1
|
Li ET, Ji JY, Kong WJ, Shen DX, Li C, An CJ. A C-type lectin with dual carbohydrate recognition domains functions in innate immune response in Asian corn borer, Ostrinia furnacalis. INSECT SCIENCE 2024. [PMID: 38772748 DOI: 10.1111/1744-7917.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
C-type lectins (CTLs) act as pattern recognition receptors (PRRs) to initiate the innate immune response in insects. A CTL with dual carbohydrate recognition domains (CRDs) (named immulectin-4 [IML-4]) was selected from the Ostrinia furnacalis transcriptome dataset for functional studies. We cloned the full-length complementary DNA of O. furnacalis IML-4 (OfIML-4). It encodes a 328-residue protein with a Glu-Pro-Asn (EPN) and Gln-Pro-Asp (QPD) motifs in 2 CRDs, respectively. OfIML-4 messenger RNA levels increased significantly upon the bacterial and fungal infection. Recombinant OfIML-4 (rIML-4) and its individual CRDs (rCRD1 and rCRD2) exhibited the binding ability to various microorganisms including Escherichia coli, Micrococcus luteus, Pichia pastoris, and Beauveria bassiana, and the cell wall components including lipopolysaccharide from E. coli, peptidoglycan from M. luteus or Bacillus subtilis, and curdlan from Alcaligenes faecalis. The binding further induced the agglutination of E. coli, M. luteus, and B. bassiana in the presence of calcium, the phagocytosis of Staphylococcus aureus by the hemocytes, in vitro encapsulation and melanization of nickel-nitrilotriacetic acid beads, and a significant increase in phenoloxidase activity of plasma. In addition, rIML-4 significantly enhanced the phagocytosis, nodulation, and resistance of O. furnacalis to B. bassiana. Taken together, our results suggest that OfIML-4 potentially works as a PRR to recognize the invading microorganisms, and functions in the innate immune response in O. furnacalis.
Collapse
Affiliation(s)
- Er-Tao Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jia-Yue Ji
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Pomology Institute, Shanxi Agricultural University, Jinzhong, Shanxi Province, China
| | - Wei-Jie Kong
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dong-Xu Shen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Cai Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chun-Ju An
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Zhang Y, Ai H, Wang Y, Zhang P, Du L, Wang J, Wang S, Gao H, Li B. A pattern recognition receptor C-type lectin TcCTL14 contributes to immune response and development in the red flour beetle, Tribolium castaneum. INSECT SCIENCE 2023; 30:1363-1377. [PMID: 36518010 DOI: 10.1111/1744-7917.13161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/13/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Evidence is accumulating that pattern recognition receptor (PRR) C-type lectins (CTL) play essential roles in recognition of pathogens. TcCTL14 (accession no. TC00871) contains the most domains among all CTL of Tribolium castaneum. Yet the biological function of TcCTL14 remains unclear. In this study, TcCTL14 exhibiting typical motif and domain of CTL was cloned from T. castaneum. The expression pattern analysis showed that TcCTL14 was highly expressed in late pupae and central nervous system, and was upregulated after treatment with Escherichia coli and Staphylococcus aureus, respectively. Analysis of binding affinity revealed that recombinant TcCTL14 not only could bind to lipopolysaccharide and peptidoglycan in a dose-dependent fashion, but possibly could bind to and agglutinate different bacteria in a Ca2+ -dependent fashion. Knockdown of TcCTL14 before injection with bacteria led to the downregulation of nuclear factor-κB transcription factors of Toll/IMD and 4 antimicrobial peptides. Knockdown of TcCTL14 also caused suppressed metamorphosis, reduced fecundity, and delayed embryogenesis of T. castaneum. Further observation discovered that knockdown of TcCTL14 inhibited the development of ovaries and embryos. The detection of signaling pathways revealed that TcCTL14 may be involved in metamorphosis and fecundity by impacting 20-hydroxyecdysone and vitellogenin, respectively. Overall, these results indicate that TcCTL14 may contribute to immune response by agglutination or regulating the expression of antimicrobial peptides by the Toll/IMD pathway, and is required for T. castaneum development including metamorphosis, fecundity, and embryogenesis. These findings will improve the functional cognition of PRR CTL in insects and provide the new strategy for pest control.
Collapse
Affiliation(s)
- Yonglei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Huayi Ai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yihan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ping Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Liheng Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiatao Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Suisui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Lin Z, Cheng J, Mu X, Kuang X, Li Z, Wu J. A C-type lectin in saliva of Aedes albopictus (Diptera: Culicidae) bind and agglutinate microorganisms with broad spectrum. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:1. [PMID: 37399114 DOI: 10.1093/jisesa/iead043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 05/28/2023] [Indexed: 07/05/2023]
Abstract
Via complex salivary mixture, mosquitos can intervene immune response and be helpful to transmit several viruses causing deadly human diseases. Some C-type lectins (CTLs) of mosquito have been reported to be pattern recognition receptor to either resist or promote pathogen invading. Here, we investigated the expression profile and agglutination function of an Aedes albopictus CTL (Aalb_CTL2) carrying a single carbohydrate-recognition domain (CRD) and WND/KPD motifs. The results showed that Aalb_CTL2 was found to be specifically expressed in mosquito saliva gland and its expression was not induced by blood-feeding. The recombinant Aalb_CTL2 (rAalb_CTL2) could agglutinate mouse erythrocytes in the presence of calcium and the agglutinating activity could be inhibited by EDTA. rAalb_CTL2 also displayed the sugar binding ability to D-mannose, D-galactose, D-glucose, and maltose. Furthermore, it was demonstrated that rAalb_CTL2 could bind and agglutinate Gram positive bacteria Staphylococcus aureus and Bacillus subtilis, Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa, as well as fungus Candida albicans in vitro in a calcium dependent manner. However, rAalb_CTL2 could not promote type 2 dengue virus (DENV-2) replication in THP-1 and BHK-21 cell lines. These findings uncover that Aalb_CTL2 might be involved in the innate immunity of mosquito to resist microorganism multiplication in sugar and blood meals to help mosquito survive in the varied natural environment.
