1
|
Liu L, Cao X, Xu Y, Wang J, Tian X, Fu Y, Ling B. A rare case of hyalinizing clear cell carcinoma of the tongue root: A case report and literature review. Oncol Lett 2025; 29:168. [PMID: 39958930 PMCID: PMC11826299 DOI: 10.3892/ol.2025.14914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/12/2024] [Indexed: 02/18/2025] Open
Abstract
The present study describes a rare case of hyalinizing clear cell carcinoma (HCCC) of the tongue root and provides an analysis and review of the relevant literature to improve the understanding of its diagnosis and treatment. Clinical imaging and pathological data from a patient with primary HCCC of the tongue root were summarized, and previously published studies were reviewed through a literature search. The common symptoms, treatment strategies and prognoses reported in the literature were compared. A total of 16 cases of primary HCCC of the tongue were retrieved. Histologically, these cases had tumors characterized by clear cells arranged in sheets, nests and cords within the fibrous interstitium surrounding tumor cells, with round to oval cell nuclei occasionally containing small or inconspicuous nucleoli. Immunohistochemistry showed positive tumor cell staining for cytokeratin (CK)5/6, CK7 and p63, and negative for S-100, smooth muscle actin and calponin. Clinical symptoms included dysphagia, a painless mass, tongue root ulceration and a foreign body sensation in the throat. Treatment strategies included surgery, radiation therapy, repair and reconstruction, with no local recurrence or metastasis at any follow-up point. The present findings indicated that HCCC of the salivary glands is an inert malignant tumor, and a good prognosis can be achieved with both surgical resection and radiation therapy.
Collapse
Affiliation(s)
- Langqing Liu
- Department of Oral-Maxillofacial Oncology and Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
- School/Hospital of Stomatology, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
- Stomatological Research Institute of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| | - Xue Cao
- Department of Oral-Maxillofacial Oncology and Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
- School/Hospital of Stomatology, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
- Stomatological Research Institute of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| | - Yingjie Xu
- Department of Oral-Maxillofacial Oncology and Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
- School/Hospital of Stomatology, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
- Stomatological Research Institute of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| | - Jie Wang
- Department of Oral-Maxillofacial Oncology and Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
- School/Hospital of Stomatology, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
- Stomatological Research Institute of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| | - Xiao Tian
- Department of Oral-Maxillofacial Oncology and Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
- School/Hospital of Stomatology, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
- Stomatological Research Institute of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| | - Yulian Fu
- Department of Oral-Maxillofacial Oncology and Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
- School/Hospital of Stomatology, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
- Stomatological Research Institute of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| | - Bin Ling
- Department of Oral-Maxillofacial Oncology and Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
- School/Hospital of Stomatology, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
- Stomatological Research Institute of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| |
Collapse
|
2
|
Saoud C, Gundem G, Domenico D, Arango-Ossa JE, Reed D, Vaynrub M, Papaemmanouil E, Bale TA, Linos K. Rhabdomyosarcoma With EWSR1::NF2 Gene Fusion: A Case Report Potentially Expanding Its Genetic Spectrum. Genes Chromosomes Cancer 2025; 64:e70025. [PMID: 39873201 DOI: 10.1002/gcc.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, presenting with heterogeneous clinical and molecular subtypes. While gene fusions are predominantly associated with alveolar RMS, spindle cell RMS, especially congenital and intraosseous variants, are also linked to specific gene fusions. Furthermore, recently, FGFR1 kinase-driven RMSs were published. Here, we describe a case of RMS harboring an EWSR1::NF2 gene fusion, a deletion-driven genetic alteration that has not been previously documented in RMS or other soft tissue tumors. The patient was a 29-year-old female who presented with a lobulated ankle mass. Histologic examination revealed a malignant round cell tumor extensively infiltrating large nerve bundles. Immunohistochemical analysis demonstrated rhabdomyoblastic differentiation, consistent with rhabdomyosarcoma. While some areas showed features resembling the sclerosing and others the embryonal subtypes, the overall findings were considered unclassifiable. Targeted RNA sequencing revealed EWSR1(exon 9):: NF2(exon 7) gene fusion, which was confirmed on whole genome and targeted DNA sequencing. The latter did not yield specific diagnostic insights but revealed mutations in TSC2 (p.T1330M), ZFHX3 (p.A301T), and a NOTCH3 rearrangement, all of unknown oncogenic significance. MYC gene amplification was detected, but there was no evidence of chromosome 8 amplification or chromosome 11p15 loss of heterozygosity. Whole genome sequencing revealed a low tumor mutation burden (2.69/Mb) and showed no other significant potentially oncogenic events. DNA methylation studies using dimensionality reduction and unsupervised clustering placed the case within the embryonal RMS subtype. Although the absence of other oncogenic driver alterations suggests that the fusion may have played a pivotal role in pathogenesis, we cannot exclude the possibility that it represents a passenger alteration rather than a true driver mutation. If the former is true, further studies will be required to determine whether this fusion represents a novel RMS subtype or a rare driver in existing subtypes of RMS.
Collapse
Affiliation(s)
- Carla Saoud
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gunes Gundem
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dylan Domenico
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Juan E Arango-Ossa
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Damon Reed
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Max Vaynrub
- Department of Surgery, Orthopedic Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elli Papaemmanouil
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
3
|
Helland TL, Fisch AS, Chebib I. Utility of an anchored multiplex polymerase chain reaction-based fusion assay for diagnosis of soft tissue tumors in cytology. Cancer Cytopathol 2024; 132:580-587. [PMID: 38944697 DOI: 10.1002/cncy.22881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Fine-needle aspiration specimens from soft tissue tumors are complicated by lack of tissue architecture and limited material for ancillary testing. There are little data on the feasibility of next-generation sequencing techniques for fusion detection on soft tissue cytology specimens. This study explored the role of an anchored multiplex polymerase chain reaction (PCR)-based gene fusion assay in aiding the diagnosis of mesenchymal neoplasms on cytology samples. METHODS The laboratory information system was queried for cytology specimens that had undergone testing by anchored multiplex PCR. After exclusion of epithelial and hematolymphoid neoplasms, clinical and pathologic information was collected on the remaining cases. RESULTS There were 1609 cytology specimens tested with anchored multiplex PCR. Of these, 48 (3%) were cytology specimens from mesenchymal tumors. Anchored multiplex PCR was positive for a reportable fusion transcript in 14 of 48 cases (29%); there was no fusion detected in 32 cases (67%), and there was insufficient tissue for analysis in two cases (4%). The detectable fusion partners included ALK (n = 4), STAT6 (n = 4), EWSR1 (n = 3), and one each of SS18, YAP1, and PHF1. Of the cases in which a fusion partner was detected, eight of 14 were disease-defining on cytology preparation, and six of 14 provided molecular confirmation of a metastatic focus of a previously diagnosed tumor. CONCLUSIONS The anchored, multiplex PCR-based gene fusion assay is a powerful orthogonal tool in helping diagnose mesenchymal neoplasms on cytology specimens. The material obtained for cytologic analysis yields sufficient quality/quantity of tissue in the majority of cases tested.
