1
|
Yin P, Su Z, Shu X, Dong Z, Tian Y. Role of TREM2 in immune and neurological diseases: Structure, function, and implications. Int Immunopharmacol 2024; 143:113286. [PMID: 39378652 DOI: 10.1016/j.intimp.2024.113286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024]
Abstract
Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), a transmembrane receptor initially linked to neurodegenerative diseases, has recently emerged as a key player in conditions such as obesity and cancer. This review explores the structure, function, and mechanisms of TREM2 across these diverse pathological contexts, with a particular focus on its critical roles in immune regulation and neuroprotection. TREM2 primarily modulates cellular activity by binding extracellular ligands, thereby activating downstream signaling pathways and exerting immunomodulatory effects. Additionally, the therapeutic potential of targeting TREM2 is discussed, emphasizing its promise as a future treatment strategy for various diseases.
Collapse
Affiliation(s)
- Peng Yin
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaozheng Shu
- BioRegen Biomedical (Changzhou, Jiangsu) Co., Ltd, Changzhou, Jiangsu 213125, China
| | - Zhifeng Dong
- Department of Cardiovascular Medicine, Yancheng Third People's Hospital, 224000, China.
| | - Yu Tian
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Guimarães GR, Maklouf GR, Teixeira CE, de Oliveira Santos L, Tessarollo NG, de Toledo NE, Serain AF, de Lanna CA, Pretti MA, da Cruz JGV, Falchetti M, Dimas MM, Filgueiras IS, Cabral-Marques O, Ramos RN, de Macedo FC, Rodrigues FR, Bastos NC, da Silva JL, Lummertz da Rocha E, Chaves CBP, de Melo AC, Moraes-Vieira PMM, Mori MA, Boroni M. Single-cell resolution characterization of myeloid-derived cell states with implication in cancer outcome. Nat Commun 2024; 15:5694. [PMID: 38972873 PMCID: PMC11228020 DOI: 10.1038/s41467-024-49916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
Tumor-associated myeloid-derived cells (MDCs) significantly impact cancer prognosis and treatment responses due to their remarkable plasticity and tumorigenic behaviors. Here, we integrate single-cell RNA-sequencing data from different cancer types, identifying 29 MDC subpopulations within the tumor microenvironment. Our analysis reveals abnormally expanded MDC subpopulations across various tumors and distinguishes cell states that have often been grouped together, such as TREM2+ and FOLR2+ subpopulations. Using deconvolution approaches, we identify five subpopulations as independent prognostic markers, including states co-expressing TREM2 and PD-1, and FOLR2 and PDL-2. Additionally, TREM2 alone does not reliably predict cancer prognosis, as other TREM2+ macrophages show varied associations with prognosis depending on local cues. Validation in independent cohorts confirms that FOLR2-expressing macrophages correlate with poor clinical outcomes in ovarian and triple-negative breast cancers. This comprehensive MDC atlas offers valuable insights and a foundation for futher analyses, advancing strategies for treating solid cancers.
Collapse
Affiliation(s)
- Gabriela Rapozo Guimarães
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Giovanna Resk Maklouf
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Cristiane Esteves Teixeira
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Leandro de Oliveira Santos
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Nayara Gusmão Tessarollo
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Nayara Evelin de Toledo
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Alessandra Freitas Serain
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Cristóvão Antunes de Lanna
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Marco Antônio Pretti
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Jéssica Gonçalves Vieira da Cruz
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Marcelo Falchetti
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Mylla M Dimas
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo,(USP), São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo,(USP), São Paulo, Brazil
- Instituto D'Or de Ensino e Pesquisa, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Rodrigo Nalio Ramos
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo,(USP), São Paulo, Brazil
- Instituto D'Or de Ensino e Pesquisa, São Paulo, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | | | | | - Nina Carrossini Bastos
- Division of Pathology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Jesse Lopes da Silva
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Cláudia Bessa Pereira Chaves
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
- Gynecologic Oncology Section, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Andreia Cristina de Melo
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Pedro M M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo A Mori
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), Universidade Estadual de Campinas, Campinas, SP, Brazil
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Bharadwaj S, Groza Y, Mierzwicka JM, Malý P. Current understanding on TREM-2 molecular biology and physiopathological functions. Int Immunopharmacol 2024; 134:112042. [PMID: 38703564 DOI: 10.1016/j.intimp.2024.112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM-2), a glycosylated receptor belonging to the immunoglobin superfamily and especially expressed in the myeloid cell lineage, is frequently explained as a reminiscent receptor for both adaptive and innate immunity regulation. TREM-2 is also acknowledged to influence NK cell differentiation via the PI3K and PLCγ signaling pathways, as well as the partial activation or direct inhibition of T cells. Additionally, TREM-2 overexpression is substantially linked to cell-specific functions, such as enhanced phagocytosis, reduced toll-like receptor (TLR)-mediated inflammatory cytokine production, increased transcription of anti-inflammatory cytokines, and reshaped T cell function. Whereas TREM-2-deficient cells exhibit diminished phagocytic function and enhanced proinflammatory cytokines production, proceeding to inflammatory injuries and an immunosuppressive environment for disease progression. Despite the growing literature supporting TREM-2+ cells in various diseases, such as neurodegenerative disorders and cancer, substantial facets of TREM-2-mediated signaling remain inadequately understood relevant to pathophysiology conditions. In this direction, herein, we have summarized the current knowledge on TREM-2 biology and cell-specific TREM-2 expression, particularly in the modulation of pivotal TREM-2-dependent functions under physiopathological conditions. Furthermore, molecular regulation and generic biological relevance of TREM-2 are also discussed, which might provide an alternative approach for preventing or reducing TREM-2-associated deformities. At last, we discussed the TREM-2 function in supporting an immunosuppressive cancer environment and as a potential drug target for cancer immunotherapy. Hence, summarized knowledge of TREM-2 might provide a window to overcome challenges in clinically effective therapies for TREM-2-induced diseases in humans.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| | - Yaroslava Groza
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Joanna M Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| |
Collapse
|
4
|
Lei X, Gou YN, Hao JY, Huang XJ. Mechanisms of TREM2 mediated immunosuppression and regulation of cancer progression. Front Oncol 2024; 14:1375729. [PMID: 38725629 PMCID: PMC11079285 DOI: 10.3389/fonc.2024.1375729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer immunotherapy has recently emerged as a key strategy for cancer treatment. TREM2, a key target for regulating the tumor immune microenvironment, is important in cancer treatment and progression. TREM2 is an immune signaling hub that regulates multiple pathological pathways. It not only suppresses anti-tumor immune responses by inhibiting T cell-mediated immune responses, but it also influences tumorigenesis by affecting NK cell-mediated anti-tumor immunity. Noticeably, TREM2 expression levels also vary significantly among different tumor cells, and it can regulate tumor progression by modulating various signaling pathways. Above all, by summarizing the role of TREM2 in cancer immunotherapy and the mechanism by which TREM2 regulates tumor progression, this paper clarifies TREM2's role in both tumor progression and cancer therapy, identifying a new therapeutic target for oncology diseases.
Collapse
Affiliation(s)
| | | | | | - Xiao Jun Huang
- Department of Gastroenterology, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Sun R, Han R, McCornack C, Khan S, Tabor GT, Chen Y, Hou J, Jiang H, Schoch KM, Mao DD, Cleary R, Yang A, Liu Q, Luo J, Petti A, Miller TM, Ulrich JD, Holtzman DM, Kim AH. TREM2 inhibition triggers antitumor cell activity of myeloid cells in glioblastoma. SCIENCE ADVANCES 2023; 9:eade3559. [PMID: 37172094 PMCID: PMC10181199 DOI: 10.1126/sciadv.ade3559] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/07/2023] [Indexed: 05/14/2023]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) plays important roles in brain microglial function in neurodegenerative diseases, but the role of TREM2 in the GBM TME has not been examined. Here, we found that TREM2 is highly expressed in myeloid subsets, including macrophages and microglia in human and mouse GBM tumors and that high TREM2 expression correlates with poor prognosis in patients with GBM. TREM2 loss of function in human macrophages and mouse myeloid cells increased interferon-γ-induced immunoactivation, proinflammatory polarization, and tumoricidal capacity. In orthotopic mouse GBM models, mice with chronic and acute Trem2 loss of function exhibited decreased tumor growth and increased survival. Trem2 inhibition reprogrammed myeloid phenotypes and increased programmed cell death protein 1 (PD-1)+CD8+ T cells in the TME. Last, Trem2 deficiency enhanced the effectiveness of anti-PD-1 treatment, which may represent a therapeutic strategy for patients with GBM.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Rowland Han
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin McCornack
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Saad Khan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - G. Travis Tabor
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haowu Jiang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen M. Schoch
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Diane D. Mao
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Cleary
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Alicia Yang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Qin Liu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Allegra Petti
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy M. Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Jason D. Ulrich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
TREM2 as a Prognostic Biomarker for Osteosarcoma Microenvironment Remodeling. JOURNAL OF ONCOLOGY 2023; 2023:3677789. [PMID: 36844870 PMCID: PMC9957636 DOI: 10.1155/2023/3677789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/23/2022] [Accepted: 11/24/2022] [Indexed: 02/19/2023]
Abstract
The tumor microenvironment (TME) acts as a crucial role in the occurrence and development of osteosarcoma (OS). Despite this, the mechanism controlling the components of immunity and stroma in the tumor microenvironment remains a mystery. To conduct this study, we download and collate transcriptome data from the TARGET database, whose full name is Therapeutically Applicable Research to Generate Effective Treatments, as well as available clinical information of OS. The CIBERSORT and ESTIMATE methodology are used to acquire the proportions of components of immunity and stroma and tumor-infiltrating immune cells (TICs). Protein-protein interaction (PPI) networks and Cox regression analysis are used to select differentially expressed genes (DEGs). A prognostic biomarker is determined by intersecting univariate COX and PPI results, which lead to the finding of Triggering receptor expressed on myeloid cells-2 (TREM2). Based on the next analysis, TREM2 expression is positively correlated with OS survival time. Immune function-related genes have enrichment in the group with high expression of TREM2, according to gene set enrichment analysis (GSEA). The percentage of TICs by CIBERSORT methodology revealed that the expression of TREM2 is positively associated with follicular helper T cells, CD8-positive T cells, and M2 macrophages and negatively correlated with plasma cells, M0 macrophages, and naive CD4-positive T cells. All results suggest a possible integral role of TREM2 in the immune-related events of TME. Therefore, TREM2 may be a potential indicator of remodeling of TME in osteosarcoma, which is useful and helpful in predicting the clinical prognostic outcome of OS patients and provide a unique perspective for immunotherapy for OS.
