1
|
Águila-Carricondo P, Román R, Marín-Guirao JI, Cantón Y, de Cara M. Native Biocrust Cyanobacteria Strains Showing Antagonism against Three Soilborne Pathogenic Fungi. Pathogens 2024; 13:579. [PMID: 39057806 PMCID: PMC11280063 DOI: 10.3390/pathogens13070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
The biocontrol potential of three native soil cyanobacteria from biological soil crusts (Nostoc commune, Scytonema hyalinum, and Tolypothrix distorta) was tested by means of in vitro mycelial growth inhibition assays for eighteen cyanobacteria-based products against three phytopathogenic soilborne fungi (Phytophthora capsici, Pythium aphanidermatum, and Fusarium oxysporum f. sp. radicis-cucumerinum). Three cyanobacteria-based production factors were considered: (i) cyanobacterium strain, (ii) cyanobacterial culture growth phase, and (iii) different post-harvest treatments: raw cultures, cyanobacterial filtrates, and cyanobacterial extracts. Results showed that any of the factors considered are key points for successfully inhibiting fungal growth. N. commune showed the highest growth inhibition rates for the three phytopathogens; stationary phase treatments produced higher inhibition percentages than logarithmic ones; and all the post-harvest treatments of N. commune at the stationary phase inhibited the growth of P. capsici, up to 77.7%. Thus, N. commune products were tested in planta against P. capsici, but none of the products showed efficacy in delaying the onset nor reducing the damage due to P. capsici, demonstrating the complexity of the in planta assay's success and encouraging further research to design an appropriate scaling up methodology.
Collapse
Affiliation(s)
- Pilar Águila-Carricondo
- Department of Chemical, Energy and Mechanical Technology, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Raúl Román
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154-4004, USA;
| | | | - Yolanda Cantón
- Centro de Investigación de Colecciones Científicas de la Universidad de Almería (CECOUAL), University of Almería, 04120 Almería, Spain;
| | - Miguel de Cara
- IFAPA-La Mojonera, Camino San Nicolás n.1, 04745 La Mojonera, Spain;
| |
Collapse
|
2
|
Żymańczyk-Duda E, Samson SO, Brzezińska-Rodak M, Klimek-Ochab M. Versatile Applications of Cyanobacteria in Biotechnology. Microorganisms 2022; 10:microorganisms10122318. [PMID: 36557571 PMCID: PMC9785398 DOI: 10.3390/microorganisms10122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are blue-green Gram-negative and photosynthetic bacteria which are seen as one of the most morphologically numerous groups of prokaryotes. Because of their ability to fix gaseous nitrogen and carbon dioxide to organic materials, they are known to play important roles in the universal nutrient cycle. Cyanobacteria has emerged as one of the promising resources to combat the issues of global warming, disease outbreaks, nutrition insecurity, energy crises as well as persistent daily human population increases. Cyanobacteria possess significant levels of macro and micronutrient substances which facilitate the versatile popularity to be utilized as human food and protein supplements in many countries such as Asia. Cyanobacteria has been employed as a complementary dietary constituent of feed for poultry and as vitamin and protein supplement in aquatic lives. They are effectively used to deal with numerous tasks in various fields of biotechnology, such as agricultural (including aquaculture), industrial (food and dairy products), environmental (pollution control), biofuel (bioenergy) and pharmaceutical biotechnology (such as antimicrobial, anti-inflammatory, immunosuppressant, anticoagulant and antitumor); recently, the growing interest of applying them as biocatalysts has been observed as well. Cyanobacteria are known to generate a numerous variety of bioactive compounds. However, the versatile potential applications of cyanobacteria in biotechnology could be their significant growth rate and survival in severe environmental conditions due to their distinct and unique metabolic pathways as well as active defensive mechanisms. In this review, we elaborated on the versatile cyanobacteria applications in different areas of biotechnology. We also emphasized the factors that could impede the implementation to cyanobacteria applications in biotechnology and the execution of strategies to enhance their effective applications.