Collapse
Affiliation(s)
- T Leif Helland
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts, USA
| | - Adam S Fisch
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts, USA
| | - Ivan Chebib
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Boulay G, Broye LC, Dong R, Iyer S, Sanalkumar R, Xing YH, Buisson R, Rengarajan S, Naigles B, Duc B, Volorio A, Awad ME, Renella R, Chebib I, Nielsen GP, Choy E, Cote GM, Zou L, Letovanec I, Stamenkovic I, Rivera MN, Riggi N. EWS-WT1 fusion isoforms establish oncogenic programs and therapeutic vulnerabilities in desmoplastic small round cell tumors. Nat Commun 2024; 15:7460. [PMID: 39198430 PMCID: PMC11358472 DOI: 10.1038/s41467-024-51851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
EWS fusion oncoproteins underlie several human malignancies including Desmoplastic Small Round Cell Tumor (DSRCT), an aggressive cancer driven by EWS-WT1 fusion proteins. Here we combine chromatin occupancy and 3D profiles to identify EWS-WT1-dependent gene regulation networks and target genes. We show that EWS-WT1 is a powerful chromatin activator controlling an oncogenic gene expression program that characterizes primary tumors. Similar to wild type WT1, EWS-WT1 has two isoforms that differ in their DNA binding domain and we find that they have distinct DNA binding profiles and are both required to generate viable tumors that resemble primary DSRCT. Finally, we identify candidate EWS-WT1 target genes with potential therapeutic implications, including CCND1, whose inhibition by the clinically-approved drug Palbociclib leads to marked tumor burden decrease in DSRCT PDXs in vivo. Taken together, our studies identify gene regulation programs and therapeutic vulnerabilities in DSRCT and provide a mechanistic understanding of the complex oncogenic activity of EWS-WT1.
Collapse
Affiliation(s)
- Gaylor Boulay
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Liliane C Broye
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Rui Dong
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sowmya Iyer
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rajendran Sanalkumar
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Yu-Hang Xing
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rémi Buisson
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shruthi Rengarajan
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Beverly Naigles
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benoît Duc
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Angela Volorio
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mary E Awad
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raffaele Renella
- Department Woman-Mother-Child, Division of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ivan Chebib
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Edwin Choy
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory M Cote
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Lee Zou
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Igor Letovanec
- Department of Histopathology, Central Institute, Valais Hospital, Sion, Switzerland
- Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Miguel N Rivera
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Nicolò Riggi
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland.
- Genentech Inc, Department of Cell and Tissue Genomics (CTG), South San Francisco, CA, USA.
| |
Collapse
|
5
|
Owosho AA, Shahrabi-Farahani S, DeColibus KA, Shasteen AM, Summersgill KF. Evaluation of EWSR1/FUS rearrangements by FISH and NKX2.2 immunoexpression in simple bone cysts of the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:289-292. [PMID: 37891121 DOI: 10.1016/j.oooo.2023.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVE Recent studies have identified recurrent rearrangements of EWSR1 or FUS with NFATC2 in extragnathic simple bone cysts (SBCs). We investigated the presence of EWSR1 or FUS rearrangements and the immunophenotypic expression of NKX2.2 and CD99 in a series of SBCs of the jaw. STUDY DESIGN We retrieved 10 cases of SBC of the jaw from the University of Pittsburgh archives. Of the 10 cases, we were able to evaluate 8 by immunohistochemistry for CD99 and NKX2.2 and 7 by fluorescence in situ hybridization (FISH) for EWSR1 and FUS rearrangement using EWSR1 and FUS break-apart probes. RESULTS All 8 cases evaluated by immunohistochemistry expressed CD99 but were negative for NKX2.2, and all 7 cases assayed using FISH were negative for EWSR1 and FUS rearrangements. CONCLUSIONS In contrast to the SBC of extragnathic sites, we found no presence of EWSR1 and FUS rearrangements by FISH in the SBC of the jaw, suggesting that this entity may be etiologically/molecularly distinct and reflects a non-neoplastic reactive process. However, as these lesions tend to be paucicellular, FISH may not be the appropriate technique for identifying EWSR1/FUS fusions. Other techniques should be used to evaluate them in future studies.
Collapse
Affiliation(s)
- Adepitan A Owosho
- Department of Diagnostic Sciences, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA; Department of Otolaryngology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Shokoufeh Shahrabi-Farahani
- Department of Diagnostic Sciences, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katherine A DeColibus
- Department of Diagnostic Sciences, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alivia M Shasteen
- Department of Diagnostic Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kurt F Summersgill
- Department of Diagnostic Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Wani AK, Prakash A, Sena S, Akhtar N, Singh R, Chopra C, Ariyanti EE, Mudiana D, Yulia ND, Rahayu F. Unraveling molecular signatures in rare bone tumors and navigating the cancer pathway landscapes for targeted therapeutics. Crit Rev Oncol Hematol 2024; 196:104291. [PMID: 38346462 DOI: 10.1016/j.critrevonc.2024.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Rare cancers (RCs), which account for over 20% of cancer cases, face significant research and treatment challenges due to their limited prevalence. This results in suboptimal outcomes compared to more common malignancies. Rare bone tumors (RBTs) constitute 5-10% of rare cancer cases and pose unique diagnostic complexities. The therapeutic potential of anti-cancer drugs for RBTs remains largely unexplored. Identifying molecular alterations in cancer-related genes and their associated pathways is essential for precision medicine in RBTs. Small molecule inhibitors and monoclonal antibodies targeting specific RBT-associated proteins show promise. Ongoing clinical trials aim to define RBT biomarkers, subtypes, and optimal treatment contexts, including combination therapies and immunotherapeutic agents. This review addresses the challenges in diagnosing, treating, and studying RBTs, shedding light on the current state of RBT biomarkers, potential therapeutic targets, and promising inhibitors. Rare cancers demand attention and innovative solutions to improve clinical outcomes.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India.
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Saikat Sena
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Esti Endah Ariyanti
- Research Center for Applied Botany, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Deden Mudiana
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Nina Dwi Yulia
- Research Center for Applied Botany, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor 16911, Indonesia
| |
Collapse
|
7
|
Buckley J, Schmidt RJ, Ostrow D, Maglinte D, Bootwalla M, Ruble D, Govindarajan A, Ji J, Kovach AE, Orgel E, Raca G, Navid F, Mascarenhas L, Pawel B, Robison N, Gai X, Biegel JA. An Exome Capture-Based RNA-Sequencing Assay for Genome-Wide Identification and Prioritization of Clinically Important Fusions in Pediatric Tumors. J Mol Diagn 2024; 26:127-139. [PMID: 38008288 DOI: 10.1016/j.jmoldx.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023] Open
Abstract
This study reports the development of an exome capture-based RNA-sequencing assay to detect recurring and novel fusions in hematologic, solid, and central nervous system tumors. The assay used Twist Comprehensive Exome capture with either fresh or formalin-fixed samples and a bioinformatic platform that provides fusion detection, prioritization, and downstream curation. A minimum of 50 million uniquely mapped reads, a consensus read alignment/fusion calling approach using four callers (Arriba, FusionCatcher, STAR-Fusion, and Dragen), and custom software were used to integrate, annotate, and rank the candidate fusion calls. In an evaluation of 50 samples, the number of calls varied substantially by caller, from a mean of 24.8 with STAR-Fusion to 259.6 with FusionCatcher; only 1.1% of calls were made by all four callers. Therefore a filtering and ranking algorithm was developed based on multiple criteria, including number of supporting reads, calling consensus, genes involved, and cross-reference against databases of known cancer-associated or likely false-positive fusions. This approach was highly effective in pinpointing known clinically relevant fusions, ranking them first in 47 of 50 samples (94%). Detection of pathogenic gene fusions in three diagnostically challenging cases highlights the importance of a genome-wide and nontargeted method for fusion detection in pediatric cancer.