Collapse
|
7
|
Specialized functions and sexual dimorphism explain the functional diversity of the myeloid populations during glioma progression. Cell Rep 2023; 42:111971. [PMID: 36640350 DOI: 10.1016/j.celrep.2022.111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Malignant gliomas are aggressive, hard-to-treat brain tumors. Their tumor microenvironment is massively infiltrated by myeloid cells, mostly brain-resident microglia, bone marrow (BM)-derived monocytes/macrophages, and dendritic cells that support tumor progression. Single-cell omics studies significantly dissected immune cell heterogeneity, but dynamics and specific functions of individual subpopulations were poorly recognized. We use Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) to precisely dissect myeloid cell identities and functionalities in murine GL261 gliomas. We demonstrate that the diversity of myeloid cells infiltrating gliomas is dictated by cell type and cell state. Glioma-activated microglia are the major source of cytokines attracting other immune cells, whereas BM-derived cells show the monocyte-to-macrophage transition in the glioma microenvironment. This transition is coupled with a phenotypic switch from the IFN-related to antigen-presentation and tumor-supportive gene expression. Moreover, we found sex-dependent differences in transcriptional programs and composition of myeloid cells in murine and human glioblastomas.
Collapse
|
8
|
Expression Analysis of TREM2 and TC2N Genes in Human Breast Cancer Tissues. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-127489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Since breast cancer is the most common type of cancer in women around the world, finding new biomarkers for early diagnosis of breast cancer is invaluable. Objectives: This research assessed the mRNA expression of triggering receptors expressed on myeloid cell 2 (TREM2) and tandem C2 domains nuclear protein (TC2N) genes among Iranian patients with breast cancer. Methods: We acquired 50 samples of cancerous breast tumors and corresponding adjacent non-cancerous tissues from Iranian women. The gene expression of TREM2 and TC2N was measured by quantitative real-time polymerase chain reaction (q-RT-PCR). In addition, the association between TREM2 and TC2N levels with various clinicopathologic characteristics was also investigated. Results: The increased levels of TREM2 and TC2N mRNAs were shown in breast cancerous tissues in comparison with adjacent non-cancerous tissues (P < 0.05). Among the clinicopathological characteristics evaluated, tumor size, necrosis, and lymphatic tissue invasion were significantly associated with high TREM2 expression. A significant relationship was also seen between increased TC2N expression and tumor grade. Sensitivity and specificity were shown at 84% and 94%, respectively, for TREM2 and 72% and 100% for TC2N. Conclusions: The data suggest that TREM2 expression, but not TC2N, could be a suitable biomarker for breast cancer diagnosis.
Collapse
|
9
|
Wang J, Li Z. TREM2 Is a Prognostic Biomarker and Correlated with an Immunosuppressive Microenvironment in Thyroid Cancer. DISEASE MARKERS 2022; 2022:1807386. [PMID: 36438899 PMCID: PMC9683966 DOI: 10.1155/2022/1807386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 03/12/2024]
Abstract
PURPOSES To identify the differentially expressed genes (DEGs) related to the immune microenvironment and elucidate the biological functions of key genes in papillary thyroid cancer (PTC) by analyzing the immune microenvironment. METHODS The relative quantities of immune and matrix components in 507 patients with PTC were calculated from the TCGA database. Analysis of differentially expressed genes in tumor samples throughout the genome, intersection of DEGs obtained from PTC patients, and genome-wide tumor samples and survival analysis were performed. Survival analysis was used for identification of prognostic factor. Immunohistochemical analysis of the TREM2 expression in PTC tissues, flow cytometry, and transwell assays were used to detect the effect of TREM2 on PTC cell proliferation, migration, and invasion. RESULTS There were a total of 1242 upregulated genes with high intersection in the immune score and 124 downregulated genes with low intersection in the stromal score. A total of 1,366 genes in these DEGs may be determinants in the immune microenvironment. GO enrichment and KEGG enrichment analysis revealed that the overall function of DEGs appeared to map onto immune-related activities. Gene intersection and survival analysis showed that there were 435 DEG crosses in PTC patients and genome-wide tumor samples, only CXCL10, CD40LG, KRT14, TRAT1, and TREM2 were associated with patient prognosis, and TCGA showed that only the TREM2 expression was upregulated in PTC. TREM2 knockdown inhibited the cell cycle and cell proliferation, migration, and invasion by PTC cells. TREM2 was associated with the immunosuppressive microenvironment by via NF-κB pathway in PTC. CONCLUSION TREM2 possibly was a potential indicator of altered TME status in PTC, and that TREM2 promoted PTC cell proliferation and cell cycle, migration, and invasion by NF-κB pathway.
Collapse
Affiliation(s)
- Jing Wang
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, NO.44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, China
| | - Zhendong Li
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, NO.44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, China
| |
Collapse
|
10
|
Li G, Zhang D, Liang C, Liang C, Wu J. Construction and validation of a prognostic model of pyroptosis related genes in hepatocellular carcinoma. Front Oncol 2022; 12:1021775. [DOI: 10.3389/fonc.2022.1021775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Pyroptosis plays an important role in the occurrence and development of cancer. We are interested in determining the prognostic value of pyroptosis-related genes in hepatocellular carcinoma (HCC). In this study, we searched the original transcriptome data of The Cancer Genome Atlas (TCGA) and identified the related expressed genes by co-expression analysis. Differentially expressed genes were identified by using univariate analysis, the least absolute shrinkage and selection operator (LASSO) and multivariate analysis to screen for genes related to prognosis of HCC. Ultimately, we established a prognostic model for five genes, namely GSDME, DHX9, TREM2, SQSTM1 and GLMN. Survival analysis showed that the overall survival rate of HCC patients with high risk score was significantly lower than that of HCC patients with low risk score, and this signal could be used as an independent prognostic indicator of HCC. Receiver operating characteristic curve analysis confirmed the accuracy of this prognostic signal, and was further verified in a Gene Expression Omnibus (GEO) dataset (GSE14520) and the International Cancer Genome Consortium (ICGC) databases. In addition, nomograms based on the five identified prognostic genes were established and verified internally in TCGA cohort. Additionally, we also analyzed the gene mutations of the model genes and the correlation between immune cells of the model genes. In summary, this study identified for the first time a 5-gene prognostic signature associated with pyroptosis, which can be used as a promising prognostic biomarker and provide some potentially useful therapeutic targets for HCC.
Collapse
|
11
|
Wu CG, Casanova R, Mairinger F, Soltermann A. Lung adenocarcinoma patients with malignant pleural effusions in hot adaptive immunity status have a longer overall survival. Front Oncol 2022; 12:1031094. [PMID: 36267973 PMCID: PMC9577289 DOI: 10.3389/fonc.2022.1031094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Malignant pleural effusion (MPE) is a common complication of lung adenocarcinoma (LADC) which is associated with a dismal prognosis. We investigated the prognostic role of PD-L1 and other immunomodulators expression in the immune compartment of MPE immune composition. MPE cytologic cell blocks of 83 LADC patients were analysed for the mRNA expression of 770 cancer-immune genes by the NanoString nCounter platform. The expression of relevant immune cell lineage markers was validated by immunohistochemistry (IHC) using quantitative pathology. The mRNA immune profiling identified four MPE patient clusters (C). C1/2 (adaptive+, hot) showed better overall survival (OS) than C3/4 (adaptive-, cold). Additionally, cold immunity profiles (adaptive-), C4 (innate+) were associated with worse OS than C3 (innate-). High PD-L1 expression was linked to the regulation of T cell activation and interferon signalling pathways. Genes of pattern recognition receptor and type I interferon signalling pathways were specifically upregulated in the long-survival (≥90 days) patient group. Moreover, immunomodulators were co-activated and highly expressed in hot adaptive immunity patient clusters, whereas CD274 (PD-L1), TNFRSF9 (4-1BB), VEGFA (VEGF-A) and CD276 (B7-H3) were upregulated in the groups referred as cold. The patient cluster, age and PD-L1 expression were independent prognosticators for LADC MPE patients (p-value < 0.05). Our study sheds light on the variances of immune contexture regarding different PD-L1 expression and survival conditions. It revealed four distinct prognostic patient clusters with specific immune cell components and immunomodulator expression profiles, which, collectively, is supportive for future therapeutic and prognosis for cancer management.