Collapse
|
3
|
Langmuir monolayers as models of the lipid matrix of cyanobacterial thylakoid membranes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Potential for Natural Attenuation of Domestic and Agricultural Pollution in Karst Groundwater Environments. WATER 2022. [DOI: 10.3390/w14101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In karst areas, anthropogenic contaminants reach the subsurface with detrimental effects on the groundwater ecosystem and downstream springs, which often serve as drinking water sources for the local human communities. We analyzed the water chemistry and microbial community composition in upstream and downstream locations of five hydrokarst systems (HKS) during four seasons. Conductivity and nitrates were higher in the downstream springs than in the pre-karst waters, whereas the concentration of organic matter, considered here as a pollution indicator, was lower. The microbial community composition varied largely between upstream and downstream locations, with multiple species of potentially pathogenic bacteria decreasing in the HKS. Bacteria indicative of pollution decreased as well when passing through the HKS, but potential biodegraders increased. This suggests that the HKS can filter out part of the polluting organic matter and, with it, part of the associated microorganisms. Nevertheless, the water quality, including the presence of pathogens in downstream springs, must be further monitored to control whether the water is appropriate for consumption. In parallel, the human populations located upstream must be advised of the risks resulting from their daily activities, improper stocking of their various wastes and dumping of their refuse in surface streams.
Collapse
|
5
|
Avila R, García-Vara M, López-García E, Postigo C, López de Alda M, Vicent T, Blánquez P. Evaluation of an outdoor pilot-scale tubular photobioreactor for removal of selected pesticides from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150040. [PMID: 34798717 DOI: 10.1016/j.scitotenv.2021.150040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
This work assesses the capacity of a microalgae-based system to remove three highly to medium polar pesticides typically found in freshwater: acetamiprid, bentazone, and propanil. Degradation of the pesticides was firstly studied individually at batch lab-scale reactors and abiotic and heated-killed controls were employed to clarify their removal pathways. At lab-scale, propanil and acetamiprid were completely removed after 7 days whereas bentazone was not removed. Four and two transformation products (TPs) were generated in the biodegradation process for acetamiprid and propanil, respectively. Then, the simultaneous removal of the pesticides was assessed in an outdoor pilot photobioreactor, operated with a hydraulic residence time of 8 days. During the steady-state, high removal efficiencies were observed for propanil (99%) and acetamiprid (71%). The results from batch experiments suggest that removal is mainly caused by algal-mediated biodegradation. Acetamiprid TPs raised throughout the operational time in the photobioreactor, while no propanil TP was detected at the pilot-scale. This suggests complete mineralization of propanil or residual formation of its TPs at concentrations below the analytical method detection limit. Aiming at biomass valorization, diverse microalgae harvesting methods were investigated for biomass concentration, and the effect of residual pesticides on the biogas yield was determined by biochemical methane potential tests. Anaerobic digestion was not inhibited by the pesticides as verified by the digestion performance. The results highlight the potential of microalgae-based systems to couple nutrient removal, biomass production, micropollutant biodegradation, and biofuel production.
