. Here, we discuss putative CSC markers and the fundamental role of CSCs in facilitating tumor dissemination in OC. Additionally, we focus on promising CSC-targeting strategies in preclinical and clinical studies of OC and discuss potential challenges in CSC research.
Collapse
|
15
|
Xia Y, Wei X, Gong H, Ni Y. Aldehyde dehydrogenase serves as a biomarker for worse survival profiles in ovarian cancer patients: an updated meta-analysis. BMC WOMENS HEALTH 2018; 18:199. [PMID: 30522488 PMCID: PMC6284301 DOI: 10.1186/s12905-018-0686-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The purpose of this comprehensive meta-analysis was to assess the association of aldehyde dehydrogenase (ALDH) expression with overall survival (OS) and disease-free survival (DFS)/progression-free survival (PFS) in ovarian cancer patients. METHODS Systematic searches of Pubmed databases was performed to identify relevant literature published before February 28, 2018. A total of 14 studies (13 articles) with 2210 ovarian cancer patients were pooled. All included studies were performed by using Immunohistochemistry (IHC) for detection of ALDH expression. Hazard ratio (HR) and 95% confidence interval (CI) were extracted from included studies to evaluate the correlation of ALDH expression with OS and DFS/PFS. RESULTS High expression of ALDH was associated with worse OS (HR: 1.43; 95% CI: 1.18-1.73) and poor DFS/PFS (HR: 1.55, 95% CI: 1.12-2.14). No evidence of publication bias was observed in OS (Begg's test, P = 0.113; Egger's test, P = 0.355) and DFS/PFS (Begg's test, P = 0.655; Egger's test, P = 0.189) in ovarian cancer patients. The subgroup of studies with cut-off value of low expression showed that high expression of ALDH was correlated with poor OS (HR: 1.36; 95% CI: 1.14-1.62) and DFS/PFS (HR: 1.79; 95% CI: 1.45-2.20) in ovarian cancer patients, with no observed heterogeneity (OS: I2 = 0%, P = 0.45; DFS/PFS: I2 = 0%, P = 0.55). CONCLUSION In conclusion, high expression of ALDH is correlated with worse survival profiles in ovarian cancer patients, indicating that ALDH might act as a potential molecular biomarker for prognosis of ovarian cancer.
Collapse
Affiliation(s)
- Yan Xia
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China
| | - Xuemin Wei
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China
| | - Hui Gong
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China.
| | - Yunxiang Ni
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
16
|
High NRF2 level mediates cancer stem cell-like properties of aldehyde dehydrogenase (ALDH)-high ovarian cancer cells: inhibitory role of all-trans retinoic acid in ALDH/NRF2 signaling. Cell Death Dis 2018; 9:896. [PMID: 30166520 PMCID: PMC6117306 DOI: 10.1038/s41419-018-0903-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022]
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1) is one of cancer stem cell (CSC) markers, and high ALDH1 expression has been related to drug resistance and facilitated tumor growth. In this study, we investigated the potential involvement of nuclear factor erythroid 2-like 2 (NFE2L2/NRF2) in CSC-like properties of ALDH-high ovarian CSCs. Our experimental system, ALDH1A1-high (ALDH-H) subpopulation, was isolated and stabilized using doxorubicin-resistant ovarian cancer A2780 cells. ALDH-H exerted CSC-like properties such as drug resistance, colony/sphere formation, and enhanced tumor growth along with high levels of CSCs markers compared to ALDH1A1-low (ALDH-L). Levels of NRF2 and subsequent target genes substantially increased in ALDH-H cells, and the increase in ALDH1A1 and p62 was associated with NRF2 upregulation. ALDH1A1-silencing blocked increases in NRF2, drug efflux transporters, and p62, along with CSC markers in ALDH-H cells. The inhibition of p62, which was elevated in ALDH-H, suppressed NRF2 activation. High NRF2 level was confirmed in the ALDH1-high subpopulation from colon cancer HCT116 cells. The functional implication of NRF2 activation in ovarian CSCs was verified by two experimental approaches. First, CSC-like properties such as high CSC markers, chemoresistance, colony/sphere formation, and tumor growth were significantly inhibited by NRF2-silencing in ALDH-H cells. Second, all-trans retinoic acid (ATRA) suppressed ALDH1 expression, inhibiting NRF2 activation, which led to the attenuation of CSC-like properties in ALDH-H cells but not in ALDH-L cells. These results provide insight into the molecular basis of the ALDH1A1-mediated development of CSC-like properties such as stress/treatment resistance, and further suggest the therapeutic potential of ATRA in ALDH-high ovarian CSCs.
Collapse
|
17
|
Ruscito I, Darb-Esfahani S, Kulbe H, Bellati F, Zizzari IG, Rahimi Koshkaki H, Napoletano C, Caserta D, Rughetti A, Kessler M, Sehouli J, Nuti M, Braicu EI. The prognostic impact of cancer stem-like cell biomarker aldehyde dehydrogenase-1 (ALDH1) in ovarian cancer: A meta-analysis. Gynecol Oncol 2018; 150:151-157. [DOI: 10.1016/j.ygyno.2018.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
|
18
|
Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells. MEDICINES 2018; 5:medicines5010016. [PMID: 29389895 PMCID: PMC5874581 DOI: 10.3390/medicines5010016] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 02/07/2023]
Abstract
Four main histological subtypes of ovarian cancer exist: serous (the most frequent), endometrioid, mucinous and clear cell; in each subtype, low and high grade. The large majority of ovarian cancers are diagnosed as high-grade serous ovarian cancers (HGS-OvCas). TP53 is the most frequently mutated gene in HGS-OvCas; about 50% of these tumors displayed defective homologous recombination due to germline and somatic BRCA mutations, epigenetic inactivation of BRCA and abnormalities of DNA repair genes; somatic copy number alterations are frequent in these tumors and some of them are associated with prognosis; defective NOTCH, RAS/MEK, PI3K and FOXM1 pathway signaling is frequent. Other histological subtypes were characterized by a different mutational spectrum: LGS-OvCas have increased frequency of BRAF and RAS mutations; mucinous cancers have mutation in ARID1A, PIK3CA, PTEN, CTNNB1 and RAS. Intensive research was focused to characterize ovarian cancer stem cells, based on positivity for some markers, including CD133, CD44, CD117, CD24, EpCAM, LY6A, ALDH1. Ovarian cancer cells have an intrinsic plasticity, thus explaining that in a single tumor more than one cell subpopulation, may exhibit tumor-initiating capacity. The improvements in our understanding of the molecular and cellular basis of ovarian cancers should lead to more efficacious treatments.
Collapse
|