1
|
Grandinetti R, Mussi N, Rossi A, Zambelli G, Masetti M, Giudice A, Pilloni S, Deolmi M, Caffarelli C, Esposito S, Fainardi V. Exercise-Induced Bronchoconstriction in Children: State of the Art from Diagnosis to Treatment. J Clin Med 2024; 13:4558. [PMID: 39124824 PMCID: PMC11312884 DOI: 10.3390/jcm13154558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Exercise-induced bronchoconstriction (EIB) is a common clinical entity in people with asthma. EIB is characterized by postexercise airway obstruction that results in symptoms such as coughing, dyspnea, wheezing, chest tightness, and increased fatigue. The underlying mechanism of EIB is not completely understood. "Osmotic theory" and "thermal or vascular theory" have been proposed. Initial assessment must include a specific work-up to exclude alternative diagnoses like exercise-induced laryngeal obstruction (EILO), cardiac disease, or physical deconditioning. Detailed medical history and clinical examination must be followed by basal spirometry and exercise challenge test. The standardized treadmill running (TR) test, a controlled and standardized method to assess bronchial response to exercise, is the most adopted exercise challenge test for children aged at least 8 years. In the TR test, the goal is to reach the target heart rate in a short period and maintain it for at least 6 min. The test is then followed by spirometry at specific time points (5, 10, 15, and 30 min after exercise). In addition, bronchoprovocation tests like dry air hyperpnea (exercise and eucapnic voluntary hyperpnea) or osmotic aerosols (inhaled mannitol) can be considered when the diagnosis is uncertain. Treatment options include both pharmacological and behavioral approaches. Considering medications, the use of short-acting beta-agonists (SABA) just before exercise is the commonest option strategy, but daily inhaled corticosteroids (ICS) can also be considered, especially when EIB is not controlled with SABA only or when the patients practice physical activity very often. Among the behavioral approaches, warm-up before exercise, breathing through the nose or face mask, and avoiding polluted environments are all recommended strategies to reduce EIB risk. This review summarizes the latest evidence published over the last 10 years on the pathogenesis, diagnosis using spirometry and indirect bronchoprovocation tests, and treatment strategies, including SABA and ICS, of EIB. A specific focus has been placed on EIB management in young athletes, since this condition can not only prevent them from practicing regular physical activity but also competitive sports.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Valentina Fainardi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (R.G.); (N.M.); (A.R.); (G.Z.); (M.M.); (A.G.); (S.P.); (M.D.); (C.C.); (S.E.)
| |
Collapse
|
2
|
Hostrup M, Hansen ESH, Rasmussen SM, Jessen S, Backer V. Asthma and exercise-induced bronchoconstriction in athletes: Diagnosis, treatment, and anti-doping challenges. Scand J Med Sci Sports 2024; 34:e14358. [PMID: 36965010 DOI: 10.1111/sms.14358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/14/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Athletes often experience lower airway dysfunction, such as asthma and exercise-induced bronchoconstriction (EIB), which affects more than half the athletes in some sports, not least in endurance sports. Symptoms include coughing, wheezing, and breathlessness, alongside airway narrowing, hyperresponsiveness, and inflammation. Early diagnosis and management are essential. Not only because untreated or poorly managed asthma and EIB potentially affects competition performance and training, but also because untreated airway inflammation can result in airway epithelial damage, remodeling, and fibrosis. Asthma and EIB do not hinder performance, as advancements in treatment strategies have made it possible for affected athletes to compete at the highest level. However, practitioners and athletes must ensure that the treatment complies with general guidelines and anti-doping regulations to prevent the risk of a doping sanction because of inadvertently exceeding specified dosing limits. In this review, we describe considerations and challenges in diagnosing and managing athletes with asthma and EIB. We also discuss challenges facing athletes with asthma and EIB, while also being subject to anti-doping regulations.
Collapse
Affiliation(s)
- Morten Hostrup
- The August Krogh Section, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Erik S H Hansen
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
| | - Søren M Rasmussen
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
- Medical Department, Nykøbing Falster Hospital, Nykøbing Falster, Denmark
| | - Søren Jessen
- The August Krogh Section, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Backer
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
- Department of Otorhinolaryngology Head & Neck Surgery and Audiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
3
|
Wang J, Guan H, Hostrup M, Rowlands DS, González-Alonso J, Jensen J. The Road to the Beijing Winter Olympics and Beyond: Opinions and Perspectives on Physiology and Innovation in Winter Sport. JOURNAL OF SCIENCE IN SPORT AND EXERCISE 2021; 3:321-331. [PMID: 36304069 PMCID: PMC8475427 DOI: 10.1007/s42978-021-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
Beijing will host the 2022 Winter Olympics, and China strengthens research on various aspects to allow their athletes to compete successfully in winter sport. Simultaneously, Government-directed initiatives aim to increase public participation in recreational winter sport. These parallel developments allow research to advance knowledge and understanding of the physiological determinants of performance and health related to winter sport. Winter sport athletes often conduct a substantial amount of training with high volumes of low-to-moderate exercise intensity and lower volumes of high-intensity work. Moreover, much of the training occur at low ambient temperatures and winter sport athletes have high risk of developing asthma or asthma-related conditions, such as exercise-induced bronchoconstriction. The high training volumes require optimal nutrition with increased energy and dietary protein requirement to stimulate muscle protein synthesis response in the post-exercise period. Whether higher protein intake is required in the cold should be investigated. Cross-country skiing is performed mostly in Northern hemisphere with a strong cultural heritage and sporting tradition. It is expected that innovative initiatives on recruitment and training during the next few years will target to enhance performance of Chinese athletes in classical endurance-based winter sport. The innovation potential coupled with resourcing and population may be substantial with the potential for China to become a significant winter sport nation. This paper discusses the physiological aspects of endurance training and performance in winter sport highlighting areas where innovation may advance in athletic performance in cold environments. In addition, to ensure sustainable development of snow sport, a quality ski patrol and rescue system is recommended for the safety of increasing mass participation.