Collapse
Affiliation(s)
- Romina Avila
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Manuel García-Vara
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Ester López-García
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| | - Teresa Vicent
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Paqui Blánquez
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
6
|
Kumari M, Ghosh P, Swati, Thakur IS. Development of artificial consortia of microalgae and bacteria for efficient biodegradation and detoxification of lindane. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Martínez-Aguilar K, Pérez-Legaspi IA, Ramírez-Fuentes E, Trujillo-Tapia MN, Alfredo Ortega-Clemente L. Growth, photosynthesis and removal responses of the cyanobacteria Chroococcus sp. to malathion and malaoxon. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:771-776. [PMID: 30199345 DOI: 10.1080/03601234.2018.1505070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Malathion is an organophosphorus pesticide widely used in agricultural crops, despite its toxicity. In addition, malaoxon occurs by oxidation of malathion being more toxic. The toxic effects of malathion and malaoxon in humans include hepatoxicity, breast cancer, genetic damage and endocrine disruption. The aim of this study involved assessing the effect of malathion commercial grade on Chroococcus sp., and its potential as an alternative to the removal of this pesticide and its transformation product such as malaoxon. We evaluated the effect of malathion at different concentrations (1, 25, 50, 75 and 100 ppm) on the biomass of the cyanobacteria Chroococcus sp. grown in medium BG-11; also, we analyse its ability to degrade both malathion and malaoxon into a temperature of 28 ± 2 °C and at pH 6. The results showed that 50 ppm of malathion the cyanobacteria Chroococcus sp. reached the highest removal efficiency of malathion and malaoxon (69 and 65%, respectively); also, the growth rate of Chroococcus sp. increased without inhibiting the production of chlorophyll "a", this can be explained by the hormesis phenomenon. Therefore, we consider that the cyanobacteria Chroococcus sp. may be a good candidate for bioremediation of aquatic systems contaminated with organophosphorus pesticides such as malathion and its transformation product such as malaoxon.
Collapse
Affiliation(s)
- Karina Martínez-Aguilar
- a Distrito de San Pedro Pochutla , Instituto de Recursos Ciudad Universitaria Universidad del Mar , Puerto Ángel México
| | - Ignacio Alejandro Pérez-Legaspi
- b División de Estudios de Posgrado e Investigación , Instituto Tecnológico de Boca del Río, Tecnológico Nacional de México Boca del Río México
| | - Eustacio Ramírez-Fuentes
- a Distrito de San Pedro Pochutla , Instituto de Recursos Ciudad Universitaria Universidad del Mar , Puerto Ángel México
| | - Ma Nieves Trujillo-Tapia
- a Distrito de San Pedro Pochutla , Instituto de Recursos Ciudad Universitaria Universidad del Mar , Puerto Ángel México
| | - Luis Alfredo Ortega-Clemente
- b División de Estudios de Posgrado e Investigación , Instituto Tecnológico de Boca del Río, Tecnológico Nacional de México Boca del Río México
| |
Collapse
|
8
|
Saez JM, Alvarez A, Fuentes MS, Amoroso MJ, Benimeli CS. An Overview on Microbial Degradation of Lindane. MICROBE-INDUCED DEGRADATION OF PESTICIDES 2017. [DOI: 10.1007/978-3-319-45156-5_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Singh JS, Kumar A, Rai AN, Singh DP. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability. Front Microbiol 2016; 7:529. [PMID: 27148218 PMCID: PMC4838734 DOI: 10.3389/fmicb.2016.00529] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/31/2016] [Indexed: 12/29/2022] Open
Abstract
Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.
Collapse
Affiliation(s)
- Jay Shankar Singh
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| | - Arun Kumar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| | - Amar N. Rai
- Department of Biochemistry, North-Eastern Hill UniversityShillong, India
| | - Devendra P. Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| |
Collapse
|
10
|
Pérez-Legaspi IA, Ortega-Clemente LA, Moha-León JD, Ríos-Leal E, Gutiérrez SCR, Rubio-Franchini I. Effect of the pesticide lindane on the biomass of the microalgae Nannochloris oculata. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:103-106. [PMID: 26576629 DOI: 10.1080/03601234.2015.1092824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study assesses the growth of the microalgae Nannochloris oculata in the presence of lindane and the ability of N. oculata to remove lindane from media. Algal biomass increased with 0.1 and 0.5 mg L-1 of lindane, and lindane concentrations in the media decreased. N. oculata removed 73% and 68.2% of lindane in the 0.1 and 0.5 mg L-1 media concentrations, respectively. Algal biomass decreased to the level of the control at lindane concentrations greater than 2.5 mg L-1, probably due to toxicity. N. oculata removed lindane from the media at concentrations lower than 1.0 mg L-1. Thus, N. oculata may be useful for lindane bioremediation in contaminated aquatic systems.