Collapse
Affiliation(s)
- Zimin Lin
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| | - Jinzhi Cheng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| | - Xiaohui Mu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| | - Xiaoyuan Kuang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| | - Zhiqiang Li
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Immunology, Guizhou Medical University, Guiyang 550025, China
| | - Jiahong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
4
|
Bi J, Wang Y, Gao R, Liu P, Jiang Y, Gao L, Li B, Song Q, Ning M. Functional Analysis of a CTL-X-Type Lectin CTL16 in Development and Innate Immunity of Tribolium castaneum. Int J Mol Sci 2023; 24:10700. [PMID: 37445878 DOI: 10.3390/ijms241310700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
C-type lectins (CTLs) are a class of proteins containing carbohydrate recognition domains (CRDs), which are characteristic modules that recognize various glycoconjugates and function primarily in immunity. CTLs have been reported to affect growth and development and positively regulate innate immunity in Tribolium castaneum. However, the regulatory mechanisms of TcCTL16 proteins are still unclear. Here, spatiotemporal analyses displayed that TcCTL16 was highly expressed in late pupae and early adults. TcCTL16 RNA interference in early larvae shortened their body length and narrowed their body width, leading to the death of 98% of the larvae in the pupal stage. Further analysis found that the expression level of muscle-regulation-related genes, including cut, vestigial, erect wing, apterous, and spalt major, and muscle-composition-related genes, including Myosin heavy chain and Myosin light chain, were obviously down-regulated after TcCTL16 silencing in T. castaneum. In addition, the transcription of TcCTL16 was mainly distributed in the hemolymph. TcCTL16 was significantly upregulated after challenges with lipopolysaccharides, peptidoglycans, Escherichia coli, and Staphylococcus aureus. Recombinant CRDs of TcCTL16 bind directly to the tested bacteria (except Bacillus subtilis); they also induce extensive bacterial agglutination in the presence of Ca2+. On the contrary, after TcCTL16 silencing in the late larval stage, T. castaneum were able to develop normally. Moreover, the transcript levels of seven antimicrobial peptide genes (attacin2, defensins1, defensins2, coleoptericin1, coleoptericin2, cecropins2, and cecropins3) and one transcription factor gene (relish) were significantly increased under E. coli challenge and led to an increased survival rate of T. castaneum when infected with S. aureus or E. coli, suggesting that TcCTL16 deficiency could be compensated for by increasing AMP expression via the IMD pathways in T. castaneum. In conclusion, this study found that TcCTL16 could be involved in developmental regulation in early larvae and compensate for the loss of CTL function by regulating the expression of AMPs in late larvae, thus laying a solid foundation for further studies on T. castaneum CTLs.
Collapse
Affiliation(s)
- Jingxiu Bi
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yutao Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Rui Gao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Pingxiang Liu
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuying Jiang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lei Gao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Mingxiao Ning
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
5
|
Wang GJ, Wang JL, Liu XS. Identification and analysis of C-type lectins from Helicoverpa armigera in response to the entomopathogenic fungus Metarhizium rileyi infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104620. [PMID: 36528221 DOI: 10.1016/j.dci.2022.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
C-type lectins (CTLs) function as pattern recognition receptors (PRRs) and play an important role in the innate immunity of insects. To investigate the role of CTLs in the antifungal responses, we analyzed expression profiles of 36 CTLs of Helicoverpa armigera in the tissues (hemocytes, fat bodies, and midgut) after the infection by entomopathogenic fungus Metarhizium rileyi. The expression levels of many HaCTLs were found to be up-regulated after the infection. Four recombinant HaCTLs (rHaCTL11, rHaCTL12, rHaCTL27, and rHaCTL45) were expressed and purified. Analysis of the purified rHaCTLs revealed that rHaCTLs were able to bind to conidia and hyphal bodies of M. rileyi, and the affinity of rHaCTL11 and rHaCTL27 for hyphal bodies was weaker than for conidia. All these rHaCTLs agglutinate conidia and hyphal bodies in a calcium (Ca2+) dependent manner. Sugar specificity assays showed that d-trehalose, mannan, β-1,3-glucan, d-galactose, glucose, d-raffinose, lipopolysaccharide, and d-xylose can inhibit the binding of HaCTLs to M. rileyi. Additionally, survival assays showed that pretreatment of fungal conidia with rHaCTL11 significantly reduced the rate of host death, and knockdown of HaCTL11 significantly increased H. armigera sensitivity to fungal infection. These results suggest that HaCTLs play significant role as PRRs in the defense of H. armigera against M. rileyi infection.
Collapse
Affiliation(s)
- Gui-Jie Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, China.
| |
Collapse
|
6
|
Liu J, Liu X, Wang Z, Zhang Q. Immunological characterization and function analysis of L-type lectin from spotted knifejaw, Oplegnathus punctatus. Front Immunol 2022; 13:993777. [PMID: 36225913 PMCID: PMC9549603 DOI: 10.3389/fimmu.2022.993777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Lily-type lectin (LTL) plays significant roles in innate immune response against pathogen infection. LTL in animals and plants has received widespread attention. In the present study, an LTL (OppLTL) was identified from spotted knifejaw Oplegnathus punctatus. The OppLTL encoded a typical Ca2+-dependent carbohydrate-binding protein containing a CRD domain. The qRT-PCR showed that it was mainly expressed in the gill and was significantly upregulated after Vibrio anguillarum challenge. The agglutination analysis showed that the recombinant OppLTL could bind and agglutinate Gram-negative and Gram-positive bacteria in a Ca2+-dependent manner. However, the binding activity was different. Meanwhile, the recombinant OppLTL could hemagglutinate mammalian and teleost erythrocytes. Subcellular localization revealed that OppLTL was mainly detected in the cytoplasm of HEK293T cells. The dual-luciferase analysis revealed that OppLTL could inhibit the activity of the NF-κB signal pathway in HEK293T cells after OppLTL overexpression. These findings collectively demonstrated that OppLTL could be involved in host innate immune response and defense against bacterial infection in spotted knifejaw.