Collapse
Affiliation(s)
- Jonathan Buckley
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Ryan J Schmidt
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Dejerianne Ostrow
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Dennis Maglinte
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Moiz Bootwalla
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - David Ruble
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Ananthanarayanan Govindarajan
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Jianling Ji
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Alexandra E Kovach
- Keck School of Medicine of University of Southern California, Los Angeles, California; Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Etan Orgel
- Keck School of Medicine of University of Southern California, Los Angeles, California; Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Gordana Raca
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Fariba Navid
- Keck School of Medicine of University of Southern California, Los Angeles, California; Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Leo Mascarenhas
- Keck School of Medicine of University of Southern California, Los Angeles, California; Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Bruce Pawel
- Keck School of Medicine of University of Southern California, Los Angeles, California; Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Nathan Robison
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Jaclyn A Biegel
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California.
| |
Collapse
|
8
|
Salguero-Aranda C, Di Blasi E, Galán L, Zaldumbide L, Civantos G, Marcilla D, de Álava E, Díaz-Martín J. Identification of Novel/Rare EWSR1 Fusion Partners in Undifferentiated Mesenchymal Neoplasms. Int J Mol Sci 2024; 25:1735. [PMID: 38339014 PMCID: PMC10855420 DOI: 10.3390/ijms25031735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Recurrent gene fusions (GFs) in translocated sarcomas are recognized as major oncogenic drivers of the disease, as well as diagnostic markers whose identification is necessary for differential diagnosis. EWSR1 is a 'promiscuous' gene that can fuse with many different partner genes, defining different entities among a broad range of mesenchymal neoplasms. Molecular testing of EWSR1 translocation traditionally relies on FISH assays with break-apart probes, which are unable to identify the fusion partner. Therefore, other ancillary molecular diagnostic modalities are being increasingly adopted for accurate classification of these neoplasms. Herein, we report three cases with rare GFs involving EWSR1 in undifferentiated mesenchymal neoplasms with uncertain differential diagnoses, using targeted RNA-seq and confirming with RT-PCR and Sanger sequencing. Two GFs involved hormone nuclear receptors as 3' partners, NR4A2 and RORB, which have not been previously reported. NR4A2 may functionally replace NR4A3, the usual 3' partner in extraskeletal myxoid chondrosarcoma. The third GF, EWSR1::BEND2, has previously been reported in a subtype of astroblastoma and other rare entities, including a single case of a soft-tissue tumor that we discuss in this work. In conclusion, our findings indicate that the catalogue of mesenchymal neoplasm-bearing EWSR1 fusions continues to grow, underscoring the value of using molecular ancillary techniques with higher diagnostic abilities in the routine clinical setting.
Collapse
Affiliation(s)
- Carmen Salguero-Aranda
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III (CB16/12/00361; CIBERONC-ISCIII), 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Elena Di Blasi
- Istituto Nazionale dei Tumori, Università degli Studi di Milano, 20133 Milan, Italy
| | - Lourdes Galán
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
| | - Laura Zaldumbide
- Department of Pathology, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Gema Civantos
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
| | - David Marcilla
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
| | - Enrique de Álava
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III (CB16/12/00361; CIBERONC-ISCIII), 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Juan Díaz-Martín
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III (CB16/12/00361; CIBERONC-ISCIII), 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
| |
Collapse
|
9
|
Fumagalli C, Orellana R, Ferré M, Gonzalez A, Catasús L, Vázquez T, Sebio A, López-Pousa A, Llauger J, Peiró A, Antonescu CR. Expanding the molecular landscape of undifferentiated sarcomas of bone with a novel EWSR1-SSX3 gene fusion. Genes Chromosomes Cancer 2024; 63:e23215. [PMID: 38050902 PMCID: PMC11364056 DOI: 10.1002/gcc.23215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Undifferentiated sarcomas characterized by a primitive monomorphic round to spindle cell phenotype and often non-specific immunoprofile remain difficult to subclassify outside molecular analysis. The increased application of RNA sequencing in clinical practice led to significant advances and discoveries of novel gene fusions that furthered our understanding and refined classification of otherwise undifferentiated neoplasms. In this study, we report an undifferentiated round to spindle cell sarcoma arising in the femur of a 34-year-old female. The round to spindle tumor cells were arranged in short fascicles, with focal rosette formation, within a hyalinized stroma. The tumor immunoprofile included diffuse reactivity for CD99, SATB2, and TLE1 and patchy positivity for Cyclin D1, Keratin AE1/AE3, synaptophysin, and chromogranin. Other markers, such as EMA, SMA, desmin, S100, ERG, and WT1, were negative. Fluorescence in situ hybridization analysis for EWSR1 gene alterations showed a break-apart signal and targeted RNA sequencing revealed an EWSR1::SSX3 gene fusion. The patient received neoadjuvant chemotherapy followed by surgery and subsequently relapsed in less than a year with lung metastasis. Larger series are needed to determine if this fusion defines a novel subset of undifferentiated tumors or represents a genomic variant of already existing primitive round cell sarcoma categories, such as Ewing sarcoma or synovial sarcoma.
Collapse
Affiliation(s)
- Caterina Fumagalli
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, BCN, Spain
| | - Ruth Orellana
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, BCN, Spain
| | - Malena Ferré
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, BCN, Spain
| | - Allan Gonzalez
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, BCN, Spain
| | - Lluis Catasús
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, BCN, Spain
| | - Tania Vázquez
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, BCN, Spain
| | - Ana Sebio
- Department of Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, BCN, Spain
| | - Antonio López-Pousa
- Department of Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, BCN, Spain
| | - Jaume Llauger
- Department of Radiology, Hospital de la Santa Creu i Sant Pau, Barcelona, BCN, Spain
| | - Ana Peiró
- Department of Traumatology and Orthopaedics, Hospital de la Santa Creu i Sant Pau, Barcelona, BCN, Spain
| | - Cristina R. Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
10
|
Schieffer KM, Moccia A, Bucknor BA, Stonerock E, Jayaraman V, Jenkins H, McKinney A, Koo SC, Mathew MT, Mardis ER, Lee K, Reshmi SC, Cottrell CE. Expanding the Clinical Utility of Targeted RNA Sequencing Panels beyond Gene Fusions to Complex, Intragenic Structural Rearrangements. Cancers (Basel) 2023; 15:4394. [PMID: 37686670 PMCID: PMC10486946 DOI: 10.3390/cancers15174394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Gene fusions are a form of structural rearrangement well established as driver events in pediatric and adult cancers. The identification of such events holds clinical significance in the refinement, prognostication, and provision of treatment in cancer. Structural rearrangements also extend beyond fusions to include intragenic rearrangements, such as internal tandem duplications (ITDs) or exon-level deletions. These intragenic events have been increasingly implicated as cancer-promoting events. However, the detection of intragenic rearrangements may be challenging to resolve bioinformatically with short-read sequencing technologies and therefore may not be routinely assessed in panel-based testing. Within an academic clinical laboratory, over three years, a total of 608 disease-involved samples (522 hematologic malignancy, 86 solid tumors) underwent clinical testing using Anchored Multiplex PCR (AMP)-based RNA sequencing. Hematologic malignancies were evaluated using a custom Pan-Heme 154 gene panel, while solid tumors were assessed using a custom Pan-Solid 115 gene panel. Gene fusions, ITDs, and intragenic deletions were assessed for diagnostic, prognostic, or therapeutic significance. When considering gene fusions alone, we report an overall diagnostic yield of 36% (37% hematologic malignancy, 41% solid tumors). When including intragenic structural rearrangements, the overall diagnostic yield increased to 48% (48% hematologic malignancy, 45% solid tumor). We demonstrate the clinical utility of reporting structural rearrangements, including gene fusions and intragenic structural rearrangements, using an AMP-based RNA sequencing panel.