Collapse
Affiliation(s)
| | - Luis Alfredo Ortega-Clemente
- a Division of Graduate Studies and Research, Technological Institute of Boca del Río , Boca del Río , Veracruz , Mexico
| | - Jesús David Moha-León
- a Division of Graduate Studies and Research, Technological Institute of Boca del Río , Boca del Río , Veracruz , Mexico
| | - Elvira Ríos-Leal
- b Department of Biotechnology and Bioengineering/Analytical Central , CINVESTAV- Zacatenco, Instituto Politecnico Nacional , D.F. , Mexico
| | | | - Isidoro Rubio-Franchini
- c State Laboratory of Health of the State of Aguascalientes, ISSEA , Aguascalientes , Mexico
| |
Collapse
|
11
|
Ling J, Zhang YY, Dong JD, Wang YS, Feng JB, Zhou WH. Spatial variations of bacterial community and its relationship with water chemistry in Sanya Bay, South China Sea as determined by DGGE fingerprinting and multivariate analysis. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1486-1497. [PMID: 26013101 DOI: 10.1007/s10646-015-1492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Bacteria play important roles in the structure and function of marine food webs by utilizing nutrients and degrading the pollutants, and their distribution are determined by surrounding water chemistry to a certain extent. It is vital to investigate the bacterial community's structure and identifying the significant factors by controlling the bacterial distribution in the paper. Flow cytometry showed that the total bacterial abundance ranged from 5.27 × 10(5) to 3.77 × 10(6) cells/mL. Molecular fingerprinting technique, denaturing gradient gel electrophoresis (DGGE) followed by DNA sequencing has been employed to investigate the bacterial community composition. The results were then interpreted through multivariate statistical analysis and tended to explain its relationship to the environmental factors. A total of 270 bands at 83 different positions were detected in DGGE profiles and 29 distinct DGGE bands were sequenced. The predominant bacteria were related to Phyla Protebacteria species (31 %, nine sequences), Cyanobacteria (37.9 %, eleven sequences) and Actinobacteria (17.2 %, five sequences). Other phylogenetic groups identified including Firmicutes (6.9 %, two sequences), Bacteroidetes (3.5 %, one sequences) and Verrucomicrobia (3.5 %, one sequences). Conical correspondence analysis was used to elucidate the relationships between the bacterial community compositions and environmental factors. The results showed that the spatial variations in the bacterial community composition was significantly related to phosphate (P = 0.002, P < 0.01), dissolved organic carbon (P = 0.004, P < 0.01), chemical oxygen demand (P = 0.010, P < 0.05) and nitrite (P = 0.016, P < 0.05). This study revealed the spatial variations of bacterial community and significant environmental factors driving the bacterial composition shift. These results may be valuable for further investigation on the functional microbial structure and expression quantitatively under the polluted environments in the world.
Collapse
Affiliation(s)
- Juan Ling
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Hainan Tropical Marine Biological Research Station, Sanya, 57200, China
| | - Yan-Ying Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Hainan Tropical Marine Biological Research Station, Sanya, 57200, China
| | - Jun-De Dong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Hainan Tropical Marine Biological Research Station, Sanya, 57200, China.