Collapse
Affiliation(s)
- Jinxiang Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Xiaobing Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhigang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- *Correspondence: Quanqi Zhang,
| |
Collapse
|
7
|
Functional analysis of TcCTL12 in innate immunity and development in Tribolium castaneum. Int J Biol Macromol 2022; 206:422-434. [PMID: 35245573 DOI: 10.1016/j.ijbiomac.2022.02.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/20/2022]
Abstract
C-type lectins (CTLs) play vital roles in invertebrates' innate immunity. Six CTL-X type lectins are identified in Tribolium castaneum. However, their functions and regulating mechanisms remain elusive. Here, TcCTL12, one CTL-X, was identified and cloned from T. castaneum. Spatiotemporal expression profiling revealed that TcCTL12 highly expressed in late pupa and early adult of T. castaneum in comparison with other developmental stages, and exhibited the highest expression level in the haemolymph and central nervous system (CNS). Then, the expression of TcCTL12 was remarkably induced by the stimulation of Escherichia coli and Staphylococcus aureus. Moreover, the recombinant protein TcCTL12 could bind pathogen-associated molecular patterns (PAMPs) including LPS and PGN, and displayed agglutinative activity to both Gram-positive and Gram-negative bacteria in a calcium-dependent manner in vitro. Furthermore, RNAi of TcCTL12 caused T. castaneum pupation and eclosion defected. The abnormal pupa thinned their epidermal, and appeared the abnormal development of muscle cell compared with the control group. Additionally, depletion of TcCTL12 resulted in reducing fertility of offspring and affected their fecundity. In sum, these results indicated that TcCTL12 had extensive functions in the regulation of development in T. castaneum, in addition to the immune response. It further expanded insights into CTL functions in insects.
Collapse
|
8
|
Li J, Bi J, Zhang P, Wang Z, Zhong Y, Xu S, Wang L, Li B. Functions of a C-type lectin with a single carbohydrate-recognition domain in the innate immunity and movement of the red flour beetle, Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2021; 30:90-101. [PMID: 33145845 DOI: 10.1111/imb.12680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
C-type lectins (CTLs) are a superfamily of proteins found in almost all vertebrates and invertebrates. They play an important role in innate immune defences, development and epidermal structure. Here, a CTL with one carbohydrate-recognition domain containing a highly conserved Gln-Pro-Asp (QPD) motif was identified in Tribolium castaneum and given the name TcCTL5. Spatiotemporal analyses showed that Tcctl5 was highly expressed in the late pupa stage and mainly existed in the central nervous system and haemolymph. The transcript level of Tcctl5 was prominently induced after bacterial infection. Recombinant TcCTL5 proteins (rTcCTL5) were found to bind to lipopolysaccharide, peptidoglycan and tested bacteria and induce microbial agglutination in the presence of Ca2+ . Interestingly, when Tcctl5 was knocked down, the transcript level of antimicrobial peptides (AMPs) (attacin1, defensins3, coleoptericin1 and cecropins3) was prominently downregulated after induction with Gram-negative Escherichia coli. More interestingly, Tcctl5 was knocked down, leading to increased mortality and loss of locomotor activity, which exhibited less travel distances among early adults. These results demonstrate that Tcctl5 plays an important role in the innate immune reaction and the movement of T. castaneum. Thus, it may represent an alternative molecular target for pest control and thus reduce the use of pesticides in agricultural production.
Collapse
Affiliation(s)
- J Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - J Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - P Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Z Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Y Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - S Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - L Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Bi J, Ning M, Li J, Zhang P, Wang L, Xu S, Zhong Y, Wang Z, Song Q, Li B. A C-type lectin with dual-CRD from Tribolium castaneum is induced in response to bacterial challenge. PEST MANAGEMENT SCIENCE 2020; 76:3965-3974. [PMID: 32519818 DOI: 10.1002/ps.5945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/07/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND C-type lectins (CTLs), a group of pattern recognition receptors, are involved in regulating the immune response of insects and could be used as potential targets for pest control. However, information about roles of CTLs in the innate immunity of Tribolium castaneum, a serious, worldwide pest that damages stored grain products, is relatively scarce. RESULTS Here, a CTL with dual carbohydrate recognition domains (CRDs) containing a highly conserved WHD (Trp53 -His54 -Asp55 ) motif was identified in T. castaneum and named as TcCTL3. Spatiotemporal analysis showed that TcCTL3 was highly expressed in all developmental stages except early eggs, and mainly distributed in central nervous system and hemolymph. The transcript levels of TcCTL3 were significantly increased after lipopolysaccharide (LPS) and peptidoglycan (PGN) stimulation. Recombinant TcCTL3 was able to bind directly to LPS, PGN and all tested bacteria and induce a broad spectrum of microbial agglutination in the presence of Ca2+ . The binding was shown mainly through CRD1 domain of TcCTL3. When TcCTL3 was knocked down by RNA interference, expression of nine antimicrobial peptides (AMPs) (attacin1, attacin2, attacin3, defensins1, defensins2, coleoptericin1, coleoptericin2, cecropins2 and cecropins3) and four transcription factors (TFs) (dif1, dif2, relish and jnk) were significantly decreased under LPS and PGN stimulation, leading to increased mortality of T. castaneum when infected with Gram-positive Staphylococcus aureus or Gram-negative Escherichia coli infection. CONCLUSION TcCTL3 could mediate the immune response in T. castaneum via the pattern recognition, agglutination and AMP expression. These findings indicate a potential mechanism of TcCTL3 in resisting bacteria and provide an alternative molecular target for pest control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mingxiao Ning
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jia Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ping Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lumen Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shi Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yi Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ziyi Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