Collapse
Affiliation(s)
- Jun Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Hongwei Guan
- Department of Health Promotion and Physical Education, School of Health Sciences and Human Performance, Ithaca College, Ithaca, NY 14850 USA
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - David S. Rowlands
- School of Sport, Exercise, and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Jørgen Jensen
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Department of Physical Performance, Norwegian School of Sport Sciences, Ullevål Stadion, P.O.Box 4012, 0806 Oslo, Norway
| |
Collapse
|
4
|
Eibye K, Jacobson GA, Bengtsen K, Jessen S, Backer V, Bangsbo J, Hostrup M. Effect of one‐week oral or inhaled salbutamol treatment with washout on repeated sprint performance in trained subjects. TRANSLATIONAL SPORTS MEDICINE 2020. [DOI: 10.1002/tsm2.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kasper Eibye
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Glenn A. Jacobson
- School of Pharmacy and Pharmacology University of Tasmania Hobart TAS Australia
| | - Kasper Bengtsen
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Søren Jessen
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Vibeke Backer
- Centre for Physical Activity Research Rigshospitalet Copenhagen Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Morten Hostrup
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| |
Collapse
|
5
|
Greiwe J, Cooke A, Nanda A, Epstein SZ, Wasan AN, Shepard KV, Capão-Filipe M, Nish A, Rubin M, Gregory KL, Dass K, Blessing-Moore J, Randolph C. Work Group Report: Perspectives in Diagnosis and Management of Exercise-Induced Bronchoconstriction in Athletes. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:2542-2555. [PMID: 32636147 DOI: 10.1016/j.jaip.2020.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/26/2022]
Abstract
Exercise-induced bronchoconstriction, otherwise known as exercise-induced bronchoconstriction with asthma or without asthma, is an acute airway narrowing that occurs as a result of exercise and can occur in patients with asthma. A panel of members from the American Academy of Allergy, Asthma & Immunology Sports, Exercise, & Fitness Committee reviewed the diagnosis and management of exercise-induced bronchoconstriction in athletes of all skill levels including recreational athletes, high school and college athletes, and professional athletes. A special emphasis was placed on the recommendations and regulations set forth by professional athletic organizations after a detailed review of their collective bargaining agreements, substance abuse policies, antidoping program manuals, and the World Anti-Doping Agency antidoping code. The recommendations in this review are based on currently available evidence in addition to providing guidance for athletes of all skill levels as well as their treating physicians to better understand which pharmaceutical and nonpharmaceutical management options are appropriate as well as which medications are permitted or prohibited, and the proper documentation required to remain compliant.
Collapse
Affiliation(s)
- Justin Greiwe
- Bernstein Allergy Group Inc, Cincinnati, Ohio; Division of Immunology/Allergy Section, Department of Internal Medicine, The University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Andrew Cooke
- Lake Allergy, Asthma & Immunology PA, Tavares, Fla
| | - Anil Nanda
- Asthma and Allergy Center, Lewisville and Flower Mound, Texas; Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | - Kirk V Shepard
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine and James A. Haley Veterans' Hospital, Tampa, Fla
| | | | - Andy Nish
- Northeast Georgia Physician's Group Allergy and Asthma, Gainesville, Ga
| | - Mark Rubin
- Asthma and COPD Emmi Solutions, Chicago, Ill; CME Education Program Steering Committee, The France Foundation, Old Lyme, Conn
| | - Karen L Gregory
- Oklahoma Allergy and Asthma Clinic, Oklahoma City, Okla; School of Nursing and Health Studies, Georgetown University, Washington, DC
| | - Kathleen Dass
- Michigan Allergy, Asthma & Immunology Center PLLC, Oak Park, Mich; Division of Immunology/Allergy Section, Department of Internal Medicine, Oakland University William Beaumont Hospital, Rochester, Mich
| | | | | |
Collapse
|