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Jing-Bing Feng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Hainan Tropical Marine Biological Research Station, Sanya, 57200, China
| | - Wei-Hua Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Hainan Tropical Marine Biological Research Station, Sanya, 57200, China
| |
Collapse
|
12
|
Singh J, Thakur IS. Evaluation of cyanobacterial endolith Leptolyngbya sp. ISTCY101, for integrated wastewater treatment and biodiesel production: A toxicological perspective. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
de Morais P, Stoichev T, Basto MCP, Ramos V, Vasconcelos VM, Vasconcelos MTSD. Pentachlorophenol toxicity to a mixture of Microcystis aeruginosa and Chlorella vulgaris cultures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 150:159-164. [PMID: 24681699 DOI: 10.1016/j.aquatox.2014.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/24/2014] [Accepted: 03/09/2014] [Indexed: 06/03/2023]
Abstract
Pentachlorophenol (PCP) is a priority pollutant due to its persistence and high toxicity. For the first time, PCP effects were investigated at laboratory scale on co-cultures of two ubiquitous freshwater phytoplankton species: the cyanobacterium Microcystis aeruginosa and the microalgae Chlorella vulgaris. The cells were exposed to environmental levels of PCP for 10 days in Fraquil culture medium, at nominal concentrations from 0.1 to 10,000 μg L(-1). Growth was assessed by area under growth curve (cell count vs. time). The phytoplankton community structure can be changed as a consequence of a PCP contamination. Low μg L(-1) levels of PCP are advantageous to M. aeruginosa. This is the first report of the promoting effect of PCP on the growth of aquatic cyanobacteria, using mixtures with microalgae. As a result of the direct toxic effects of high PCP concentrations on M. aeruginosa, C. vulgaris cell count increased given that in biological controls M. aeruginosa inhibited the C. vulgaris growth. At 16.7 mg L(-1), PCP already had direct toxic effects also on the microalga. The pH of culture medium tended to decrease with increasing PCP concentrations, which was mostly related to the growth inhibition of cyanobacterium caused by PCP. The PCP concentration was stable in the co-cultures, which differed from what has been observed in monocultures of the same two species. Short-term laboratory assays with two phytoplankton species gives important information on the species interactions, namely possible direct and indirect effects of a toxicant, and must be considered in ecotoxicity studies regarding environmental extrapolations.
Collapse
Affiliation(s)
- Paulo de Morais
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Teodor Stoichev
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| | - M Clara P Basto
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - V Ramos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - V M Vasconcelos
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - M Teresa S D Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| |
Collapse
|
14
|
Singh DP, Khattar JIS, Gupta M, Kaur G. Evaluation of toxicological impact of cartap hydrochloride on some physiological activities of a non-heterocystous cyanobacterium Leptolyngbya foveolarum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 110:63-70. [PMID: 24759053 DOI: 10.1016/j.pestbp.2014.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 02/08/2014] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
The present study was aimed to the evaluation of toxicological impact of insecticide cartap hydrochloride on photosynthesis and nitrogen assimilation of a non-heterocystous cyanoprokaryote Leptolyngbya foveolarum isolated from paddy fields of Punjab, India. The microorganism tolerated commercial grade insecticide up to 80 ppm. Lower concentration (20 ppm) of cartap supported good growth with high dry weight of biomass, total protein content, photosynthetic pigments, photosynthesis and respiration compared to untreated control cultures while higher concentrations (40 and 60 ppm) inhibited these parameters in a dose dependent manner. Treatment of the microorganism with 60 ppm cartap lowered the content of photosynthetic pigments with maximum inhibitory effect on phycoerythrin (70% decrease) followed by allophycocyanin (66% decrease). Rates of photosynthesis and respiration were inhibited by 63% and 45%, respectively, while PS-I, II and whole chain activity were decreased by 45%, 67% and 40% respectively, compared to untreated control cultures. Cartap at 60 ppm decreased nitrate and nitrite uptake by 31% and 61%, respectively, whereas uptake of ammonium was slightly increased (18%) in cartap (60 ppm) treated cells. Nitrate and nitrite reductase, and glutamine synthetase activities of the microorganism decreased by 36-50% in 60 ppm cartap. The low levels of growth, photosynthetic pigments and activities of nitrogen assimilating enzymes in cells grown in nitrogen depleted medium supplement with insecticide indicated that insecticide may be used by the organism as a nitrogen source.