Collapse
Affiliation(s)
- Kathleen M. Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda Moccia
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Brianna A. Bucknor
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Eileen Stonerock
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Heather Jenkins
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Aimee McKinney
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Selene C. Koo
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mariam T. Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Shalini C. Reshmi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Catherine E. Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Fujii T, Takeda M, Uchiyama T, Nitta Y, Maebou K, Terada C, Okada F, Matsuoka M, Sugimoto S, Sasaki S, Morita K, Itami H, Miyake M, Takeda M, Sawabata N, Fujimoto K, Ohbayashi C. Identification of fusion transcripts in sarcoma from archival formalin-fixed paraffin-embedded tissues: A next-generation sequencing approach. Pathol Int 2022; 72:444-456. [PMID: 35975909 DOI: 10.1111/pin.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Most sarcomas are highly aggressive, and cause necrosis and hemorrhage. The diagnosis of sarcoma is challenging because of the lack of specificity of immunohistochemical staining; however, molecular biological approaches, such as genetic mutation, chromosomal translocation, and gene amplification, are promising. In this study, we extracted RNA from formalin-fixed paraffin-embedded (FFPE) tissue derived from surgically resected specimens of sarcoma stored for various periods and performed next-generation sequencing (NGS) analysis by MiniSeq using the Archer Fusion-Plex Sarcoma Panel. RNA was extracted from 63 FFPE tissue samples, and the degree of RNA degradation was assessed. The number of reads and fragment lengths were evaluated by NGS analysis. RNA extraction and cDNA synthesis were successful in 56 cases and library preparation was possible. Fusion genes were detected in 16 of 63 archived FFPE tissue samples in this study. However, in 18 cases, fragmentation was strong, and high-quality libraries could not be obtained. Nevertheless, comprehensive analysis of fusion genes with high sequence specificity by NGS can be a powerful alternative to reverse transcription-polymerase chain reaction and fluorescence in situ hybridization methods.
Collapse
Affiliation(s)
- Tomomi Fujii
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan
| | - Maiko Takeda
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan
| | - Tomoko Uchiyama
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan
| | - Yuji Nitta
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan
| | - Katsuya Maebou
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan
| | - Chiyoko Terada
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan
| | - Fumi Okada
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan
| | - Minami Matsuoka
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan
| | - Sumire Sugimoto
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan
| | - Shoh Sasaki
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan
| | - Kohei Morita
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan
| | - Hiroe Itami
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University School of Medicine, Nara, Japan
| | - Masayuki Takeda
- Department of Cancer Genomics and Medical Oncology, Nara Medical University School of Medicine, Nara, Japan
| | - Noriyoshi Sawabata
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University School of Medicine, Nara, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University School of Medicine, Nara, Japan
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
12
|
Scheiter A, Hierl F, Winkel I, Keil F, Klier-Richter M, Coulouarn C, Lüke F, Kandulski A, Evert M, Dietmaier W, Calvisi DF, Utpatel K. Wnt/β-Catenin-Pathway Alterations and Homologous Recombination Deficiency in Cholangiocarcinoma Cell Lines and Clinical Samples: Towards Specific Vulnerabilities. J Pers Med 2022; 12:jpm12081270. [PMID: 36013219 PMCID: PMC9410222 DOI: 10.3390/jpm12081270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 12/01/2022] Open
Abstract
Cholangiocarcinoma (CCA) features a dismal prognosis with limited treatment options. Genomic studies have unveiled several promising targets in this disease, including fibroblast growth factor receptor (FGFR) fusions and isocitrate dehydrogenase (IDH) mutations. To fully harness the potential of genomically informed therapies in CCA, it is necessary to thoroughly characterize the available model organisms, including cell lines. One parameter to investigate in CCA is homologous recombination deficiency (HRD). While mutations in homologous recombinational repair (HRR)-related genes have been detected, their predictive value remains undetermined. Using a targeted next-generation sequencing approach, we analyzed 12 human CCA cell lines and compared them to 62 CCA samples of the molecular tumor board cohort. The AmoyDx® HRD Focus Panel was employed to determine corresponding genomic scar scores (GSS). Ten of twelve cell lines harbored alterations in common HRR-related genes, and five cell lines were HRD-positive, although this parameter did not correlate well with Olaparib sensitivity. Moreover, functionally relevant APC and β-catenin mutations were registered, which were also detected in 4/176 (2.3%) samples on a CCA microarray. Although rare, these alterations were exclusive to large duct type CCA with associated intraductal papillary neoplasms of the bile duct (IPNB) in 3 cases, pointing at a distinct form of cholangiocarcinogenesis with potential specific vulnerabilities.
Collapse
Affiliation(s)
- Alexander Scheiter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.H.); (I.W.); (F.K.); (M.K.-R.); (M.E.); (W.D.); (D.F.C.); (K.U.)
- Bavarian Center for Cancer Research/BZKF, 91054 Bavaria, Germany;
- Correspondence: ; Tel.: +49-941-944-6706
| | - Frederik Hierl
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.H.); (I.W.); (F.K.); (M.K.-R.); (M.E.); (W.D.); (D.F.C.); (K.U.)
| | - Ingrid Winkel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.H.); (I.W.); (F.K.); (M.K.-R.); (M.E.); (W.D.); (D.F.C.); (K.U.)
| | - Felix Keil
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.H.); (I.W.); (F.K.); (M.K.-R.); (M.E.); (W.D.); (D.F.C.); (K.U.)
| | - Margit Klier-Richter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.H.); (I.W.); (F.K.); (M.K.-R.); (M.E.); (W.D.); (D.F.C.); (K.U.)
| | | | - Florian Lüke
- Bavarian Center for Cancer Research/BZKF, 91054 Bavaria, Germany;
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93053 Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, 93053 Regensburg, Germany
| | - Arne Kandulski
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.H.); (I.W.); (F.K.); (M.K.-R.); (M.E.); (W.D.); (D.F.C.); (K.U.)
| | - Wolfgang Dietmaier
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.H.); (I.W.); (F.K.); (M.K.-R.); (M.E.); (W.D.); (D.F.C.); (K.U.)
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.H.); (I.W.); (F.K.); (M.K.-R.); (M.E.); (W.D.); (D.F.C.); (K.U.)