Collapse
Affiliation(s)
- Cheng-Guang Wu
- Institute of Pathology, University Hospital Zurich, Zurich, Switzerland
- *Correspondence: Cheng-Guang Wu, ; Alex Soltermann,
| | - Ruben Casanova
- Institute of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Fabian Mairinger
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Alex Soltermann
- Facharzt Foederatio Medicorum Helveticorum (FMH) Pathologie, Pathologie Länggasse, Ittigen, Switzerland
- *Correspondence: Cheng-Guang Wu, ; Alex Soltermann,
| |
Collapse
|
12
|
Li Q, Wang M, Zhang S, Jin M, Chen R, Luo Y, Sun X. Single-cell RNA sequencing in atherosclerosis: Mechanism and precision medicine. Front Pharmacol 2022; 13:977490. [PMID: 36267275 PMCID: PMC9576927 DOI: 10.3389/fphar.2022.977490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is the pathological basis of various vascular diseases, including those with high mortality, such as myocardial infarction and stroke. However, its pathogenesis is complex and has not been fully elucidated yet. Over the past few years, single-cell RNA sequencing (scRNA-seq) has been developed and widely used in many biological fields to reveal biological mechanisms at the cellular level and solve the problems of cellular heterogeneity that cannot be solved using bulk RNA sequencing. In this review, we briefly summarize the existing scRNA-seq technologies and focus on their application in atherosclerosis research to provide insights into the occurrence, development and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qiaoyu Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Rongchang Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
13
|
Struckmeier AK, Radermacher A, Fehrenz M, Alansary D, Wartenberg P, Wagner M, Scheller A, Hess J, Moratin J, Freudlsperger C, Hoffmann J, Thurner L, Roemer K, Freier K, Horn D. TREM2 Is Associated with Advanced Stages and Inferior Prognosis in Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14194635. [PMID: 36230558 PMCID: PMC9561992 DOI: 10.3390/cancers14194635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is suggested to hamper antitumor immune response in multiple cancers. However, the role of TREM2 in oral squamous cell carcinoma (OSCC) and its expression in tumor-associated macrophages (TAMs) are unknown. In this study, TREM2 expression was analyzed in the primary tumors and corresponding lymph-node metastases of OSCC patients via immunohistochemistry on tissue microarrays. Human peripheral blood mononuclear cells (PBMCs) and single-cell suspensions of tumor and healthy adjacent tissues were analyzed for the presence of TREM2+ macrophages and TAMs using flow cytometry. The serum levels of soluble TREM2 (sTREM2) were quantified using an enzyme-linked immunosorbent assay. High TREM2 expression was associated with advanced UICC stages (Spearman’s rank correlation (SRC), p = 0.04) and significantly reduced survival rates in primary tumors (multivariate Cox regression, progression-free survival: hazard ratio (HR) of 2.548, 95% confidence interval (CI) of 1.089−5.964, p = 0.028; overall survival: HR of 2.17, 95% CI of 1.021−4.613, p = 0.044). TREM2 expression was significantly increased in the PBMCs of OSCC patients in UICC stage IV compared with healthy controls (ANOVA, p < 0.05). The serum levels of sTREM2 were higher in advanced UICC stages, but they narrowly missed significance (SRC, p = 0.059). We demonstrated that TREM2 was multi-factorially associated with advanced stages and inferior prognosis in OSCC patients and that it could serve as a prognostic biomarker in OSCC patients. Targeting TREM2 has the potential to reshape the local and systemic immune landscape for the potential enhancement of patients’ prognosis.
Collapse
Affiliation(s)
- Ann-Kristin Struckmeier
- Department of Oral and Maxillofacial Surgery, Saarland University Medical Center, 66421 Homburg, Germany
- Correspondence:
| | - Anne Radermacher
- Department of Oral and Maxillofacial Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | - Michael Fehrenz
- Department of Oral and Maxillofacial Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | - Dalia Alansary
- Institute of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Philipp Wartenberg
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Mathias Wagner
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Julius Moratin
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christian Freudlsperger
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jürgen Hoffmann
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Lorenz Thurner
- Department of Internal Medicine 1 (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical Center, 66421 Homburg, Germany
| | - Klaus Roemer
- José Carreras Center for Immuno and Gene Therapy, Saarland University, 66421 Homburg, Germany
| | - Kolja Freier
- Department of Oral and Maxillofacial Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | - Dominik Horn
- Department of Oral and Maxillofacial Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| |
Collapse
|
14
|
Wolf EM, Fingleton B, Hasty AH. The therapeutic potential of TREM2 in cancer. Front Oncol 2022; 12:984193. [PMID: 36119485 PMCID: PMC9479103 DOI: 10.3389/fonc.2022.984193] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer continues to be a substantial health concern and a leading cause of death in the United States and around the world. Therefore, it is important to continue to explore the potential of novel therapeutic targets and combinatorial therapies. Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily that associates with DNAX activation protein (DAP) 12 and DAP10 to propagate signals within the cell. TREM2 has primarily been recognized for its expression on cells in the monocyte-macrophage lineage, with the majority of work focusing on microglial function in Alzheimer’s Disease. However, expansion of TREM2 research into the field of cancer has revealed that epithelial tumor cells as well as intratumoral macrophages and myeloid regulatory cells also express TREM2. In this review, we discuss evidence that TREM2 contributes to tumor suppressing or oncogenic activity when expressed by epithelial tumor cells. In addition, we discuss the immunosuppressive role of TREM2-expressing intratumoral macrophages, and the therapeutic potential of targeting TREM2 in combination with immune checkpoint therapy. Overall, the literature reveals TREM2 could be considered a novel therapeutic target for certain types of cancer.
Collapse
Affiliation(s)
- Elysa M. Wolf
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Barbara Fingleton
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Tennessee Healthcare System, Nashville, TN, United States
- *Correspondence: Alyssa H. Hasty,
| |
Collapse
|
15
|
Wang Y, Johnson KCC, Gatti-Mays ME, Li Z. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J Hematol Oncol 2022; 15:118. [PMID: 36031601 PMCID: PMC9420297 DOI: 10.1186/s13045-022-01335-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitors targeting programmed cell death protein 1, programmed death-ligand 1, and cytotoxic T-lymphocyte-associated protein 4 provide deep and durable treatment responses which have revolutionized oncology. However, despite over 40% of cancer patients being eligible to receive immunotherapy, only 12% of patients gain benefit. A key to understanding what differentiates treatment response from non-response is better defining the role of the innate immune system in anti-tumor immunity and immune tolerance. Teleologically, myeloid cells, including macrophages, dendritic cells, monocytes, and neutrophils, initiate a response to invading pathogens and tissue repair after pathogen clearance is successfully accomplished. However, in the tumor microenvironment (TME), these innate cells are hijacked by the tumor cells and are imprinted to furthering tumor propagation and dissemination. Major advancements have been made in the field, especially related to the heterogeneity of myeloid cells and their function in the TME at the single cell level, a topic that has been highlighted by several recent international meetings including the 2021 China Cancer Immunotherapy workshop in Beijing. Here, we provide an up-to-date summary of the mechanisms by which major myeloid cells in the TME facilitate immunosuppression, enable tumor growth, foster tumor plasticity, and confer therapeutic resistance. We discuss ongoing strategies targeting the myeloid compartment in the preclinical and clinical settings which include: (1) altering myeloid cell composition within the TME; (2) functional blockade of immune-suppressive myeloid cells; (3) reprogramming myeloid cells to acquire pro-inflammatory properties; (4) modulating myeloid cells via cytokines; (5) myeloid cell therapies; and (6) emerging targets such as Siglec-15, TREM2, MARCO, LILRB2, and CLEVER-1. There is a significant promise that myeloid cell-based immunotherapy will help advance immuno-oncology in years to come.
Collapse
Affiliation(s)
- Yi Wang
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Margaret E Gatti-Mays
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Stefanie Spielman Comprehensive Breast Center, Columbus, OH, USA.
| | - Zihai Li
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
16
|
Khantakova D, Brioschi S, Molgora M. Exploring the Impact of TREM2 in Tumor-Associated Macrophages. Vaccines (Basel) 2022; 10:vaccines10060943. [PMID: 35746551 PMCID: PMC9227554 DOI: 10.3390/vaccines10060943] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary TREM2+ macrophages were recently reported to be highly enriched and associated with immunosuppression in various cancer types. Hence, TREM2 targeting represents a new promising approach for cancer treatment that is based on reprogramming of tumor-associated macrophages to reshape anti-tumor immunity and overcome resistance to current therapies. Abstract Tumor-associated macrophages (TAMs) represent a key component of the tumor microenvironment and are generally associated with immunosuppression and poor prognosis. TREM2 is a transmembrane receptor of the immunoglobulin superfamily expressed in myeloid cells. TREM2 has been extensively studied in microglia and neurodegenerative diseases and recently emerged as a marker of pro-tumorigenic macrophages. The accumulation of TREM2-expressing TAMs was reported across numerous cancer patients and tumor models. TREM2 genetic blockade or TREM2 targeting with antibodies resulted in improved tumor control, enhanced response to anti-PD1, and significant changes in the tumor immune landscape. Preclinical studies paved the way for an ongoing clinical trial with a TREM2 depleting antibody and inspired further exploration of TREM2 targeting therapies. Here, we review the current knowledge about the impact of TREM2 in cancer, with an emphasis on the TREM2+ macrophage signature across different cancer types, the contribution of TREM2 to TAM phenotype and function, and the promising effects of TREM2 modulation.