Collapse
Affiliation(s)
- D P Singh
- Department of Botany, Punjabi University, Patiala 147002, India.
| | - J I S Khattar
- Department of Botany, Punjabi University, Patiala 147002, India
| | - Meenu Gupta
- Department of Botany, Punjabi University, Patiala 147002, India
| | - Gurdeep Kaur
- Department of Botany, Punjabi University, Patiala 147002, India
| |
Collapse
|
15
|
Forlani G, Bertazzini M, Giberti S, Wieczorek D, Kafarski P, Lipok J. Sublethal detergent concentrations increase metabolization of recalcitrant polyphosphonates by the cyanobacterium Spirulina platensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3263-3270. [PMID: 23089958 DOI: 10.1007/s11356-012-1253-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 10/09/2012] [Indexed: 06/01/2023]
Abstract
As a consequence of increasing industrial applications, thousand tons of polyphosphonates are introduced every year into the environment. The inherent stability of the C-P bond results in a prolonged half-life. Moreover, low uptake rates limit further their microbial metabolization. To assess whether low detergent concentrations were able to increase polyphosphonate utilization by the cyanobacterium Spirulina platensis, tolerance limits to the exposure to various detergents were determined by measuring the growth rate in the presence of graded levels below the critical micellar concentration. Then, the amount of hexamethylenediamine-N,N,N',N'-tetrakis(methylphosphonic acid) that is metabolized in the absence or in the presence of sublethal detergent concentrations was quantified by (31)P NMR analysis on either P-starved or P-fed cyanobacterial cultures. The strain tolerated the presence of detergents in the order: nonionic > anionic > cationic. When added to the culture medium at the highest concentrations showing no detrimental effects upon cell viability, detergents either improved or decreased polyphosphonate utilization, the anionic sodium dodecyl sulfate being the most beneficial. Metabolization was not lower in P-fed cells--a result that strengthens the possibility of using, in the future, this strain for bioremediation purposes.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science & Biotechnology, University of Ferrara, via L. Borsari 46, 44100 Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Ling J, Zhang Y, Dong J, Wang Y, Huang H, Chen L, Huang X, Long L, Zhang S. Spatial variability of cyanobacterial community composition in Sanya Bay as determined by DGGE fingerprinting and multivariate analysis. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5424-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
González R, García-Balboa C, Rouco M, Lopez-Rodas V, Costas E. Adaptation of microalgae to lindane: a new approach for bioremediation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 109:25-32. [PMID: 22204986 DOI: 10.1016/j.aquatox.2011.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 05/31/2023]
Abstract
Lindane is especially worrisome because its persistence in aquatic ecosystems, tendency to bioaccumulation and toxicity. We studied the adaptation of freshwater cyanobacteria and microalgae to resist lindane using an experimental model to distinguish if lindane-resistant cells had their origin in random spontaneous pre-selective mutations (which occur prior to the lindane exposure), or if lindane-resistant cells arose by a mechanism of physiological acclimation during the exposure to the selective agent. Although further research is needed to determine the different mechanisms contributing to the bio-elimination of lindane, this study, however, provides an approach to the bioremediation abilities of the lindane-resistant cells. Wild type strains of the experimental organisms were exposed to increasing lindane levels to estimate lethal concentrations. Growth of wild-type cells was completely inhibited at 5mg/L concentration of lindane. However, after further incubation in lindane for several weeks, occasionally the growth of rare lindane-resistant cells was found. A fluctuation analysis demonstrated that lindane-resistant cells arise only by rare spontaneous mutations that occur randomly prior to exposure to lindane (lindane-resistance did not occur as a result of physiological mechanisms). The rate of mutation from lindane sensitivity to resistance was between 1.48 × 10(-5) and 2.35 × 10(-7) mutations per cell per generation. Lindane-resistant mutants exhibited a diminished fitness in the absence of lindane, but only these variants were able to grow at lindane concentrations higher than 5mg/L (until concentrations as high as 40 mg/L). Lindane-resistant mutants may be maintained in uncontaminated waters as the result of a balance between new resistant mutants arising from spontaneous mutation and resistant cells eliminated by natural selection waters via clone selection. The lindane-resistant cells were also used to test the potential of microalgae to remove lindane. Three concentrations (4, 15 and 40 mg/L) were chosen as a model. In these exposures the lindane-resistant cells showed a great capacity to remove lindane (until 99% lindane was eliminated). Apparently, bioremediation based on lindane-resistant cells could be a great opportunity for cleaning up of lindane- and other chlorinated organics-polluted habitats.