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.H.); (I.W.); (F.K.); (M.K.-R.); (M.E.); (W.D.); (D.F.C.); (K.U.)
| |
Collapse
|
13
|
Fu H, Zhou H, Qiu Y, Wang J, Ma Z, Li H, Zhang F, Qiu C, Shen J, Liu T. SEPT6_ TRIM33 Gene Fusion and Mutated TP53 Pathway Associate With Unfavorable Prognosis in Patients With B-Cell Lymphomas. Front Oncol 2021; 11:765544. [PMID: 34926267 PMCID: PMC8671703 DOI: 10.3389/fonc.2021.765544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background Mounting studies have sought to identify novel mutation biomarkers having diagnostic and prognostic potentials. Nevertheless, the understanding of the mutated pathways related to development and prognosis of B-cell lymphoma is still lacking. We aimed to comprehensively analyze the mutation alterations in genes of canonical signaling pathways and their impacts on the clinic outcomes of patients with B-cell lymphoma. Methods Circulating cell-free DNA (cfDNA) samples from 79 patients with B-cell lymphomas were used for targeted sequencing with a 560-gene panel for depicting mutation landscapes and identifying gene fusion events. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses of mutated genes were performed. The associations of mutation status of genes and seven canonical oncogenic pathways with progression-free survival (PFS) were assessed using Kaplan-Meier test and multivariate Cox analysis. The variant allele frequencies (VAFs) of genes in TP53 and Hippo pathways in paired baseline and post-treatment samples from 18 B-cell lymphoma patients were compared. Finally, the associations of identified fusion genes, mutated genes, and pathways with treatment response were evaluated based on objective response rates (ORRs) comparisons of groups. Results We identified 666 mutations from 262 genes in baseline cfDNAs from 79 B-cell lymphoma patients, and found some genes were preferentially mutated in our cohort such as GNAQ, GNAS, H3F3A, DNMT3A, HLA-A, and HLA-B. These frequently mutated genes were significantly associated with negative "regulation of gene expression, epigenetic" and virus infections such as cytomegalovirus, Epstein-Barr virus, human immunodeficiency virus 1 infections. We detected five fusion genes in at least two patients with B-cell lymphoma, and among them, TCF7L2_WT1 gene fusion was most frequently detected in 30.4% of patients (24 of 79 cases). SEPT6_TRIM33 gene fusion, mutated TP53 and Hippo pathways were significantly associated with poor PFS, and SEPT6_TRIM33 fusion gene and mutated TP53 pathway were independent prognostic factors for B-cell lymphoma. A decreased VAF of TP53 p.Y88C and LATS2 p.F972L was detected in patients with complete response to treatments. Moreover, a significant difference in ORR was observed in patients with NPM1_NR4A3 and SEPT6_TRIM33 fusions. Conclusions SEPT6_TRIM33 gene fusion and mutated TP53 and Hippo pathways may serve as prognostic makers for B-cell lymphoma patients.
Collapse
Affiliation(s)
- Haiying Fu
- Department of Hematology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Huarong Zhou
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Yanyan Qiu
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Jianfei Wang
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Zhiming Ma
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Hongping Li
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Feng Zhang
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Chenxi Qiu
- Department of Hematology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Jianzhen Shen
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Tingbo Liu
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| |
Collapse
|
14
|
Sievers P, Henneken SC, Blume C, Sill M, Schrimpf D, Stichel D, Okonechnikov K, Reuss DE, Benzel J, Maaß KK, Kool M, Sturm D, Zheng T, Ghasemi DR, Kohlhof-Meinecke P, Cruz O, Suñol M, Lavarino C, Ruf V, Boldt HB, Pagès M, Pouget C, Schweizer L, Kranendonk MEG, Akhtar N, Bunkowski S, Stadelmann C, Schüller U, Mueller WC, Dohmen H, Acker T, Harter PN, Mawrin C, Beschorner R, Brandner S, Snuderl M, Abdullaev Z, Aldape K, Gilbert MR, Armstrong TS, Ellison DW, Capper D, Ichimura K, Reifenberger G, Grundy RG, Jabado N, Krskova L, Zapotocky M, Vicha A, Varlet P, Wesseling P, Rutkowski S, Korshunov A, Wick W, Pfister SM, Jones DTW, von Deimling A, Pajtler KW, Sahm F. Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors. Acta Neuropathol 2021; 142:827-839. [PMID: 34355256 PMCID: PMC8500895 DOI: 10.1007/s00401-021-02356-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.
Collapse
Affiliation(s)
- Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sophie C Henneken
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christina Blume
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Damian Stichel
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David E Reuss
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Benzel
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kendra K Maaß
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Dominik Sturm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tuyu Zheng
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69117, Heidelberg, Germany
| | - David R Ghasemi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Ofelia Cruz
- Department of Pediatric Oncology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mariona Suñol
- Department of Pathology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Cinzia Lavarino
- Laboratory of Molecular Oncology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Viktoria Ruf
- Institute of Neuropathology, Ludwig-Maximilian University, Munich, Germany
| | - Henning B Boldt
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mélanie Pagès
- Department of Neuropathology, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Laboratory of Translational Research in Pediatric Oncology, SIREDO, INSERM U830, Institut Curie, Paris Sciences Lettres University, Paris, France
| | | | - Leonille Schweizer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neuropathology, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mariëtte E G Kranendonk
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Noreen Akhtar
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
- Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Stephanie Bunkowski
- Institute for Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Institute for Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Wolf C Mueller
- Paul-Flechsig Institute of Neuropathology, University Hospital and Faculty of Medicine, Leipzig, Germany
| | - Hildegard Dohmen
- Institute of Neuropathology, University of Giessen, Giessen, Germany
| | - Till Acker
- Institute of Neuropathology, University of Giessen, Giessen, Germany
| | - Patrick N Harter
- Frankfurt Cancer Institute (FCI), University Hospital, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Mawrin
- Department of Neuropathology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Rudi Beschorner
- Department of Neuropathology, University of Tübingen, Tübingen, Germany
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | | | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Capper
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neuropathology, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Lenka Krskova
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Michal Zapotocky
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ales Vicha
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers, Location VUmc and Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
| |
Collapse
|
15
|
Meng K, Li Z, Cui X. Three LHPP gene-targeting co-expressed microRNAs (microRNA-765, microRNA-21, and microRNA-144) promote proliferation, epithelial-mesenchymal transition, invasion, and are independent prognostic biomarkers in renal cell carcinomas patients. J Clin Lab Anal 2021; 35:e24077. [PMID: 34699621 PMCID: PMC8649365 DOI: 10.1002/jcla.24077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/04/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is one of the highly malignant tumors in the world. Global Cancer Statistics 2020 estimated that there were 179,368 deaths from kidney tumors. Therefore, exploring the prognostic biomarkers of RCC is of great significance for RCC patients. This study aims to explore the potential mechanism and prognostic value of phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) gene‐targeting co‐expression microRNAs in RCC patients. Methods A total of 60 RCC patients were included. Quantitative real‐time PCR (qRT‐PCR), western blotting, and immunohistochemistry were used for LHPP, microRNA‐765, microRNA‐21, and microRNA‐144 levels evaluation. Cell Counting Kit‐8 assay, dual‐luciferase reporter gene assay, invasion assay, and RNA fluorescence in situ hybridization were used for functional analyses. Results Compared with adjacent tissues, LHPP levels in cancer tissues were significantly increased (p < .001). Herein, we confirmed that microRNA‐765, microRNA‐21, and microRNA‐144 were direct biological targets of LHPP. MicroRNA‐765 (r = −0.570, p < 0.001), microRNA‐21 (r = −0.495, p < .001), and microRNA‐144 (r = −0.463, p < .001) expression levels were negatively correlated with LHPP expression levels. The high expression levels of microRNA‐765, microRNA‐21, and microRNA‐144 in RCC tissues were associated with poor differentiation, recurrence, and poor prognosis (p < .05). In vitro, microRNA‐765, microRNA‐21, and microRNA‐144 act as oncogenes to promote proliferation, invasion, and epithelial‐mesenchymal transition (EMT) through targeting LHPP. Conclusions MicroRNA‐765, microRNA‐21, and microRNA‐144 are independent risk biomarkers for RCC patients. Inhibiting the expression levels of microRNA‐765, microRNA‐21, and microRNA‐144 can reduce the proliferation, EMT, and invasion of RCC cells. Therefore, the above three microRNAs are expected to become molecular biomarkers for RCC therapy.