Collapse
|
17
|
Zhou L, Wang M, Guo H, Hou J, Zhang Y, Li M, Wu X, Chen X, Wang L. Integrated Analysis Highlights the Immunosuppressive Role of TREM2+ Macrophages in Hepatocellular Carcinoma. Front Immunol 2022; 13:848367. [PMID: 35359989 PMCID: PMC8963870 DOI: 10.3389/fimmu.2022.848367] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Recently, attention has been focused on the central role of TREM2 in diverse pathologies. However, the role of TREM2 signaling in the tumor microenvironment of hepatocellular carcinoma (HCC) remains poorly understood. Herein, we systematically investigated the single-cell transcriptomes of human HCC tissues and found that TREM2 was predominantly expressed by a macrophage subpopulation enriched in tumor tissues that resemble lipid-associated macrophages (LAMs). The accumulation of TREM2+ LAM-like cells in HCC was confirmed in two additional cohorts using scRNA-seq analysis and immunohistochemistry. High expression of TREM2 correlated with high infiltrating macrophage abundance and poor prognosis. Based on systematic interrogations of transcriptional profiles and cellular interactions, TREM2+ LAM-like cells were identified to mainly originate from S100A8+ monocytes and represented an immunosuppressive state. TREM2+ LAM-like cells recruited suppressive Treg cells, facilitating microenvironment remodeling. Furthermore, gene regulatory analysis and in vitro functional assays indicated that activation of LXR signaling could promote the reprogramming of TREM2+ LAM-like cells. Correlation analysis of bulk RNA-sequencing data demonstrated that the enrichment of TREM2+ LAM-like cells was an independent indicator of adverse clinical outcomes in HCC patients. Our comprehensive analyses provide deeper insights into the immunosuppressive role of TREM2+ LAM-like cells in HCC.
Collapse
Affiliation(s)
- Lisha Zhou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Meiling Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
| | - Hanrui Guo
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
| | - Yingna Zhang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
| | - Man Li
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
- *Correspondence: Lianghai Wang, ; Xueling Chen,
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- *Correspondence: Lianghai Wang, ; Xueling Chen,
| |
Collapse
|
18
|
Ferrara SJ, Chaudhary P, DeBell MJ, Marracci G, Miller H, Calkins E, Pocius E, Napier BA, Emery B, Bourdette D, Scanlan TS. TREM2 is thyroid hormone regulated making the TREM2 pathway druggable with ligands for thyroid hormone receptor. Cell Chem Biol 2022; 29:239-248.e4. [PMID: 34375614 PMCID: PMC8818810 DOI: 10.1016/j.chembiol.2021.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/03/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor on macrophages and microglia that senses and responds to disease-associated signals to regulate the phenotype of these innate immune cells. The TREM2 signaling pathway has been implicated in a variety of diseases ranging from neurodegeneration in the central nervous system to metabolic disease in the periphery. Here, we report that TREM2 is a thyroid hormone-regulated gene and its expression in macrophages and microglia is stimulated by thyroid hormone and synthetic thyroid hormone agonists (thyromimetics). Our findings report the endocrine regulation of TREM2 by thyroid hormone, and provide a unique opportunity to drug the TREM2 signaling pathway with orally active small-molecule therapeutic agents.
Collapse
MESH Headings
- Acetates/chemical synthesis
- Acetates/pharmacology
- Animals
- Binding Sites
- Brain/drug effects
- Brain/immunology
- Brain/pathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/pathology
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/immunology
- Microglia/pathology
- Models, Molecular
- Phenols/chemical synthesis
- Phenols/pharmacology
- Phenoxyacetates/pharmacology
- Promoter Regions, Genetic
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Response Elements
- Retinoid X Receptors/chemistry
- Retinoid X Receptors/genetics
- Retinoid X Receptors/metabolism
- Signal Transduction
- Thyroid Hormones/pharmacology
Collapse
Affiliation(s)
- Skylar J Ferrara
- Department of Chemical Physiology and Biochemistry and Program in Chemical Biology, Oregon Health & Science University, L334, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Priya Chaudhary
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Margaret J DeBell
- Department of Chemical Physiology and Biochemistry and Program in Chemical Biology, Oregon Health & Science University, L334, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Gail Marracci
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hannah Miller
- Department of Chemical Physiology and Biochemistry and Program in Chemical Biology, Oregon Health & Science University, L334, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Evan Calkins
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Edvinas Pocius
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brooke A Napier
- Department of Biology, Portland State University, OR 97201, USA
| | - Ben Emery
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
| | - Dennis Bourdette
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Thomas S Scanlan
- Department of Chemical Physiology and Biochemistry and Program in Chemical Biology, Oregon Health & Science University, L334, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
19
|
Zhao C, Chen J, Liu Y, Ju S, Wang G, Wang X. Large tumor suppressor 2 is a prognostic biomarker and correlated with immune infiltrates in colorectal cancer. Bioengineered 2021; 12:11648-11661. [PMID: 34699318 PMCID: PMC8810027 DOI: 10.1080/21655979.2021.1996513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy that has both low 5-year survival and high prevalence. Immunotherapy has achieved impressive progress for treatment of CRC, but still faces huge challenges. Although large tumor suppressor 2 (LATS2) is well accepted to be related to cancer progression, the prognostic potential and immune response role of LATS2 expression in CRC remain unclear. To investigate the value of LATS2 for prognosis and immune infiltration, a retrospective study of 213 CRC patients was carried out. We determined the expression of LATS2 in tumor tissues by immunohistochemistry. The results indicated that LATS2 expression was down-regulated in CRC tissues and clearly related to tumor differentiation (P = 0.002) and TNM stage (P = 0.002). Low LATS2 expression and TNM stage were subsequently identified as significant independent predictors of prognosis in CRC by univariate and multivariate analyses. In Kaplan–Meier survival analyses, CRC patients with elevated LATS2 expression and early TNM stage had better overall survival. We further found that LATS2 was involved in the regulation of immune-related pathways and that its expression was positively related to tumor-infiltrating immune cells by GSEA, TIMER, and ssGSEA analyses. In summary, our data imply that LATS2 may act as a cancer suppressor gene and be correlated with clinical prognosis and immune infiltration in CRC. Thus, LATS2 may be applied as a novel biomarker for predicting clinical outcomes and immune infiltration levels in CRC.
Collapse
Affiliation(s)
- Chengwen Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianping Chen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yonghui Liu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Guihua Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,School of Public Health, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
20
|
Qiu H, Shao Z, Wen X, Jiang J, Ma Q, Wang Y, Huang L, Ding X, Zhang L. TREM2: Keeping Pace With Immune Checkpoint Inhibitors in Cancer Immunotherapy. Front Immunol 2021; 12:716710. [PMID: 34539652 PMCID: PMC8446424 DOI: 10.3389/fimmu.2021.716710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
To date, immune checkpoint inhibitors have been successively approved and widely used in clinical cancer treatments, however, the overall response rates are very low and almost all cancer patients eventually progressed to drug resistance, this is mainly due to the intricate tumor microenvironment and immune escape mechanisms of cancer cells. One of the main key mechanisms leading to the evasion of immune attack is the presence of the immunosuppressive microenvironment within tumors. Recently, several studies illustrated that triggering receptor expressed on myeloid cells-2 (TREM2), a transmembrane receptor of the immunoglobulin superfamily, was a crucial pathology-induced immune signaling hub, and it played a vital negative role in antitumor immunity, such as inhibiting the proliferation of T cells. Here, we reviewed the recent advances in the study of TREM2, especially focused on its regulation of tumor-related immune signaling pathways and its role as a novel target in cancer immunotherapy.
Collapse
Affiliation(s)
- Hui Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jinghua Jiang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qinggong Ma
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yan Wang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Long Huang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xin Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
21
|
Taank Y, Agnihotri N. Understanding the regulation of β-catenin expression and activity in colorectal cancer carcinogenesis: beyond destruction complex. Clin Transl Oncol 2021; 23:2448-2459. [PMID: 34426910 DOI: 10.1007/s12094-021-02686-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Aberrant Wnt/β-catenin signaling is central to colorectal cancer carcinogenesis. The well-known potential of targeting the canonical Wnt signaling pathway for the treatment of CRC is largely attributed to the ability of this pathway to regulate various cellular processes such as cell proliferation, metastasis, drug resistance, immune response, apoptosis, and cellular metabolism. However, with the current approach of targeting this pathway, none of the Wnt-targeted agents have been successfully implicated in clinical practice. Instead of using classical approaches to target this pathway, there is a growing need to find new and modified approaches to achieve the same. For this, a better understanding of the regulation of β-catenin, a major effector of the canonical Wnt pathway is a must. The present review addresses the importance of understanding the regulation of β-catenin beyond the destruction complex. Few recently discovered β-catenin regulators such as ZNF281, TTPAL, AGR2, ARHGAP25, TREM2, and TIPE1 showed significant potential in regulating the development of CRC through modulation of the Wnt/β-catenin signaling pathway in both in vitro and in vivo studies. Although the expression and activity of β-catenin is influenced by many protein regulators, the abovementioned proteins not only influence its expression and activation but are also directly involved in the development of CRC and various other solid tumors. Therefore, we hypothesise that focusing the current research on finding the detailed mechanism of action of these regulators may assist in providing with a better treatment approach or improve the current therapeutic regimens.