10
|
Lu Y, Su F, Zhu K, Zhu M, Li Q, Hu Q, Zhang J, Zhang R, Yu XQ. Comparative genomic analysis of C-type lectin-domain genes in seven holometabolous insect species. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 126:103451. [PMID: 32841718 DOI: 10.1016/j.ibmb.2020.103451] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
C-type lectins (CTLs) recognize various glycoconjugates through carbohydrate recognition domains (CRDs) and they play important roles in immune responses. In this study, comparative genomic analysis of CTLs were performed in 7 holometabolous species. CTL-S1 to S8 and CTL-X1 to X4 orthologous groups existed in the 7 species, while CTL-X5 group with dual-CRD, CTL-S11 group with triple-CRD, CTL-S9 group with a long C-terminus and Lepidopteran specific CTL-S10 group were not conserved. SliCTL-S12 to S14 cluster was only present in Spodoptera litura, and CTL-S genes were expanded on chromosomes 2 L and 2 R in Drosophila melanogaster. Most IMLs were clustered into three groups and the numbers of IMLs vary among species due to gene duplications. D. melanogaster specific CTLs and Lepidopteran IMLs within each of the three groups evolved more rapidly with higher dN/dS ratios. Two CRDs in IMLs clustered into two clades, with conserved Cys4-Cys5 and Cys1-Cys2 bonds in the first and second CRDs, respectively. The CTL-S and CTL-X family members in S. litura were mainly expressed in the fat body of 5th but not 6th instar larvae, and responded differently to S. litura nucleopolyhedrovirus (SpltNPV) and Nomuraea rileyi infection. The transcription levels of SliCTLs that expressed in fat body but not highly expressed in hemocytes were decreased at the middle and late stages of SpltNPV infection, and the mRNA levels of SliCTLs highly or specifically expressed in hemocytes were mainly decreased by SpltlNPV, N. rileyi and Bacillus thuringiensis infection. These results provide valuable information for further exploration of CTL functions in host-pathogen interaction.
Collapse
Affiliation(s)
- Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fanghua Su
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kesen Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Mengyao Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qilin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qihao Hu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruonan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China; Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
11
|
Song ZK, Tian ML, Dong YP, Ren CB, Du Y, Hu J. The C-type lectin IML-10 promotes hemocytic encapsulation by enhancing aggregation of hemocytes in the Asian corn borer Ostrinia furnacalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103314. [PMID: 31926881 DOI: 10.1016/j.ibmb.2020.103314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 05/21/2023]
Abstract
C-type lectins participate in hemocytic encapsulation as pattern recognition receptors; however, the molecular mechanisms underlying their function remain unknown. In this study, we determined that the encapsulation-promoting function of a C-type lectin, IML-10, may be related to its interaction with hemocytes in the agricultural pest Ostrinia furnacalis. IML-10 possesses two carbohydrate-recognition domains (CRDs) containing EPN and QPD motifs with 4 and 6 conserved cysteine residues, respectively. IML-10 was found to mainly be secreted by the fat body into the larval plasma, and its expression was induced by Sephadex A-25 beads. Anti-IML-10 antibodies inhibited encapsulation-promoting function of IML-10 in the larval plasma. The encapsulation rate of Sephadex A-25 beads decreased from approximately 90%-30% when expression of IML-10 in O. furnacalis larvae was inhibited by RNAi. Moreover, the Sephadex bead-encapsulating ability of hemocytes decreased to almost zero in O. furnacalis larvae with IML-10 knocked out by CRISPR/Cas9, with IML-10 expression clearly decreasing compared to that of the control. Similar to the larval plasma, recombinant IML-10 promoted Sephadex bead encapsulation by hemocytes. Immunohistochemistry analysis showed that IML-10 was able to bind to the surface of both granulocytes and plasmatocytes but not to Sephadex beads as foreign objects. Furthermore, recombinant IML-10 promoted hemocyte aggregation but not adhesion. Therefore, we speculate that IML-10 binds to the surface of hemocytes to promote their aggregation and further improve their encapsulation capacity. These results contribute to clarifying the function of insect C-type lectins in encapsulation.
Collapse
Affiliation(s)
- Zhen-Kun Song
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Meng-Li Tian
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Yi-Pei Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Chao-Bo Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Yan Du
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jian Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China.
| |
Collapse
|
12
|
Batool K, Alam I, Jin L, Xu J, Wu C, Wang J, Huang E, Guan X, Yu XQ, Zhang L. CTLGA9 Interacts with ALP1 and APN Receptors To Modulate Cry11Aa Toxicity in Aedes aegypti. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8896-8904. [PMID: 31339308 DOI: 10.1021/acs.jafc.9b01840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The mosquito Aedes aegypti is associated with the spread of many viral diseases in humans, including Dengue virus (DENVs), Yellow fever virus (YFV), Zika virus (ZIKV), and Chikungunya virus (CHIKV). Bacillus thuringiensis (Bt) is widely used as a biopesticide, which produces Cry toxins for mosquito control. The Cry toxins bind mainly to important receptors, including alkaline phosphatase (ALP) and aminopeptidase-N (APN). This work investigated the function of a C-type lectin, CTLGA9, in A. aegypti in response to Cry toxins. Our results showed by far-western blot and ELISA methods that the CTLTGA9 protein interacted with brush border membrane vesicles (BBMVs) of A. aegypti larvae and with ALP1, APN, and Cry11Aa proteins. Furthermore, molecular docking showed overlapping binding sites in ALP1 and APN for binding to Cry11Aa and CTLGA9. The toxicity assays further demonstrated that CTLGA9 inhibited the larvicidal activity of Cry toxins. According to the results of molecular docking, CTLGA9 may compete with Cry11Aa for binding to ALP1 and APN receptors and thus decreases the mosquitocidal toxicity of Cry11Aa. Our results provide further insights into better understanding the mechanism of Cry toxins and help improve the Cry toxicity for mosquito control.