Collapse
Affiliation(s)
- Kexin Meng
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zongda Li
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaoying Cui
- Department of Nephrology, Beidahuang Industry Group General Hospital, Harbin, China
| |
Collapse
|
16
|
Sun L, McNulty SN, Evenson MJ, Zhu X, Robinson J, Mann PR, Duncavage EJ, Pfeifer JD. Clinical Implications of a Targeted RNA-Sequencing Panel in the Detection of Gene Fusions in Solid Tumors. J Mol Diagn 2021; 23:1749-1760. [PMID: 34562614 DOI: 10.1016/j.jmoldx.2021.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
The detection of recurrent gene fusions can help confirm diagnoses in solid tumors, particularly when the morphology and staining are unusual or nonspecific, and can guide therapeutic decisions. Although fluorescence in situ hybridization and PCR are often used to identify fusions, the rearrangement must be suspected, with only a few prioritized probes run. We hypothesized that the Illumina TruSight RNA Fusion Panel, which detects fusions of 507 genes and their partners, would uncover fusions with greater sensitivity than other approaches, leading to changes in diagnosis, prognosis, or therapy. Targeted RNA sequencing was performed on formalin-fixed, paraffin-embedded sarcoma and carcinoma cases in which fluorescence in situ hybridization, RT-PCR, or DNA-based sequencing was conducted during the diagnostic workup. Of 153 cases, 138 (90%) were sequenced with adequate quality control metrics. A total of 101 of 138 (73%) cases were concordant by RNA sequencing and the prior test method. RNA sequencing identified an additional 30 cases (22%) with fusions that were not detected by conventional methods. In seven cases (5%), the additional fusion information provided by RNA sequencing would have altered the diagnosis and management. A total of 19 novel fusion pairs (not previously described in the literature) were discovered (14%). Overall, the findings show that a targeted RNA-sequencing method can detect gene fusions in formalin-fixed, paraffin-embedded specimens with high sensitivity.
Collapse
Affiliation(s)
- Lulu Sun
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Samantha N McNulty
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Evenson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Xiaopei Zhu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua Robinson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Patrick R Mann
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - John D Pfeifer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
17
|
Cordier F, Van der Meulen J, Van Gaever B, Lapeire L, Sys G, Van Dorpe J, Creytens D. Undifferentiated sarcoma of bone with a round to epithelioid cell phenotype harboring a novel EWSR1-SSX2 fusion identified by RNA-based next-generation sequencing. Genes Chromosomes Cancer 2021; 61:44-49. [PMID: 34538011 DOI: 10.1002/gcc.22999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 11/09/2022] Open
Abstract
Due to the increased application of RNA-based next-generation sequencing techniques on bone and soft tissue round cell sarcomas new fusions are frequently found, thereby expanding the molecular landscape of these tumors. In this report, we describe and discuss the finding of an undifferentiated sarcoma of the bone with a round to epithelioid cell phenotype harboring a novel EWSR1-SSX2 fusion. Treatment of this new bone tumor entity according to the Euro Ewing 2012 protocol led to complete pathologic response.
Collapse
Affiliation(s)
- Fleur Cordier
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Joni Van der Meulen
- Molecular Diagnostics Ghent University Hospital (MDG), Ghent University Hospital, Ghent University, Ghent, Belgium.,CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Bram Van Gaever
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Lore Lapeire
- CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium.,Department of Medical Oncology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Gwen Sys
- CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium.,Department of Traumatology and Orthopaedics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent, Belgium.,CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent, Belgium.,CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Chebib I, Taylor MS, Nardi V, Rivera MN, Lennerz JK, Cote GM, Choy E, Lozano Calderón SA, Raskin KA, Schwab JH, Mullen JT, Chen YLE, Hung YP, Nielsen GP, Deshpande V. Clinical Utility of Anchored Multiplex Solid Fusion Assay for Diagnosis of Bone and Soft Tissue Tumors. Am J Surg Pathol 2021; 45:1127-1137. [PMID: 34115673 DOI: 10.1097/pas.0000000000001745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sarcoma diagnosis has become increasingly complex, requiring a combination of morphology, immunohistochemistry, and molecular studies to derive specific diagnoses. We evaluated the role of anchored multiplex polymerase chain reaction-based gene fusion assay in sarcoma diagnostics. Between 2015 and 2018, bone and soft tissue sarcomas with fusion assay results were compared with the histologic diagnosis. Of 143 sarcomas tested for fusions, 43 (30%) had a detectable fusion. In review, they could be classified into 2 main categories: (1) 31 tumors with concordant morphologic and fusion data; and (2) 12 tumors where the fusion panel identified an unexpected rearrangement that played a significant role in classification. The overall concordance of the fusion assay results with morphology/immunohistochemistry or alternate confirmatory molecular studies was 83%. Collectively, anchored multiplex polymerase chain reaction-based solid fusion assay represents a robust means of detecting targeted fusions with known and novel partners. The predictive value of the panel is highest in tumors that show a monomorphic cell population, round cell tumors, as well as tumors rich in inflammatory cells. However, with an increased ability to discover fusions of uncertain significance, it remains essential to emphasize that the diagnosis of bone and soft tissue neoplasms requires the integration of morphology and immunohistochemical profile with these molecular methods, for accurate diagnosis and optimal clinical management of sarcomas.
Collapse
Affiliation(s)
| | | | | | | | | | - Gregory M Cote
- Department of Internal Medicine, Division of Hematology/Oncology
| | - Edwin Choy
- Department of Internal Medicine, Division of Hematology/Oncology
| | | | | | | | | | - Yen-Lin E Chen
- Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Yin P Hung
- James Homer Wright Pathology Laboratories
| | | | | |
Collapse
|
19
|
DuBois SG, Krailo MD, Buxton A, Lessnick SL, Teot LA, Rakheja D, Crompton BD, Janeway KA, Gorlick RG, Glade-Bender J. Patterns of Translocation Testing in Patients Enrolling to a Cooperative Group Trial for Newly Diagnosed Metastatic Ewing Sarcoma: A Report From the Children's Oncology Group. Arch Pathol Lab Med 2021; 145:1564-1568. [PMID: 33769463 DOI: 10.5858/arpa.2020-0671-oa] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Molecular diagnostics play an increasing role in the diagnosis of Ewing sarcoma. The type of molecular testing used in clinical practice has been poorly described. OBJECTIVE.— To describe patterns of translocation testing for newly diagnosed Ewing sarcoma. DESIGN.— Children's Oncology Group (COG) trial AEWS1221 was a phase III randomized trial enrolling patients with newly diagnosed metastatic Ewing sarcoma from 2014 to 2019. Patients were required to have a histologic diagnosis of Ewing sarcoma, but translocation testing was not required. Sites provided types and results of any molecular diagnostics performed. RESULTS.— Data from 305 enrolled patients were available. The most common type of molecular testing was fluorescence in situ hybridization (FISH) performed on the primary tumor (236 of 305 patients; 77.4%), with positive testing for an EWSR1 or FUS translocation in 211 (89.4%). Reverse transcription-polymerase chain reaction (RT-PCR) on the primary tumor was performed in 61 of 305 (20%), with positive results in 48 of 61 patients (78.7%). Next-generation sequencing was reported in 7 patients on primary tumor and in 3 patients on metastatic sites. Evaluating all types of testing on either primary or metastatic tumor, 16 of 305 patients (5.2%) had no reported translocation testing. Evaluating all results from all testing, 44 of 305 patients (14.4%) lacked documentation of an abnormality consistent with a molecular diagnosis of Ewing sarcoma. CONCLUSIONS.— COG sites enrolling in a Ewing sarcoma trial have high rates of testing by FISH or PCR. A small proportion of patients have no translocation testing on either primary or metastatic sites. Next-generation sequencing techniques are not yet commonly used in this context.