Collapse
Affiliation(s)
- Y Taank
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - N Agnihotri
- Department of Biochemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
22
|
Esparza-Baquer A, Labiano I, Sharif O, Agirre-Lizaso A, Oakley F, Rodrigues PM, Zhuravleva E, O'Rourke CJ, Hijona E, Jimenez-Agüero R, Riaño I, Landa A, La Casta A, Zaki MYW, Munoz-Garrido P, Azkargorta M, Elortza F, Vogel A, Schabbauer G, Aspichueta P, Andersen JB, Knapp S, Mann DA, Bujanda L, Banales JM, Perugorria MJ. TREM-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms. Gut 2021; 70:1345-1361. [PMID: 32907830 PMCID: PMC8223629 DOI: 10.1136/gutjnl-2019-319227] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer usually arising on a background of chronic liver injury involving inflammatory and hepatic regenerative processes. The triggering receptor expressed on myeloid cells 2 (TREM-2) is predominantly expressed in hepatic non-parenchymal cells and inhibits Toll-like receptor signalling, protecting the liver from various hepatotoxic injuries, yet its role in liver cancer is poorly defined. Here, we investigated the impact of TREM-2 on liver regeneration and hepatocarcinogenesis. DESIGN TREM-2 expression was analysed in liver tissues of two independent cohorts of patients with HCC and compared with control liver samples. Experimental HCC and liver regeneration models in wild type and Trem-2-/- mice, and in vitro studies with hepatic stellate cells (HSCs) and HCC spheroids were conducted. RESULTS TREM-2 expression was upregulated in human HCC tissue, in mouse models of liver regeneration and HCC. Trem-2-/- mice developed more liver tumours irrespective of size after diethylnitrosamine (DEN) administration, displayed exacerbated liver damage, inflammation, oxidative stress and hepatocyte proliferation. Administering an antioxidant diet blocked DEN-induced hepatocarcinogenesis in both genotypes. Similarly, Trem-2-/- animals developed more and larger tumours in fibrosis-associated HCC models. Trem-2-/- livers showed increased hepatocyte proliferation and inflammation after partial hepatectomy. Conditioned media from human HSCs overexpressing TREM-2 inhibited human HCC spheroid growth in vitro through attenuated Wnt ligand secretion. CONCLUSION TREM-2 plays a protective role in hepatocarcinogenesis via different pleiotropic effects, suggesting that TREM-2 agonism should be investigated as it might beneficially impact HCC pathogenesis in a multifactorial manner.
Collapse
Affiliation(s)
- Aitor Esparza-Baquer
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Omar Sharif
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Aloña Agirre-Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ekaterina Zhuravleva
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Colm J O'Rourke
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Elizabeth Hijona
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Raul Jimenez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Ioana Riaño
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Ana Landa
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Adelaida La Casta
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Marco Y W Zaki
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Patricia Munoz-Garrido
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Mikel Azkargorta
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Felix Elortza
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Andrea Vogel
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Lejona, Spain
| | - Jesper B Andersen
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Sylvia Knapp
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Lejona, Spain
| | - Jesus Maria Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Maria Jesus Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Lejona, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
23
|
Li C, Hou X, Yuan S, Zhang Y, Yuan W, Liu X, Li J, Wang Y, Guan Q, Zhou Y. High expression of TREM2 promotes EMT via the PI3K/AKT pathway in gastric cancer: bioinformatics analysis and experimental verification. J Cancer 2021; 12:3277-3290. [PMID: 33976737 PMCID: PMC8100818 DOI: 10.7150/jca.55077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
Background: To date, the pathogenesis of gastric cancer (GC) remains unclear. We combined public database resources and bioinformatics analysis methods, explored some novel genes and verified the experiments to further understand the pathogenesis of GC and to provide a promising target for anti-tumor therapy. Methods: We downloaded the chip data related to GC from the Gene Expression Omnibus (GEO) database, extracted differentially expressed genes (DEGs), and then determined the key genes in the development of GC via PPI networks and model analysis. Functional annotation via GO and KEGG enrichment of DEGs was used to understand the latent roles of DEGs. The expression of the triggering receptor expressed on myeloid cells 2 (TREM2) gene in GC cell lines was verified via RT-PCR and western blotting. Moreover, the CCK-8, wound healing assay, and transwell migration and invasion assays were used to understand the changes in the proliferation, migration, and invasion abilities of GC cells after silencing TREM2. Western blotting verified the interaction between TREM2 and PI3K predict of the string website, as well as the effect of TREM2 on EMT. Finally, a lung metastasis model was used to explore the relationship between TREM2 and metastasis. Results: Our study identified 16 key genes, namely BGN, COL1A1, COL4A1, COL5A2, NOX4, SPARC, HEYL, SPP1, TIMP1, CTHRC1, TREM2, SFRP4, FBXO32, GPX3, KIF4A, and MMP9 genes associated with GC. The EMT-related pathway was the most significantly altered pathway. TREM2 expression was higher in GC cell lines and was remarkably associated with tumor invasion depth, TNM stage, histological grade, histological type, anatomic subdivision, and Helicobacter pylori state. Knockdown of TREM2 expression inhibited the proliferation, migration, and invasion of GC cells as well as the progression of EMT by PI3K/AKT signaling in vitro. In addition, lung metastasis were decreased in vivo. Conclusions: We identified some important genes associated with the progression of GC via public database analysis, explored and verified the effects of proto-oncogene TREM2 on EMT via the PI3K/AKT pathway. TREM2 may be a novel target in the GC therapy.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Shuqiao Yuan
- Department of medical laboratory, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yigan Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wenzhen Yuan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoguang Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Rheumatology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Juan Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Quanlin Guan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Cheng X, Wang X, Nie K, Cheng L, Zhang Z, Hu Y, Peng W. Systematic Pan-Cancer Analysis Identifies TREM2 as an Immunological and Prognostic Biomarker. Front Immunol 2021; 12:646523. [PMID: 33679809 PMCID: PMC7925850 DOI: 10.3389/fimmu.2021.646523] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily and a crucial signaling hub for multiple pathological pathways that mediate immunity. Although increasing evidence supports a vital role for TREM2 in tumorigenesis of some cancers, no systematic pan-cancer analysis of TREM2 is available. Thus, we aimed to explore the prognostic value, and investigate the potential immunological functions, of TREM2 across 33 cancer types. Based on datasets from The Cancer Genome Atlas, and the Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, cBioPortal, and Human Protein Atlas, we employed an array of bioinformatics methods to explore the potential oncogenic roles of TREM2, including analyzing the relationship between TREM2 and prognosis, tumor mutational burden (TMB), microsatellite instability (MSI), DNA methylation, and immune cell infiltration of different tumors. The results show that TREM2 is highly expressed in most cancers, but present at low levels in lung cancer. Further, TREM2 is positively or negatively associated with prognosis in different cancers. Additionally, TREM2 expression was associated with TMB and MSI in 12 cancer types, while in 20 types of cancer, there was a correlation between TREM2 expression and DNA methylation. Six tumors, including breast invasive carcinoma, cervical squamous cell carcinoma and endocervical adenocarcinoma, kidney renal clear cell carcinoma, lung squamous cell carcinoma, skin cutaneous melanoma, and stomach adenocarcinoma, were screened out for further study, which demonstrated that TREM2 gene expression was negatively correlated with infiltration levels of most immune cells, but positively correlated with infiltration levels of M1 and M2 macrophages. Moreover, correlation with TREM2 expression differed according to T cell subtype. Our study reveals that TREM2 can function as a prognostic marker in various malignant tumors because of its role in tumorigenesis and tumor immunity.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Hu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Ferrara SJ, Chaudhary P, DeBell MJ, Marracci G, Miller H, Calkins E, Pocius E, Napier BA, Emery B, Bourdette D, Scanlan TS. TREM2 is thyroid hormone regulated making the TREM2 pathway druggable with ligands for thyroid hormone receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33532772 DOI: 10.1101/2021.01.25.428149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor on macrophages and microglia that senses and responds to disease associated signals to regulate the phenotype of these innate immune cells. The TREM2 signaling pathway has been implicated in a variety of diseases ranging from neurodegeneration in the central nervous system to metabolic disease in the periphery. We report here that TREM2 is a thyroid hormone regulated gene and its expression in macrophages and microglia is stimulated by thyroid hormone. Both endogenous thyroid hormone and sobetirome, a synthetic thyroid hormone agonist drug, suppress pro-inflammatory cytokine production from myeloid cells including macrophages that have been treated with the SARS-CoV-2 spike protein which produces a strong, pro-inflammatory phenotype. Thyroid hormone agonism was also found to induce phagocytic behavior in microglia, a phenotype consistent with activation of the TREM2 pathway. The thyroid hormone antagonist NH-3 blocks the anti-inflammatory effects of thyroid hormone agonists and suppresses microglia phagocytosis. Finally, in a murine experimental autoimmune encephalomyelitis (EAE) multiple sclerosis model, treatment with Sob-AM2, a CNS-penetrating sobetirome prodrug, results in increased Trem2 expression in disease lesion resident myeloid cells which correlates with therapeutic benefit in the EAE clinical score and reduced damage to myelin. Our findings represent the first report of endocrine regulation of TREM2 and provide a unique opportunity to drug the TREM2 signaling pathway with orally active small molecule therapeutic agents.
Collapse
|
26
|
Li H, Lu H, Cui W, Huang Y, Jin X. A TP53-based immune prognostic model for muscle-invasive bladder cancer. Aging (Albany NY) 2020; 13:1929-1946. [PMID: 33323544 PMCID: PMC7880361 DOI: 10.18632/aging.202150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Muscle-invasive bladder cancer (MIBC) patients are subject to unfavorable treatment options and a high recurrence rate. The status of TP53 mutations played an essential role in the progression and the prognosis of MIBC. The present study proposed to investigate the association between TP53 mutations and immunophenotype in MIBC. RESULTS We established an immune prognostic model (IPM) ground on the immune-associated genes derived from variation analysis between wild-type TP53 and mutated TP53 TCGA-MIBC patients, and validated in another cohort from GEO database. Based on IPM, we divided MIBC patients into low and high risk subgroups. The high risk MIBC patients had higher proportions of macrophages M1, and lower proportions of T cells regulatory (Tregs) and activated dendritic cells than the low risk MIBC patients. Moreover, the expression of immune checkpoints genes (PD1, CTLA4, LAG3, HAVCR2 and TIGIT) was higher in the high risk patients than the low risk patients. In clinical application, IPM exhibited better survival prediction than conventional clinical characteristics. CONCLUSIONS Our investigation presented practical prognostic significance for MIBC patients and displayed the overarching landscape of the immune response in the MIBC microenvironment. METHODS Data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) analysis between the TP53 mutated and wild-type MIBC patients was conducted. The CIBERSORT algorithm was performed to evaluate the proportion of immune cell types. Gene expression profiles from the TCGA and GEO were used as training and testing cohorts to build and validate an immune-related prognostic model (IPM). Genes in the IPM model were first screened by univariate Cox analysis, then filtered by the least absolute shrinkage and selection operator (LASSO) Cox regression. A nomogram was finally established and evaluated by combining both the IPM and other clinical factors.