Collapse
Affiliation(s)
- Raquel González
- Genetica, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | | | | | | | | |
Collapse
|
18
|
Rigonato J, Alvarenga DO, Andreote FD, Dias ACF, Melo IS, Kent A, Fiore MF. Cyanobacterial diversity in the phyllosphere of a mangrove forest. FEMS Microbiol Ecol 2012; 80:312-22. [DOI: 10.1111/j.1574-6941.2012.01299.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Janaina Rigonato
- Center for Nuclear Energy in Agriculture; University of São Paulo; CENA/USP; Piracicaba; SP; Brazil
| | | | | | | | - Itamar Soares Melo
- Laboratory of Environmental Microbiology; EMBRAPA Environment; Jaguariúna; SP; Brazil
| | - Angela Kent
- Department of Natural Resources and Environmental Sciences; University of Illinois; Urbana; IL; USA
| | - Marli Fátima Fiore
- Center for Nuclear Energy in Agriculture; University of São Paulo; CENA/USP; Piracicaba; SP; Brazil
| |
Collapse
|
19
|
Galhano V, Santos H, Oliveira MM, Gomes-Laranjo J, Peixoto F. Changes in fatty acid profile and antioxidant systems in a Nostoc muscorum strain exposed to the herbicide bentazon. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Ghasemi Y, Rasoul-Amini S, Fotooh-Abadi E. THE BIOTRANSFORMATION, BIODEGRADATION, AND BIOREMEDIATION OF ORGANIC COMPOUNDS BY MICROALGAE(1). JOURNAL OF PHYCOLOGY 2011; 47:969-80. [PMID: 27020178 DOI: 10.1111/j.1529-8817.2011.01051.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Rapid growth in the biotechnological industry and production has put tremendous pressure on the biological methods that may be used according to the guidelines of green chemistry. However, despite continuing dramatic increases in published research on organic biotransformation by microorganisms, more research exists with microalgae. Our efforts in transforming chemicals such as organic compounds for the production of functionalized products help to lessen the environmental effects of organic synthesis. These biotransformations convert organic contaminants to obtain carbon or energy for growth or as cosubstrates. This review aims to focus on the potential of microalgae in transformation, conversion, remediation, accumulation, degradation, and synthesis of various organic compounds. However, these technologies have the ability to provide the most efficient and environmentally safe approach for inexpensive biotransforming of a variety of organic contaminants, which are most industrial residues. In addition, the recent advances in microalgal bioactivity were discussed.
Collapse
Affiliation(s)
- Younes Ghasemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-158, Shiraz, Iran Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-158, Shiraz, Iran Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, IranDepartment of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Sara Rasoul-Amini
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-158, Shiraz, Iran Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-158, Shiraz, Iran Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, IranDepartment of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Elham Fotooh-Abadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-158, Shiraz, Iran Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-158, Shiraz, Iran Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, IranDepartment of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| |
Collapse
|
21
|
Singh DP, Khattar JIS, Nadda J, Singh Y, Garg A, Kaur N, Gulati A. Chlorpyrifos degradation by the cyanobacterium Synechocystis sp. strain PUPCCC 64. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:1351-1359. [PMID: 21465163 DOI: 10.1007/s11356-011-0472-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 02/17/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Indiscriminate use of insecticides leads to environmental problems and poses a great threat to beneficial microorganisms. The aim of the present work was to study chlorpyrifos degradation by a rice field cyanobacterium Synechocystis sp. strain PUPCCC 64 so that the organism is able to reduce insecticide pollution in situ. MATERIAL AND METHODS The unicellular cyanobacterium isolated and purified from a rice field was identified by partial 16S rRNA gene sequence as Synechocystis sp. strain PUPCCC 64. Tolerance limit of the organism was determined by studying its growth in graded concentrations (2.5-20 mg/L) of chlorpyrifos. Chlorpyrifos removal was studied by its depletion from the insecticide supplemented growth medium, and its biodegradation products were identified in the cell extract, biomass wash, and growth medium. RESULTS AND DISCUSSION The organism tolerated chlorpyrifos up to 15 mg/L. Major fraction of chlorpyrifos was removed by the organism during the first day followed by slow uptake. Biomass, pH, and temperature influenced the insecticide removal and the organism exhibited maximum chlorpyrifos removal at 100 mg protein/L biomass, pH 7.0, and 30°C. The cyanobacterium metabolized chlorpyrifos producing a number of degradation products as evidenced by GC-MS chromatogram. One of the degradation products was identified as 3,5,6-trichloro-2-pyridinol. CONCLUSION AND RECOMMENDATIONS Present study reports the biodegradation of chlorpyrifos by Synechocystis sp. Biodegradation of the insecticide by the cyanobacterium is significant as it can be biologically removed from the environment. The cyanobacterium may be used for bioremediation of chlorpyrifos-contaminated soils.