Collapse
Affiliation(s)
- Steven G DuBois
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts (DuBois, Crompton, Janeway)
| | - Mark D Krailo
- Children's Oncology Group Statistics and Data Center, Monrovia, California (Krailo, Buxton)
| | - Allen Buxton
- Children's Oncology Group Statistics and Data Center, Monrovia, California (Krailo, Buxton)
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute, Nationwide Children's Hospital, and The Division of Pediatric Heme/Onc/BMT, The Ohio State University College of Medicine, Columbus (Lessnick)
| | - Lisa A Teot
- the Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts (Teot)
| | - Dinesh Rakheja
- the Department of Pathology, University of Texas Southwestern Medical Center, Dallas (Rakheja)
| | - Brian D Crompton
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts (DuBois, Crompton, Janeway)
| | - Katherine A Janeway
- From Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts (DuBois, Crompton, Janeway)
| | - Richard G Gorlick
- the Department of Pediatrics, MD Anderson Cancer Center, Houston, Texas (Gorlick)
| | - Julia Glade-Bender
- the Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York (Glade-Bender)
| |
Collapse
|
20
|
Hung YP, Fisch AS, Diaz-Perez JA, Iafrate AJ, Lennerz JK, Nardi V, Bredella MA, Raskin KA, Lozano-Calderon SA, Rosenberg AE, Nielsen GP. Identification of EWSR1-NFATC2 fusion in simple bone cysts. Histopathology 2021; 78:849-856. [PMID: 33316098 DOI: 10.1111/his.14314] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
AIMS Simple bone cysts are benign intramedullary tumours primarily involving the long bones in skeletally immature individuals. Several mechanisms have been proposed for their pathogenesis. Although the diagnosis is typically straightforward, the interpretation can be problematic, because of superimposed fracture causing them to resemble aneurysmal bone cysts and other tumours. EWSR1-NFATC2 or FUS-NFATC2 fusions, which are characteristic of a subset of aggressive round cell sarcomas, have been recently detected in simple bone cysts. The aim of this study was to examine the clinicopathological and molecular features in a series of simple bone cysts. METHODS AND RESULTS Using RNA-based next-generation sequencing and/or fluorescence in-situ hybridisation, we investigated the presence of EWSR1 or FUS rearrangements in nine simple bone cysts. The patients were five females and four males, aged 3-23 years (median, 14 years); the tumours ranged from 19 mm to 160 mm (median, 46 mm) in size, and involved the femur (n = 3), humerus (n = 2), fibula (n = 2), tibia (n = 1), and iliac wing (n =1). We identified three cases with EWSR1-NFATC2 fusion (showing identical breakpoints to those in EWSR1-NFATC2 sarcomas) and one additional case with FUS rearrangement. Unlike in EWSR1-NFATC2 sarcomas, immunohistochemical expression of NKX3.1 and NKX2.2 was absent in two simple bone cysts tested. CONCLUSIONS More than 40% of simple bone cysts harbour genetic alterations confirming that they are neoplastic, investigation of EWSR1 and/or FUS rearrangement may help to distinguish simple bone cysts from mimics, and NFATC2 rearrangement is not pathognomonic of malignancy.
Collapse
Affiliation(s)
- Yin P Hung
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Adam S Fisch
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Julio A Diaz-Perez
- Department of Pathology and Laboratory Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin A Raskin
- Department of Orthopedics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Xu L, Xie X, Shi X, Zhang P, Liu A, Wang J, Zhang B. Potential application of genomic profiling for the diagnosis and treatment of patients with sarcoma. Oncol Lett 2021; 21:353. [PMID: 33747210 PMCID: PMC7967939 DOI: 10.3892/ol.2021.12614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/14/2020] [Indexed: 01/13/2023] Open
Abstract
Sarcomas represent a heterogeneous group of mesenchymal malignancies arising at various locations in the soft tissue and bone. Though a rare disease, sarcoma affects ~200,000 patients worldwide every year. The prognosis of patients with sarcoma is poor, and targeted therapy options are limited; therefore, accurate diagnosis and classification are essential for effective treatment. Sarcoma samples were acquired from 199 patients, in which TP53 (39.70%, 79/199), CDKN2A (19.10%, 38/199), CDKN2B (15.08%, 30/199), KIT (14.07%, 28/199), ATRX (10.05%, 20/199) and RB1 (10.05%, 20/199) were identified as the most commonly mutated genes (>10% incidence). Among 64 soft-tissue sarcomas that were unclassified by immunohistochemistry, 15 (23.44%, 15/64) were subsequently classified using next-generation sequencing (NGS). For the most part, the sarcoma subtypes were evenly distributed between male and female patients, while a significant association with sex was detected in leiomyosarcomas. Statistical analysis showed that osteosarcoma, Ewing's sarcoma, gastrointestinal stromal tumors and liposarcoma were all significantly associated with the patient age, and that angiosarcoma was significantly associated with high tumor mutational burden. Furthermore, serially mutated genes associated with myxofibrosarcoma, gastrointestinal stromal tumor, osteosarcoma, liposarcoma, leiomyosarcoma, synovial sarcoma and Ewing's sarcoma were identified, as well as neurotrophic tropomyosin-related kinase (NTRK) fusions of IRF2BP2-NTRK1, MEF2A-NTRK3 and ITFG1-NTRK3. Collectively, the results of the present study suggest that NGS-targeting provides potential new biomarkers for sarcoma diagnosis, and may guide more precise therapeutic strategies for patients with bone and soft-tissue sarcomas.
Collapse
Affiliation(s)
- Libin Xu
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong 510080, P.R. China
| | | | - Peng Zhang
- OrigiMed Co. Ltd., Shanghai 201114, P.R. China
| | - Angen Liu
- OrigiMed Co. Ltd., Shanghai 201114, P.R. China
| | - Jian Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Bo Zhang
- Department of Pathology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
22
|
Milman T, Ida CM, Zhang PJ, Eagle RC. Gene Fusions in Ocular Adnexal Tumors. Am J Ophthalmol 2021; 221:211-225. [PMID: 32800827 DOI: 10.1016/j.ajo.2020.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To highlight the increasing importance of gene fusions in the diagnosis, prognosis, and therapy of ocular adnexal tumors. DESIGN Perspective. METHODS A focused review of gene fusions, their pathogenic mechanism, and gene fusion detection methods in lacrimal gland and primary orbital and ocular adnexal soft tissue tumors; reappraisal of diagnostic, prognostic, and therapeutic approach to ocular adnexal tumors in light of emerging molecular genetic data. RESULTS The widespread implementation of fluorescence in situ hybridization and next-generation sequencing methods in pathology practice has led to identification of recurrent gene rearrangements and fusions in a variety of tumors. As a result, molecular genetic methods have become the gold standard for diagnosis of tumors with overlapping histology and immunophenotype, such as small round blue cell tumors. Identification of canonic gene fusions has led to development of sensitive and specific immunohistochemical markers, such as STAT6 in solitary fibrous tumor. In addition to diagnostic accuracy, gene fusions have prognostic implications, such as unfavorable prognosis of PAX3-FOXO1 fusion in alveolar rhabdomyosarcoma. Finally, recognition of gene fusions as a driving mechanism in neoplasia has led to development of U.S. Food and Drug Administration-approved targeted therapies, such as TRK inhibitors for NTRK fusion-positive cancers. CONCLUSION The discovery of recurrent gene fusions in various tumors, including those involving ocular adnexa, has led to a deeper insight into the molecular mechanisms of these neoplasms, revolutionizing our approach to their diagnosis, prognostication, and therapy.