Collapse
Affiliation(s)
- Khadija Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Lab of Biopesticides and Chemical Biology, MOE , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , PR China
| | - Intikhab Alam
- Key Laboratory of Genetics, Breeding and Comprehensive Utilization of Crops, Ministry of Education, College of Crop Science , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , People's Republic of China
| | - Liang Jin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Lab of Biopesticides and Chemical Biology, MOE , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , PR China
| | - Jin Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Lab of Biopesticides and Chemical Biology, MOE , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , PR China
| | - Chenxu Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Lab of Biopesticides and Chemical Biology, MOE , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , PR China
| | - Junxiang Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Lab of Biopesticides and Chemical Biology, MOE , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , PR China
| | - Enjiong Huang
- Fujian International Travel Healthcare Center , 350001 Fuzhou , Fujian , People's Republic of China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Lab of Biopesticides and Chemical Biology, MOE , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , PR China
| | - Xiao-Qiang Yu
- Division of Cell Biology and Biophysics , University of Missouri , Kansas City , Missouri 64110 , United States
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Lab of Biopesticides and Chemical Biology, MOE , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , PR China
| |
Collapse
|
13
|
Yan J, Chen L, Liu Z, Chen Y, Sun Y, Han J, Feng L. The D5 region of the intelectin domain is a new type of carbohydrate recognition domain in the intelectin gene family. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:150-160. [PMID: 29621532 DOI: 10.1016/j.dci.2018.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/05/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Intelectin is a recently characterized soluble galactofuranose-binding lectin that exists in species ranging from amphioxus to human. Interestingly, intelectin does not contain a canonical carbohydrate-recognition domain (CRD). Therefore, we designed serial deletions of intelectin in the Chinese amphioxus (Branchiostoma belcheri tsingtauense, AmphiITLN71469) in order to identify functional regions required for carbohydrate binding. Our results revealed that Domain 5 (aa 203-302) was able to bind lipopolysaccarides (LPS) or peptidoglycan (PGN) and agglutinate bacteria as efficiently as the full-length protein. Three dimensional (3D) atomic models of Domain 5 were generated by ab initio based program QUARK and by Iterative Threading Assembly Refinement (I-TASSER) programs, in which four amino acids mediating calcium-binding (G54-G55-G56-E91) were identified by hemagglutination assay. Furthermore, a striking functional conservation of Domain 5 was detected in zebrafish intelectin 1. Taken together, our findings identified for the first time a new CRD domain in intelectin, thereby providing new knowledge leading to a better understanding of pathogen-host interactions.
Collapse
Affiliation(s)
- Jie Yan
- Marine Biotechnology Research Center, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Lei Chen
- Marine Biotechnology Research Center, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhuang Liu
- Department of Reproductive Medicine, Affiliated Hospital of Jining Medical College Jining, Shandong, China
| | - Yonglin Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Sun
- Department of Anesthesiology, Affiliated Hospital of Jining Medical College, Jining, Shandong, China
| | - Jia Han
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Street, Jinan, 250021, China.
| | - Lijun Feng
- Marine Biotechnology Research Center, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
14
|
Xia X, You M, Rao XJ, Yu XQ. Insect C-type lectins in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:70-79. [PMID: 29198776 DOI: 10.1016/j.dci.2017.11.020] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
C-type lectins (CTLs) are a family of proteins that contain characteristic modules of carbohydrate-recognition domains (CRDs) and they possess the binding activity to ligands in a calcium-dependent manner. CTLs play important roles in animal immune responses, and in insects, they are involved in opsonization, nodule formation, agglutination, encapsulation, melanization, and prophenoloxidase activation, as well as in maintaining gut microbiome homeostasis. In this review, we will summarize insect CTLs, compare the properties of insect CTLs with vertebrate CTLs, and focus mainly on the domain organization and functions of insect CTLs in innate immunity.
Collapse
Affiliation(s)
- Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Qiang Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO 64110-2499, USA.
| |
Collapse
|
15
|
Tian Y, Chen T, Huang W, Luo P, Huo D, Yun L, Hu C, Cai Y. A new L-type lectin (LvLTLC1) from the shrimp Litopenaeus vannamei facilitates the clearance of Vibrio harveyi. FISH & SHELLFISH IMMUNOLOGY 2018; 73:185-191. [PMID: 29246810 DOI: 10.1016/j.fsi.2017.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/13/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
According to structures and functions of lectins found in shrimp, they are classified into seven types, namely, L-type, C-type, P-type, M-type, galectins, fibrinogen-like domain lectins, and calnexin/calreticulin. Until now, the researches of shrimp lectins are mainly focused on C-type lectins. In this study, we identified a new L-type lectin, designated as LvLTLC1, from the shrimp Litopenaeus vannamei. The cDNA of LvLTLC1 is 1184 bp with an open reading frame of 990 bp encoding a protein of 329 amino acids. The LvLTLC1 protein contained a putative signal peptide, an L-type lectin-like domain, and a transmembrane helix region. Phylogenetic analysis showed that LvLTLC1 belonged to VIP36-like family. LvLTLC1 was expressed in all examined tissues but had higher expression level in gills and hepatopancreas than other tissues. LvLTLC1 expression was up-regulated after immune challenge by Vibrio harveyi and lipopolysaccharide. The recombinant LvLTLC1 agglutinated Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (V. harveyi, V. parahaemolyticus, V. alginolyticus, V. cholerae, V. vulnificus, Pseudomonas aeruginosa, P. fluorescens) in a calcium-independent manner. Recombinant LvLTLC1 exerted the ability of enhancing the clearance of V. harveyi injected in shrimp. Our results indicated that LvLTLC1 functions in anti-pathogen innate immunity of shrimp.