Collapse
Affiliation(s)
- Hongyan Li
- Jilin Key Laboratory of Urologic Oncology, Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huayi Lu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanli Cui
- Jilin Key Laboratory of Urologic Oncology, Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yufan Huang
- Jilin Key Laboratory of Urologic Oncology, Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuefei Jin
- Jilin Key Laboratory of Urologic Oncology, Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Agarwal S, Behring M, Kim H, Chandrashekar DS, Chakravarthi BVSK, Gupta N, Bajpai P, Elkholy A, Al Diffalha S, Datta PK, Heslin MJ, Varambally S, Manne U. TRIP13 promotes metastasis of colorectal cancer regardless of p53 and microsatellite instability status. Mol Oncol 2020; 14:3007-3029. [PMID: 33037736 PMCID: PMC7718953 DOI: 10.1002/1878-0261.12821] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Overexpression of TRIP13, a member of the AAA-ATPase family, is linked with various cancers, but its role in metastasis is unknown in colorectal cancer (CRC). In the current study, we investigated the role TRIP13 in experimental metastasis and its involvement in regulation of WNT/β-catenin and EGFR signaling pathways. Evaluation of formalin-fixed paraffin-embedded (FFPE) and frozen tissues of adenomas and CRCs, along with their corresponding normal samples, showed that TRIP13 was gradually increased in its phenotypic expression from adenoma to carcinoma and that its overexpression in CRCs was independent of patient's gender, age, race/ethnicity, pathologic stage, and p53 and microsatellite instability (MSI) status. Moreover, liver metastases of CRCs showed TRIP13 overexpression as compared to matched adjacent liver tissues, indicating the biological relevance of TRIP13 in CRC progression and metastasis. TRIP13 knockdown impeded colony formation, invasion, motility, and spheroid-forming capacity of CRC cells irrespective of their p53 and MSI status. Furthermore, xenograft studies demonstrated high expression of TRIP13 contributed to tumor growth and metastasis. Depletion of TRIP13 in CRC cells decreased metastasis and it was independent of the p53 and MSI status. Furthermore, TRIP13 interacted with a tyrosine kinase, FGFR4; this interaction could be essential for activation of the EGFR-AKT pathway. In addition, we demonstrated the involvement of TRIP13 in the Wnt signaling pathway and in the epithelial-mesenchymal transition. Cell-based assays revealed that miR-192 and PNPT1 regulate TRIP13 expression in CRC. Additionally, RNA sequencing of CRC cells with TRIP13 knockdown identified COL6A3, TREM2, SHC3, and KLK7 as downstream targets that may have functional relevance in TRIP13-mediated tumor growth and metastasis. In summary, our results demonstrated that TRIP13 promotes tumor growth and metastasis regardless of p53 and MSI status, and indicated that it is a target for therapy of CRC.
Collapse
Affiliation(s)
- Sumit Agarwal
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Michael Behring
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Hyung‐Gyoon Kim
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | | | | | - Nirzari Gupta
- Department of ChemistryUniversity of Alabama at BirminghamALUSA
| | - Prachi Bajpai
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Amr Elkholy
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | | | - Pran K. Datta
- Division of Hematology and OncologyDepartment of MedicineUniversity of Alabama at BirminghamALUSA
- Department of SurgeryUniversity of Alabama at BirminghamALUSA
- O'Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Martin J. Heslin
- Department of SurgeryUniversity of Alabama at BirminghamALUSA
- O'Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Sooryanarayana Varambally
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- O'Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Upender Manne
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- Department of SurgeryUniversity of Alabama at BirminghamALUSA
- O'Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| |
Collapse
|
28
|
Abstract
BACKGROUND This study aimed to investigate the expression level of X-linked 4 (BEX4) in patients with gastric cancer (GC) and to investigate the prognostic significance of BEX4. METHODS The mRNA expression of BEX4 was analyzed using the Cancer Genome Atlas (TCGA) datasets. The relationship between the expression of BEX4 and GC patient survival was assessed using a Kaplan-Meier plot and Log Rank test. Multivariate cox regression analysis was used to evaluate prognostic factor. The diagnostic value of BEX4 expression in GC tissue was determined through receiver operating characteristic (ROC) curve analysis. Gene set enrichment analysis (GSEA) was used to explore BEX-4 related signaling pathways in GC. Furthermore, the Human Protein Atlas (HPA) database and GSE62254 dataset were used for further validation. RESULTS BEX4 was expressed at lower level in GC tissues than normal gastric tissues. The lower expression of BEX4 was also validated at protein level in HPA database. The area under the ROC curve for BEX4 expression in normal gastric tissue and GC was 0.791, which presented modest diagnostic value. Kaplan-Meier survival analysis revealed that patients in low BEX4 expression group had a worse prognosis than those with high BEX4 expression (P = .009). Multivariate analysis showed that BEX4 is an independent risk factor for overall survival both in TCGA and GSE62254 (P = .0142, .013, respectively). GSEA identified that the expression of BEX4 was related to DNA replication, RNA polymerase, cell cycle, and P53 signaling pathway. CONCLUSION BEX4 is expressed at low levels in GC. BEX4 expression independently predicted poor OS for GC. It is a promising independent molecular predictor for the diagnosis and prognosis of GC.
Collapse
|
29
|
Wu P, Xiang T, Wang J, Lv R, Wu G. TYROBP is a potential prognostic biomarker of clear cell renal cell carcinoma. FEBS Open Bio 2020; 10:2588-2604. [PMID: 33015999 PMCID: PMC7714062 DOI: 10.1002/2211-5463.12993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/20/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) exhibits high recurrence and metastasis rates. Although target therapy has significantly improved the prognosis of some patients with ccRCC, the median survival rate remains poor. Thus, there remains a need for the identification of novel potential targets for diagnosis and therapy. Here, we screened differentially expressed genes between ccRCC and normal tissues through analyzing The Cancer Genome Atlas database. We identified 55 up‐regulated and 67 down‐regulated genes associated with poor prognosis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that these genes were associated with glycometabolic process, complement and coagulation cascades. In addition, the eight down‐regulated genes (HRG, FABP1, ALDOB, PCK1, HAO2, CASR, PLG, and HMGCS2) and two up‐regulated genes (SERPINE1 and TYROBP) were filtered out. Finally, TYROBP was selected through repeated verification of various databases. High expression of TYROBP is associated with low survival rate in ccRCC, is closely related to immune cell infiltration and is coexpressed with Programmed cell death protein‐1(PD‐1) and Cytotoxic T lymphocyte‐associated antigen‐4(CTLA‐4). In conclusion, TYROBP may have potential for diagnosis and treatment of ccRCC.
Collapse
Affiliation(s)
- Ping Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, China
| | - Tingting Xiang
- Department of Rehabilitation, Liguang Rehabilitation Hospital of Dalian Development Zone, China
| | - Jing Wang
- Department of Neurobiology, Harbin Medical University, China
| | - Run Lv
- Anesthesiology Department, Dalian Medical University, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, China
| |
Collapse
|
30
|
Katzenelenbogen Y, Sheban F, Yalin A, Yofe I, Svetlichnyy D, Jaitin DA, Bornstein C, Moshe A, Keren-Shaul H, Cohen M, Wang SY, Li B, David E, Salame TM, Weiner A, Amit I. Coupled scRNA-Seq and Intracellular Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer. Cell 2020; 182:872-885.e19. [PMID: 32783915 DOI: 10.1016/j.cell.2020.06.032] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/06/2020] [Accepted: 06/19/2020] [Indexed: 01/08/2023]
Abstract
Cell function and activity are regulated through integration of signaling, epigenetic, transcriptional, and metabolic pathways. Here, we introduce INs-seq, an integrated technology for massively parallel recording of single-cell RNA sequencing (scRNA-seq) and intracellular protein activity. We demonstrate the broad utility of INs-seq for discovering new immune subsets by profiling different intracellular signatures of immune signaling, transcription factor combinations, and metabolic activity. Comprehensive mapping of Arginase 1-expressing cells within tumor models, a metabolic immune signature of suppressive activity, discovers novel Arg1+ Trem2+ regulatory myeloid (Mreg) cells and identifies markers, metabolic activity, and pathways associated with these cells. Genetic ablation of Trem2 in mice inhibits accumulation of intra-tumoral Mreg cells, leading to a marked decrease in dysfunctional CD8+ T cells and reduced tumor growth. This study establishes INs-seq as a broadly applicable technology for elucidating integrated transcriptional and intra-cellular maps and identifies the molecular signature of myeloid suppressive cells in tumors.