Collapse
|
23
|
Jagodzińska-Mucha P, Ługowska I, Świtaj T, Koseła-Paterczyk H, Wągrodzki M, Kozak K, Falkowski S, Morysiński T, Goryń T, Dawidowska A, Rutkowski P. The clinical prognostic factors and treatment outcomes of adult patients with Ewing sarcoma. Int J Clin Oncol 2020; 25:2006-2014. [PMID: 32712877 DOI: 10.1007/s10147-020-01741-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/25/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The data about treatment results of Ewing sarcoma in adult patients are limited. The aim of our study was to analyze prognostic factors and outcomes of therapy in this group of patients. METHODS Between 2000 and 2018, 180 patients at the age of > 18 years old diagnosed with Ewing sarcoma were treated in referral center according to multimodal protocols. In 50 patients (28%) treatment was initiated outside our hospital, and 23 of them had started recommended therapy after 3 months since the date of biopsy/unscheduled operation. We analyzed clinical prognostic factors and overall survival (OS). RESULTS The median age was 28 years (18-67 years), primary tumor was localized axially in 114 patients (63%), metastases at presentation were detected in 51 pts (28%). 5-year OS rate was 65% for patients with localized disease, in metastatic disease it was 15%; the presence and the number of metastases was a prognostic factor. 5-year PFS was significantly better in patients treated at referral center (or when the patients were admitted to referral center within 3 months from the date of biopsy, which was performed outside referral center), comparing to patients treated initially outside referral center; 5-year PFS rates in total population were 28 and 13%, respectively. In terms of OS, unfavorable prognostic factor showing a statistical trend (p = 0.098) was lower dose density of neoadjuvant chemotherapy due to toxicity. CONCLUSIONS Approximately two-third of adult patients with localized Ewing sarcoma survive 5 years. In order to improve survival of this patients the multidisciplinary treatment in referral center is mandatory.
Collapse
Affiliation(s)
- Paulina Jagodzińska-Mucha
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5 Street, 02-781, Warsaw, Poland.
| | - Iwona Ługowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5 Street, 02-781, Warsaw, Poland
- Early Phase Clinical Trials Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz Świtaj
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5 Street, 02-781, Warsaw, Poland
| | - Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5 Street, 02-781, Warsaw, Poland
| | - Michał Wągrodzki
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarzyna Kozak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5 Street, 02-781, Warsaw, Poland
| | - Sławomir Falkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5 Street, 02-781, Warsaw, Poland
| | - Tadeusz Morysiński
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5 Street, 02-781, Warsaw, Poland
| | - Tomasz Goryń
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5 Street, 02-781, Warsaw, Poland
| | - Anna Dawidowska
- Early Phase Clinical Trials Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5 Street, 02-781, Warsaw, Poland
| |
Collapse
|
24
|
Pancaldi A, Peng L, Rhee DS, Dunn E, Forcucci JA, Belchis D, Pratilas CA. DICER1-associated metastatic abdominopelvic primitive neuroectodermal tumor with an EWSR1 rearrangement in a 16-yr-old female. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005603. [PMID: 33028642 PMCID: PMC7552927 DOI: 10.1101/mcs.a005603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022] Open
Abstract
We report a case of a DICER1-associated EWSR1-rearranged malignant primitive neuroectodermal tumor (PNET) arising in a patient with DICER1 tumor predisposition syndrome. A 16-yr-old female with a history of multinodular goiter presented with a widely metastatic abdominal small round blue cell tumor with neuroectodermal differentiation. EWSR1 gene rearrangement was identified in the tumor by fluorescence in situ hybridization (FISH). Genetic analysis revealed biallelic pathogenic DICER1 variation. The patient was treated with an aggressive course of chemotherapy, surgery, and radiation with complete pathologic response. We believe this case to represent a new expression of the DICER1 tumor predisposition syndrome, an entity caused by deleterious germline mutations in the DICER1 gene, encoding a ribonuclease active in the processing of miRNA. Patients with germline mutations in DICER1 develop a diverse group of benign and malignant tumors. Some of these tumors have been noted to have immature neuroepithelium as a component, including the ciliary body medulloepithelioma and the recently described DICER1-associated presacral malignant teratoid neoplasm. To our knowledge, abdominal sarcomas that resemble PNET histology with an EWSR1 rearrangement have not previously been described as a classical expression of the DICER1 syndrome phenotype.
Collapse
Affiliation(s)
- Alessia Pancaldi
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Lei Peng
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | - Daniel S Rhee
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA.,Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Emily Dunn
- Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jessica A Forcucci
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland 21287, USA
| | - Deborah Belchis
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland 21287, USA.,Doctor's Community Hospital, Lanham, Maryland 20706, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| |
Collapse
|
25
|
Heyer EE, Blackburn J. Sequencing Strategies for Fusion Gene Detection. Bioessays 2020; 42:e2000016. [DOI: 10.1002/bies.202000016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/11/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Erin E. Heyer
- The Kinghorn Cancer CentreGarvan Institute of Medical Research 384 Victoria Street Darlinghurst NSW 2010 Australia
| | - James Blackburn
- The Kinghorn Cancer CentreGarvan Institute of Medical Research 384 Victoria Street Darlinghurst NSW 2010 Australia
- Faculty of Medicine, St. Vincent's Clinical SchoolUNSW, St Vincent's Hospital Victoria Street Darlinghurst NSW 2010 Australia
| |
Collapse
|
26
|
Breakthrough Technologies Reshape the Ewing Sarcoma Molecular Landscape. Cells 2020; 9:cells9040804. [PMID: 32225029 PMCID: PMC7226764 DOI: 10.3390/cells9040804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Ewing sarcoma is a highly aggressive round cell mesenchymal neoplasm, most often occurring in children and young adults. At the molecular level, it is characterized by the presence of recurrent chromosomal translocations. In the last years, next-generation technologies have contributed to a more accurate diagnosis and a refined classification. Moreover, the application of these novel technologies has highlighted the relevance of intertumoral and intratumoral molecular heterogeneity and secondary genetic alterations. Furthermore, they have shown evidence that genomic features can change as the tumor disseminates and are influenced by treatment as well. Similarly, next-generation technologies applied to liquid biopsies will significantly impact patient management by allowing the early detection of relapse and monitoring response to treatment. Finally, the use of these novel technologies has provided data of great value in order to discover new druggable pathways. Thus, this review provides concise updates on the latest progress of these breakthrough technologies, underscoring their importance in the generation of key knowledge, prognosis, and potential treatment of Ewing Sarcoma.
Collapse
|