Collapse
Affiliation(s)
- Yushun Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China
| | - Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China.
| | - Da Huo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Yun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China
| | - Yiming Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China
| |
Collapse
|
16
|
Runsaeng P, Puengyam P, Utarabhand P. A mannose-specific C-type lectin from Fenneropenaeus merguiensis exhibited antimicrobial activity to mediate shrimp innate immunity. Mol Immunol 2017; 92:87-98. [PMID: 29055189 DOI: 10.1016/j.molimm.2017.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
Being one type of pattern recognition receptors (PRRs), lectins exhibit a crucial role in the defense mechanism of invertebrates which are deficient in an adaptive immune system. A new C-type lectin called FmLC3 was isolated from hepatopancreas of Fenneropenaeus merguiensis by cloning approaches, RT-PCR and 5' and 3' RACE (rapid amplification of cDNA ends). A full-length cDNA of FmLC3 contains 607 bp with one open reading frame of 480bp, encoding a 159-amino acids peptide. The predicted primary structure of FmLC3 is composed of a signal peptide, a carbohydrate recognition domain with an EPN motif and one Ca2+ binding site-2, including a double-loop region assisted by two conserved disulfide linkages. FmLC3 had a molecular mass of 17.96kDa and pI of 4.92. In normal or unchallenged shrimp, the mRNA expression of FmLC3 was detected only in hepatopancreas whilst its native proteins were found in hemolymph, heart, stomach and intestine but not in the expressed tissue, indicating that after being synthesized in hepatopancreas, FmLC3 would be secreted to other tissues. The significant up-regulation of FmLC3 was manifested in shrimp challenged with Vibrio harveyi or white spot syndrome virus. After knockdown with gene-specific double-stranded RNA and following by co-pathogenic inoculation, the FmLC3 expression was severely suppressed with coherence of increasing in cumulative mortality and reduction of the median lethal time. Recombinant FmLC3 (rFmLC3) had agglutinating activity towards diverse bacterial strains in a Ca2+-dependent manner. Its activity was inhibited by lipopolysaccharide and mannose, implying that FmLC3 was mannose-binding C-type lectin. Moreover, rFmLC3 could bind directly to various microbial strains with Ca2+-requirement. Otherwise, rFmLC3 exhibited the antimicrobial activity by inhibiting effectively the microbial growth in vitro. All these results signified that FmLC3 might act as PRR to recognize with a broad specificity for diverse pathogens, and contribute in shrimp immune response via the agglutination, binding and antimicrobial activity.
Collapse
Affiliation(s)
- Phanthipha Runsaeng
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Peerapong Puengyam
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Prapaporn Utarabhand
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
17
|
Gao L, Han Y, Deng H, Hu W, Zhen H, Li N, Qin N, Yan M, Wu W, Liu B, Zhao B, Pang Q. The role of a novel C-type lectin-like protein from planarian in innate immunity and regeneration. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:413-426. [PMID: 27565408 DOI: 10.1016/j.dci.2016.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Planarian, a representative of platyhelminthes, has strong regeneration ability and less complicated innate immune system. However, planarian immune system remains poorly understood. In this paper, a novel C-type lectin-like protein, namely, DjCTL was identified and characterized in Dugesia japonica. DjCTL was mainly expressed in the pharyngeal and epidermis and up-regulated upon the induction of lipopolysaccharide (LPS), peptidoglycan (PGN), Gram-positive and Gram-negative bacteria indicating that DjCTL may be involved in the immune responses. Recombination DjCTL protein agglomerated rabbit red blood cells and interacted with LPS, PGN, mannose and galactose as well as both Gram-positive and Gram-negative bacteria, but it can only cause the agglutination of Gram-negative bacteria. Importantly, in the early periods of regeneration, DjCTL had a significantly high expression and was mainly expressed in early blastemas. RNA interference of DjCTL by dsRNA-DjCTL led to a slow wound healing during regeneration. These findings suggest that DjCTL participates in the innate immune response and plays an important role in early stages of regeneration.
Collapse
Affiliation(s)
- Lili Gao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Yu Han
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Hongkuan Deng
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Wenjing Hu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Hui Zhen
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Na Li
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Nianci Qin
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Meihui Yan
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Weiwei Wu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Baohua Liu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Shenzhen University of Health Science Center, District Shenzhen, 518060, PR China.
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China.
| | - Qiuxiang Pang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China.
| |
Collapse
|
18
|
Rao XJ, Shahzad T, Liu S, Wu P, He YT, Sun WJ, Fan XY, Yang YF, Shi Q, Yu XQ. Identification of C-type lectin-domain proteins (CTLDPs) in silkworm Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:328-338. [PMID: 26187302 DOI: 10.1016/j.dci.2015.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
C-type lectins (CTLs) represent a large family of proteins that can bind carbohydrate moieties normally in a calcium-dependent manner. CTLs play important roles in mediating cell adhesion and the recognition of pathogens in the immune system. In the present study, we have identified 23 CTL genes in domestic silkworm Bombyx mori. CTL-domain proteins (CTLDPs) are classified into three groups based on the number of carbohydrate-recognition domains (CRDs) and the domain architectures. These include twelve CTL-S (Single-CRD), six immulectins (Dual-CRD) and five CTL-X (CRD with other domains). We studied their phylogenetic features, analyzed the conserved residues, predicted tertiary structures, and examined the tissue expression profile and immune inducibility. Through bioinformatics analysis, we have putatively identified ten secretory and two cytoplasmic CTL-S; four secretory and two cytoplasmic immulectins; one secretory, one cytoplasmic and three transmembrane forms of CTL-X. Most B. mori CTLDPs form monophyletic groups with orthologs from Lepidoptera, Diptera, Coleoptera and Hymenoptera species. Immulectins of B. mori and Manduca sexta evolved from common ancestor genes perhaps due to gene duplication events of CTL-S ancestor genes. Homology modeling revealed that the overall structures of B. mori CTL domains are analogous to those of humans with a variable loop region. We examined the expression profile of CTLDP genes in naïve and immune-stimulated tissues. The expression and induction of CTLDP genes were related to the tissues and microorganisms. Together, our gene identification, sequence comparison, phylogenetic analysis, homology modeling and expression analysis laid a good foundation for the further studies of B. mori CTLDPs and comparative genomics.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Toufeeq Shahzad