Collapse
Affiliation(s)
| | - Fadi Sheban
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Adam Yalin
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Ido Yofe
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | | | | | | | - Adi Moshe
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | | | - Merav Cohen
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Shuang-Yin Wang
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Baoguo Li
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Tomer-Meir Salame
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Assaf Weiner
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel.
| |
Collapse
|
31
|
Li Y, Sun R, Zhang Y, Yuan Y, Miao Y. A methylation-based mRNA signature predicts survival in patients with gastric cancer. Cancer Cell Int 2020; 20:284. [PMID: 32647495 PMCID: PMC7336496 DOI: 10.1186/s12935-020-01374-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 11/22/2022] Open
Abstract
Background Evidence suggests that altered DNA methylation plays a causative role in the occurrence, progression and prognosis of gastric cancer (GC). Thus, methylated-differentially expressed genes (MDEGs) could potentially serve as biomarkers and therapeutic targets in GC. Methods Four genomics profiling datasets were used to identify MDEGs. Gene Ontology enrichment and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis were used to explore the biological roles of MDEGs in GC. Univariate Cox and LASSO analysis were used to identify survival-related MDEGs and to construct a MDEGs-based signature. The prognostic performance was evaluated in two independent cohorts. Results We identified a total of 255 MDEGs, including 192 hypermethylation-low expression and 63 Hypomethylation-high expression genes. The univariate Cox regression analysis showed that 83 MDEGs were associated with overall survival. Further we constructed an eight-MDEGs signature that was independent predictive of prognosis in the training cohort. By applying the eight-MDEGs signature, patients in the training cohort could be categorized into high-risk or low-risk subgroup with significantly different overall survival (HR = 2.62, 95% CI 1.71–4.02, P < 0.0001). The prognostic value of the eight-MDEGs signature was confirmed in another independent GEO cohort (HR = 1.35, 95% CI 1.03–1.78, P = 0.0302) and TCGA-GC cohort (HR = 1.85, 95% CI 1.16–2.94, P = 0.0084). Multivariate cox regression analysis proved the eight-MDEGs signature was an independent prognostic factor for GC. Conclusion We have thus established an innovative eight-MDEGs signature that is predictive of overall survival and could be a potentially useful guide for personalized treatment of GC patients.
Collapse
Affiliation(s)
- Yang Li
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221009 China
| | - Rongrong Sun
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, 221009 China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, 221009 China
| | - Yuan Yuan
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, 221009 China
| | - Yufeng Miao
- Department of Medical Oncology, The First Peoples' Hospital of Wenling City, Wenling, 317500 China
| |
Collapse
|
32
|
TREM-1 and TREM-2 Expression on Blood Monocytes Could Help Predict Survival in High-Grade Glioma Patients. Mediators Inflamm 2020; 2020:1798147. [PMID: 32684831 PMCID: PMC7350089 DOI: 10.1155/2020/1798147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/27/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Objective In recent years, the role of the modern inflammatory markers TREM-1 (triggering receptors expressed on myeloid cells) and HMGB1 (high mobility group box 1 protein) in tumorigenesis has begun to be studied. Their role in gliomas is not clear. The aim of our study was to find the role of inflammation in gliomas. Patients and Methods. In 63 adult patients with gliomas and 31 healthy controls, the expressions of TREM-1 and TREM-2 on CD14+ blood cells (method: flow cytometry) and the levels of soluble sTREM-1, HMGB1, IL-6, and IL-10 (Elisa tests) were analyzed. Results Cox proportional hazard analysis showed that a TREM-1/TREM-2 ratio was associated with reduced overall survival (HR = 1.001, P = 0.023). Patients with a TREM-1/TREM-2 ratio above 125 survived significantly shorter than patients with a TREM-1/TREM-2 ratio below 125. The percentage of CD14+ TREM-1+ cells was strongly associated with a plasma IL-6/IL-10 ratio (positively) and with IL-10 (negatively). Conversely, we found a higher percentage of CD14+ TREM-2+ monocytes in better surviving patients; these cells could downregulate the exaggerated inflammation and potentiate the phagocytosis in the tumor. The serum levels of HMGB1 negatively correlated with the percentage of CD14+ TREM-1+ cells and with the TREM-1/TREM-2 ratio. The positive correlation between the serum levels of a late proinflammatory cytokine HMGB1 with the percentage of TREM2+ CD14+ monocytes can be explained as an effort for suppression of systemic inflammation by anti-inflammatory acting CD14+ TREM-2+ cells. Conclusion We showed that the TREM-1/TREM-2 ratio (expression on the surface of blood monocytes) could help predict prognosis in patients with gliomas, especially in high-grade gliomas, and that systemic inflammation has an impact on the patient's overall survival. This is the first study that showed that TREM expression on monocytes in peripheral blood could help predict prognosis in patients with gliomas.
Collapse
|
33
|
Deczkowska A, Weiner A, Amit I. The Physiology, Pathology, and Potential Therapeutic Applications of the TREM2 Signaling Pathway. Cell 2020; 181:1207-1217. [DOI: 10.1016/j.cell.2020.05.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
|
34
|
Wang Y, Shen Y, Sun X, Hong TL, Huang LS, Zhong M. Prognostic roles of the expression of sphingosine-1-phosphate metabolism enzymes in non-small cell lung cancer. Transl Lung Cancer Res 2019; 8:674-681. [PMID: 31737503 DOI: 10.21037/tlcr.2019.10.04] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Sphingosine-1-phosphate (S1P), a bioactive lipid, is generally increased in human non-small cell lung cancer (NSCLC). Evidence has shown that the levels of enzymes in S1P metabolism were associated with clinical outcomes in patients with NSCLC. Nevertheless, the roles of mRNA expression of major enzymes (SPHK1, SPHK2 and SGPL1) in S1P metabolism for predicting outcomes in NSCLC patients have not been determined. Methods "The Kaplan-Meier plotter" (the KM plotter) is an online database which contains gene expression and clinical data of 1,928 NSCLC patients. In this study, we analyzed the relationship between mRNA expression of major enzymes in S1P metabolism and overall survival (OS) in 1,926 NSCLC patients with the KM plotter. Further analyses stratified by smoking history, non-metastasis patents, clinical stages, negative surgical margin, chemotherapy and radiotherapy were also performed. Results High SPHK1 mRNA expression [hazard ratio (HR) 1.47, 95% confident interval (CI): 1.28-1.68, P=2.6e-08] was significantly correlated to worse OS, but high SPHK2 (0.66, 95% CI: 0.59-0.75, P=1.9e-10) or SGPL1 (HR 0.64, 95% CI: 0.55-0.75, P=8.7e-09) mRNA expression was in favor of better OS in NSCLC patients. Conclusions The mRNA expression of SPHK1, SPHK2, and SGPL1 is potential predictor of outcomes in NSCLC patients.
Collapse
Affiliation(s)
- Yingqin Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yaxing Shen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xia Sun
- Department of Nephrology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou 221000, China.,Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | | | - Long Shuang Huang
- Department of Pharmacology, Shanghai Hospital of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Nakamura S, Kanda M, Kodera Y. Incorporating molecular biomarkers into clinical practice for gastric cancer. Expert Rev Anticancer Ther 2019; 19:757-771. [PMID: 31437076 DOI: 10.1080/14737140.2019.1659136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Gastric cancer is one of the most common causes of cancer-related mortality worldwide. To improve clinical outcomes, it is critical to develop appropriate approaches to diagnosis and treatment. Biomarkers have numerous potential clinical applications, including screening, assessing risk, determining prognosis, monitoring recurrence, and predicting response to treatment. Furthermore, biomarkers may contribute to the development of effective therapies. Areas covered: Here we review recent progress in exploiting GC-specific biomarkers such as protein-coding genes, microRNAs, long noncoding RNAs, and methylated gene promoters. Expert opinion: The development of biomarkers for diagnosing and monitoring gastric cancer and for individualizing therapeutic targets shows great promise for improving gastric cancer management.
Collapse
Affiliation(s)
- Shunsuke Nakamura
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
36
|
High Expression of LTBP2 Contributes to Poor Prognosis in Colorectal Cancer Patients and Correlates with the Mesenchymal Colorectal Cancer Subtype. DISEASE MARKERS 2019; 2019:5231269. [PMID: 30956730 PMCID: PMC6431450 DOI: 10.1155/2019/5231269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/07/2019] [Indexed: 01/12/2023]
Abstract
Colorectal cancer (CRC) is a complex and heterogeneous disease with four consensus molecular subtypes (CMS1-4). LTBP2 is a member of the fibrillin/LTBP super family and plays a critical role in tumorigenesis by activating TGF-β in the CMS4 CRC subtype. So far, the expression and prognostic significance of LTBP2 in CRC remains obscure. In this study, we aimed to analyze the mRNA and protein expression levels of LTBP2 in CRC tissues and then estimate their values as a potential prognostic biomarker. We detected the mRNA expression of LTBP2 in 28 cases of fresh CRC tissues and 4 CRC cell lines and the protein expression of LTBP2 in 483 samples of CRC tissues, matched tumor-adjacent tissues, and benign colorectal diseases. LTBP2 protein expression was then correlated to patients' clinical features and overall survival. Both LTBP2 mRNA and protein expression levels in CRC tissues were remarkably superior to those in adjacent normal colorectal tissues (P = 0.0071 and P < 0.001, respectively), according to TCGA dataset of CRC. High LTBP2 protein expression was correlated with TNM stage (P < 0.001), T stage (P < 0.001), N stage (P < 0.001), and M stage (P < 0.001). High LTBP2 protein expression was related to poor overall survival in CRC patients and was an independent prognostic factor for CRC. LTBP2 mRNA expression was especially higher in the CMS4 subtype (P < 0.001), which was confirmed in CRC cell lines. Our data suggested that LTBP2 may act as an oncogene in the development of colorectal cancer and have important significance in predicting CRC prognosis. LTBP2 could be a novel biomarker and potential therapeutic target for mesenchymal colorectal cancer and can improve the outcome of high-risk CRC.