Collapse
Affiliation(s)
- D P Singh
- Department of Botany, Punjabi University, Patiala, 147 002 Punjab, India.
| | | | | | | | | | | | | |
Collapse
|
22
|
Sundaram S, Soumya K, . R, Pandey J, Rahman A. Impact of Organic Stress on Growth, Photosynthetic and Physiological Responses of Some Cyanobacterial Isolates. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jest.2011.264.283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Biodegradation of the Pesticide Fenamiphos by Ten Different Species of Green Algae and Cyanobacteria. Curr Microbiol 2008; 57:643-6. [DOI: 10.1007/s00284-008-9293-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/15/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
|
24
|
El-Bestawy E. Treatment of mixed domestic-industrial wastewater using cyanobacteria. J Ind Microbiol Biotechnol 2008; 35:1503-16. [PMID: 18726623 DOI: 10.1007/s10295-008-0452-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
Alexandria Sanitary Drainage Company (ASDCO), Alexandria, Egypt has two primary treatment plants, the eastern and the western wastewater treatment plants (EWTP and WWTP) that receive mixed domestic-industrial influents and discharge into L. Mariut. The lake is subjected therefore to severe levels of pollution and dominated by members of cyanobacteria that can cope with the high pollution load in the lake water. Isolation and utilization of the locally generated cyanobacterial biomass for remediation processes of highly toxic pollutants offers a very efficient and cheap tool for governmental or private industrial activities in Alexandria and will generate a source of revenue in Egyptian localities. The main objective of the present study was to investigate the biodegradation and biosorption capacity of some potential cyanobacterial species dominating the lake ecosystem toward organic and inorganic contaminants polluting the primary-treated effluents of the EWTP and WWTP. The primary effluents were subjected to biological treatment using three axenic cyanobacterial strains (Anabaena oryzae, Anabaena variabilis and Tolypothrix ceytonica) as batch system for 7 days. Removal efficiencies (RE) of the different contaminants were evaluated and compared. Results confirmed the high efficiencies of the investigated species for the removal of the target contaminants which were species and contaminant-dependent. BOD5 and COD recorded 89.29 and 73.68% as maximum RE(s) achieved by Anabaena variabilis and Anabaena oryzae, respectively. The highest RE of the TSS recorded 64.37% achieved by Tolypothrix ceytonica, while 38.84% was recorded as the highest TSD RE achieved by Anabaena variabilis. Tolypothrix ceytonica also exhibited the highest RE for FOG recorded 93.75%. Concerning the contaminant metals, Tolypothrix ceytonica showed the highest biosorption capacity where 86.12 and 94.63% RE were achieved for Zn and Cu, respectively. In conclusion, results of the present study confirmed the advantageous potential of using the tested cyanobacterial species for the treatment of contaminated wastewater. Results also clearly showed the quality improvement of the discharged wastewater which in turn will eliminate or at least minimize the expected deterioration of the receiving environment.
Collapse
Affiliation(s)
- Ebtesam El-Bestawy
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.
| |
Collapse
|