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Su Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Peng Wu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yan-Ting He
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Wei-Jia Sun
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Xiang-Yun Fan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yun-Fan Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Qiao Shi
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| |
Collapse
|
19
|
Shi XZ, Kang CJ, Wang SJ, Zhong X, Beerntsen BT, Yu XQ. Functions of Armigeres subalbatus C-type lectins in innate immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:102-14. [PMID: 25014898 PMCID: PMC4143534 DOI: 10.1016/j.ibmb.2014.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/03/2014] [Accepted: 06/11/2014] [Indexed: 05/16/2023]
Abstract
C-type lectins (CTLs) are a superfamily of calcium-dependent carbohydrate binding proteins containing at least one carbohydrate-recognition domain (CRD) and they are present in almost all metazoans. Insect CTLs may function as pattern-recognition receptors and play important roles in innate immunity. In this study, we selected five AsCTLs from the mosquito Armigeres subalbatus, a natural vector of filarial nematodes, and performed both in vitro and in vivo studies to elucidate their functions in innate immunity. AsCTLMA15, AsCTLGA5 and AsCTL15 were mainly expressed in hemocytes, AsCTL16 was expressed in fat body, while AsCTLMA11 was expressed in both hemocytes and fat body, and only AsCTLMA11 and AsCTL16 were expressed at high levels in adult females. In vitro binding assays showed that all five recombinant AsCTLs could bind to different microbial cell wall components, including lipopolysaccharide (LPS), lipid A, peptidoglycan (PG), lipoteichoic acid (LTA), zymosan and laminarin (beta-1,3-glucan). Recombinant AsCTLs also bound to several Gram-negative and Gram-positive bacteria, and could agglutinate bacterial cells. Injection of double-stranded RNAs (dsRNAs) could significantly reduce expression of the five AsCTL mRNAs, and the survival of mosquitoes treated with dsRNA to AsCTLGA5 was significantly decreased after Escherichia coli infection, but did not change significantly after Micrococcus luteus infection compared to the control groups, suggesting that Ar. subalbatus AsCTLGA5 may participate in innate immunity against E. coli.
Collapse
Affiliation(s)
- Xiu-Zhen Shi
- School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan 250100, China; Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Cui-Jie Kang
- School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan 250100, China; Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Song-Jie Wang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Xue Zhong
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Brenda T Beerntsen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| |
Collapse
|
20
|
Wang JL, Zhang Q, Tang L, Chen L, Liu XS, Wang YF. Involvement of a pattern recognition receptor C-type lectin 7 in enhancing cellular encapsulation and melanization due to its carboxyl-terminal CRD domain in the cotton bollworm, Helicoverpa armigera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:21-29. [PMID: 24269901 DOI: 10.1016/j.dci.2013.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 06/02/2023]
Abstract
C-type lectins play important roles in innate immunity as pattern recognition receptors (PRRs). We have previously reported a novel C-type lectin HaCTL7 from the cotton bollworm (Helicoverpa armigera) which contains two carbohydrate-recognition domains (CRDs), namely N-terminal CRD1 and C-terminal CRD2. Interestingly, there are four but not six of conserved cysteine residues in CRD2 of HaCTL7, which is different from that of other dual CRD C-type lectins. In the current study, we expressed and purified recombinant HaCTL7 (rHaCTL7) as well as rCRD1 and rCRD2, and demonstrated that both rHaCTL7 and rCRD2, but not rCRD1, owned the agglutinate ability against both Gram-negative and Gram-positive bacteria in a calcium dependent manner. In addition, both rHaCTL7 and rCRD2, but not rCRD1, could bind to various bacteria, and enhanced haemocytes mediated encapsulation and melanization processes. HaCTL7 secreted from fat bodies is able to bind to granulocytes, plasmatocytes and oenocytoids, but not to spherulocytes. Recombinant HaCTL7 and rCRD2 are capable of binding to both granulocytes and oenocytoids, while rCRD1 can only bind to granulocytes. Our data suggest that as a PRR HaCTL7 enhances encapsulation and melanization likely through its C-terminal CRD2, but not N-terminal CRD1, which imply that the characteristic four cysteine structure of CRD2 plays key roles in innate immunity.
Collapse
Affiliation(s)
- Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China.
| | - Qi Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China
| | - Lin Tang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China
| | - Lei Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
21
|
Xialu W, Jinghai Z, Ying C, Youlei M, Wenjun Z, Guoyuan D, Wei L, Mingyi Z, Chunfu W, Rong Z. A novel pattern recognition protein of the Chinese oak silkmoth, Antheraea pernyi, is involved in the pro-PO activating system. BMB Rep 2014; 46:358-63. [PMID: 23884102 PMCID: PMC4133915 DOI: 10.5483/bmbrep.2013.46.7.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this paper, we firstly reported a C-type lectin cDNA clone of 1029 bps from the larvae of A. Pernyi (Ap-CTL) using PCR and RACE techniques. The full-length cDNA contains an open reading frame encoding 308 amino acid residues which has two different carbohydrate-recognition domains (CRDs) arranged in tandem. To investigate the biological activities in the innate immunity, recombinant Ap-CTL was expressed in E. coli with a 6-histidine at the amino-terminus (Ap-rCTL). Besides acted as a broad-spectrum recognition protein binding to a wide range of PAMPs and microorganisms, Ap-rCTL also had the ability to recognize and trigger the agglutination of bacteria and fungi. In the proPO activation assay, Ap-rCTL specifically restored the PO activity of hemolymph blocked by anti- Ap-rCTL antibody in the presence of different PAMPs or microorganisms. In summary, Ap-rCTL plays an important role in insect innate immunity as an pattern recognition protein.