Collapse
|
37
|
Zeng L, Yang C, Ming Y, Luo S, Chen L. Bioinformatics Analysis Reveals Potential Candidate Genes for Different Glioma Subtypes (Astrocytoma, Ependymoma, and Oligodendroglioma). Cancer Biother Radiopharm 2018. [DOI: 10.1089/cbr.2018.2475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Liangnan Zeng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Changmei Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Ming
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shihong Luo
- Department of Neurosurgery, Hospital of Stomatology Southwest Medical University, Luzhou, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
38
|
Liu S, Mao Q, Xue W, Zhang X, Qi Y, Wang Y, Chen P, Zhou Q. High expression of ALPPL2 is associated with poor prognosis in gastric cancer. Hum Pathol 2018; 86:49-56. [PMID: 30496798 DOI: 10.1016/j.humpath.2018.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
Alkaline phosphatase placental-like 2 (ALPPL2) is a member of the ALPP alkaline phosphatase family and is reported to be associated with the growth of some tumors. Gastric cancer is one of the most common cancers worldwide. We previously identified a distinct expression pattern of ALPPL2 between gastric cancer and adjacent normal tissues. In this study, we examined the expression of ALPPL2 in gastric adenocarcinoma and its ability to predict prognosis. We used bioinformatics analysis and immunohistochemistry to examine the expression pattern of ALPPL2 and analyzed the associations between ALPPL2 level and perioperative characteristics and the prognosis of gastric adenocarcinoma patients by Kaplan-Meier plotter analysis. Our results indicated that the expression of ALPPL2 was significantly increased in gastric adenocarcinoma (P < .01) and was an independent factor (P < .05) that could provide reliable prognostic information on gastric adenocarcinoma patients. High expression of ALPPL2 was associated with advanced TNM stage (P < .05) and high HER-2 expression (P < .01). Our study suggests that ALPPL2 has the potential to reveal prognostic information on gastric cancer.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Clinical Bio-bank, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China; Department of Pathology, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Qinsheng Mao
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Wanjiang Xue
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Xiaojing Zhang
- Department of Clinical Bio-bank, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Yue Qi
- Department of Clinical Bio-bank, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Yingjing Wang
- Department of Clinical Bio-bank, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Pei Chen
- Department of Clinical Bio-bank, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Qing Zhou
- Department of Education and Training Office, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
39
|
Feng Y, Hu Y, Mao Q, Guo Y, Liu Y, Xue W, Cheng S. Upregulation of Spondin-2 protein expression correlates with poor prognosis in hepatocellular carcinoma. J Int Med Res 2018; 47:569-579. [PMID: 30318967 PMCID: PMC6381490 DOI: 10.1177/0300060518803232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to measure the extracellular matrix protein Spondin-2 (SPON2) in hepatocellular carcinoma (HCC) tissues and to determine its potential value as a prognostic indicator by assessing its correlation with clinicopathological variables and survival. METHODS SPON2 mRNA expression was assessed in 20 matched pairs of HCC and non-cancerous liver tissues by quantitative reverse transcription-polymerase chain reaction analysis. SPON2 protein expression was determined in 107 matched pairs of HCC and normal liver tissue by immunohistochemical staining of tissue microarrays. RESULTS Analysis of patient tissues and Oncomine datasets showed that SPON2 mRNA and SPON2 protein expression were both significantly upregulated in HCC tissues, compared with non-cancerous liver tissue; moreover, both correlated significantly with tumor size. Kaplan-Meier analysis revealed that HCC patients who showed high levels of cytoplasmic SPON2 protein had poorer survival following curative resection, compared with HCC patients who exhibited low protein expression levels. Multivariate Cox regression analysis showed that tumor thrombus and SPON2 protein expression both independently correlated with reduced survival in HCC patients. CONCLUSION Upregulated expression of SPON2 protein in tumor tissue could be an effective prognostic indicator for patients with HCC.
Collapse
Affiliation(s)
- Ying Feng
- 1 The Third Affiliated Hospital of Soochow University, Changzhou, China.,2 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yilin Hu
- 2 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Qinsheng Mao
- 2 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yibing Guo
- 3 Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yifei Liu
- 4 Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wanjiang Xue
- 2 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China.,3 Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuqun Cheng
- 5 Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
40
|
Ye Y, Song Y, Zhuang J, Wang G, Ni J, Xia W. Anticancer effects of echinacoside in hepatocellular carcinoma mouse model and HepG2 cells. J Cell Physiol 2018; 234:1880-1888. [PMID: 30067868 DOI: 10.1002/jcp.27063] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
Echinacoside (ECH) is a phenylethanoid glycoside extracted from a Chinese herbal medicine, Cistanches salsa. ECH possesses many biological properties, including anti-inflammation, neural protection, liver protection, and antitumor. In the current study, we aimed to explore the effects of ECH on hepatocellular carcinoma (HCC) and the underlying mechanisms. The results showed that ECH could attenuate diethylnitrosamine (DEN)-induced HCC in mice, and exerted antiproliferative and proapoptotic functions on HepG2 HCC cell line. ECH exposure in HepG2 cells dose-dependently reduced the phosphorylation of AKT (p-AKT) and enhanced the expression of p21 (a cell cycle inhibitor) and Bax (a proapoptotic protein). Furthermore, ECH significantly suppressed insulin-like growth factor-1-induced p-AKT and cell proliferation. These data indicated that phosphoinositide 3-kinase (PI3K)/AKT signaling was involved in the anti-HCC activity of ECH. Gene set enrichment analysis results revealed a positive correlation between the PI3K pathway and triggering receptors expressed on myeloid cells 2 (TREM2) expression in HCC tissues. ECH exposure significantly decreased TREM2 protein levels in HepG2 cells and DEN-induced HCC. Furthermore, ECH-mediated proliferation inhibition and AKT signaling inactivation were notably attenuated by TREM2 overexpression. In conclusion, ECH exerted its antitumor activity via decreasing TREM2 expression and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Ying Ye
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanan Song
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juhua Zhuang
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoyu Wang
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Ni
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
41
|
Sawaki K, Kanda M, Kodera Y. Review of recent efforts to discover biomarkers for early detection, monitoring, prognosis, and prediction of treatment responses of patients with gastric cancer. Expert Rev Gastroenterol Hepatol 2018; 12:657-670. [PMID: 29902383 DOI: 10.1080/17474124.2018.1489233] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide. Despite recent advances in diagnosis and therapy, the prognosis of patients with GC is poor. Many patients have inoperable disease upon diagnosis or experience recurrent disease after curative gastrectomy. Unfortunately, tumor markers for GC, such as serum carcinoembryonic antigen and carbohydrate antigen 19-9, lack sufficient sensitivity and specificity. Therefore, effective biomarkers are required to detect early GC and to predict tumor recurrence and chemosensitivity. Areas covered: Here we aimed to review recent developments in techniques that improve the detection of aberrant expression of GC-associated molecules, including protein coding genes, microRNAs, long noncoding RNAs, and methylated promoter DNAs. Expert commentary: Detection of genetic and epigenetic alterations in gastric tissue or in the circulation will likely improve the diagnosis and management of GC to achieve significantly improved outcomes.
Collapse
Affiliation(s)
- Koichi Sawaki
- a Department of Gastroenterological Surgery (Surgery II) , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mitsuro Kanda
- a Department of Gastroenterological Surgery (Surgery II) , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yasuhiro Kodera
- a Department of Gastroenterological Surgery (Surgery II) , Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
42
|
Zajkowicz A, Gdowicz-Kłosok A, Krześniak M, Janus P, Łasut B, Rusin M. The Alzheimer's disease-associated TREM2 gene is regulated by p53 tumor suppressor protein. Neurosci Lett 2018; 681:62-67. [PMID: 29842899 DOI: 10.1016/j.neulet.2018.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/27/2022]
Abstract
TREM2 mutations evoke neurodegenerative disorders, and recently genetic variants of this gene were correlated to increased risk of Alzheimer's disease. The signaling cascade originating from the TREM2 membrane receptor includes its binding partner TYROBP, BLNK adapter protein, and SYK kinase, which can be activated by p53. Moreover, in silico identification of a putative p53 response element (RE) at the TREM2 promoter led us to hypothesize that TREM2 and other pathway elements may be regulated in p53-dependent manner. To stimulate p53 in synergistic fashion, we exposed A549 lung cancer cells to actinomycin D and nutlin-3a (A + N). In these cells, exposure to A + N triggered expression of TREM2, TYROBP, SYK and BLNK in p53-dependent manner. TREM2 was also activated by A + N in U-2 OS osteosarcoma and A375 melanoma cell lines. Interestingly, nutlin-3a, a specific activator of p53, acting alone stimulated TREM2 in U-2 OS cells. Using in vitro mutagenesis, chromatin immunoprecipitation, and luciferase reporter assays, we confirmed the presence of the p53 RE in TREM2 promoter. Furthermore, activation of TREM2 and TYROBP by p53 was strongly inhibited by CHIR-98014, a potent and specific inhibitor of glycogen synthase kinase-3 (GSK-3). We conclude that TREM2 is a direct p53-target gene, and that activation of TREM2 by A + N or nutlin-3a may be critically dependent on GSK-3 function.
Collapse
Affiliation(s)
- Artur Zajkowicz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-101 Gliwice, Poland
| | - Agnieszka Gdowicz-Kłosok
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-101 Gliwice, Poland
| | - Małgorzata Krześniak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-101 Gliwice, Poland
| | - Patryk Janus
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-101 Gliwice, Poland
| | - Barbara Łasut
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-101 Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center, Gliwice Branch, 44-101 Gliwice, Poland.
| |
Collapse
|