Collapse
Affiliation(s)
- Wang Xialu
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Park BT, Kim BS, Park H, Jeong J, Hyun H, Hwang HS, Kim HH. Binding Specificity of Philyra pisum Lectin to Pathogen-Associated Molecular Patterns, and Its Secondary Structure. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:547-51. [PMID: 24381505 PMCID: PMC3874443 DOI: 10.4196/kjpp.2013.17.6.547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 12/03/2022]
Abstract
We recently reported a Philyra pisum lectin (PPL) that exerts mitogenic effects on human lymphocytes, and its molecular characterization. The present study provides a more detailed characterization of PPL based on the results from a monosaccharide analysis indicating that PPL is a glycoprotein, and circular dichroism spectra revealing its estimated α-helix, β-sheet, β-turn, and random coil contents to be 14.0%, 39.6%, 15.8%, and 30.6%, respectively. These contents are quite similar to those of deglycosylated PPL, indicating that glycans do not affect its intact structure. The binding properties to different pathogen-associated molecular patterns were investigated with hemagglutination inhibition assays using lipoteichoic acid from Gram-positive bacteria, lipopolysaccharide from Gram-negative bacteria, and both mannan and β-1,3-glucan from fungi. PPL binds to lipoteichoic acids and mannan, but not to lipopolysaccharides or β-1,3-glucan. PPL exerted no significant antiproliferative effects against human breast or bladder cancer cells. These results indicate that PPL is a glycoprotein with a lipoteichoic acid or mannan-binding specificity and which contains low and high proportions of α-helix and β-structures, respectively. These properties are inherent to the innate immune system of P. pisum and indicate that PPL could be involved in signal transmission into Gram-positive bacteria or fungi.
Collapse
Affiliation(s)
- Byung Tae Park
- Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Byung Sun Kim
- Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Heajin Park
- Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Jaehoon Jeong
- Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Hanbit Hyun
- Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Hye Seong Hwang
- Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Ha Hyung Kim
- Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
23
|
Jin XK, Li S, Guo XN, Cheng L, Wu MH, Tan SJ, Zhu YT, Yu AQ, Li WW, Wang Q. Two antibacterial C-type lectins from crustacean, Eriocheir sinensis, stimulated cellular encapsulation in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:544-552. [PMID: 23911906 DOI: 10.1016/j.dci.2013.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
The first step of host fighting against pathogens is that pattern recognition receptors recognized pathogen-associated molecular patterns. However, the specificity of recognition within the innate immune molecular of invertebrates remains largely unknown. In the present study, we investigated how invertebrate pattern recognition receptor (PRR) C-type lectins might be involved in the antimicrobial response in crustacean. Based on our previously obtained completed coding regions of EsLecA and EsLecG in Eriocheir sinensis, the recombinant EsLectin proteins were produced via prokaryotic expression system and affinity chromatography. Subsequently, both rEsLecA and rEsLecG were discovered to have wide spectrum binding activities towards microorganisms, and their microbial-binding was calcium-independent. Moreover, the binding activities of both rEsLecA and rEsLecG induced the aggregation against microbial pathogens. Both microorganism growth inhibitory activities assays and antibacterial activities assays revealed their capabilities of suppressing microorganisms growth and directly killing microorganisms respectively. Furthermore, the encapsulation assays signified that both rEsLecA and rEsLecG could stimulate the cellular encapsulation in vitro. Collectively, data presented here demonstrated the successful expression and purification of two C-type lectins proteins in the Chinese mitten crab, and their critical role in the innate immune system of an invertebrate.
Collapse
Affiliation(s)
- Xing-Kun Jin
- School of Life Science, East China Normal University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jin XK, Guo XN, Li S, Wu MH, Zhu YT, Yu AQ, Tan SJ, Li WW, Zhang P, Wang Q. Association of a hepatopancreas-specific C-type lectin with the antibacterial response of Eriocheir sinensis. PLoS One 2013; 8:e76132. [PMID: 24146827 PMCID: PMC3795701 DOI: 10.1371/journal.pone.0076132] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/22/2013] [Indexed: 12/20/2022] Open
Abstract
Pattern recognition receptors (PPRs) are part of the initial step of a host defense against pathogens in detecting pathogen-associated molecular patterns. However, determinants of the specificity of this recognition by innate immune molecules of invertebrates remain largely unknown. In this study, we investigated the potential involvement of an invertebrate PRR C-type lectin in the antimicrobial response of the crustacean Eriocheir sinensis. Based on the initial expressed sequence tags (EST) of a hepatopancreatic cDNA library, the full-length EsLecF cDNA was cloned and determined to contain a 477-bp open reading frame encoding a putative 158-amino-acid protein. A comparison with other reported invertebrate and vertebrate C-type lectin superfamily sequences revealed the presence of a common carbohydrate recognition domain (CRD). EsLecF transcripts in E. sinensis were mainly detected in the hepatopancreas and were inducible by a lipopolysaccharide (LPS) injection. The recombinant EsLecF (rEsLecF) protein produced via a prokaryotic expression system and affinity chromatography was found to have a wide spectrum of binding activities towards various microorganisms, and its microbial-binding activity was calcium-independent. Moreover, the binding of rEsLecF induced the aggregation of microbial pathogens. Results of the microorganism growth inhibitory assay and antibacterial assay revealed capabilities of rEsLecF in suppressing microorganism growth and directly killing bacteria, respectively. Furthermore, rEsLecF could enhance cellular encapsulation in vitro. Collectively, the findings presented here demonstrated the successful isolation of a novel C-type lectin in a crustacean and highlighted its critical role in the innate immunity of an invertebrate.
Collapse
Affiliation(s)
- Xing-Kun Jin
- School of Life Science, East China Normal University, Shanghai, China
| | - Xiao-Nv Guo
- School of Life Science, East China Normal University, Shanghai, China
| | - Shuang Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Min-Hao Wu
- School of Life Science, East China Normal University, Shanghai, China
| | - You-Ting Zhu
- School of Life Science, East China Normal University, Shanghai, China
| | - Ai-Qing Yu
- School of Life Science, East China Normal University, Shanghai, China
| | - Shang-Jian Tan
- School of Life Science, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Ping Zhang
- School of Life Science, East China Normal University, Shanghai, China
- * E-mail: (PZ); (QW)
| | - Qun Wang
- School of Life Science, East China Normal University, Shanghai, China
- * E-mail: (PZ); (QW)
| |
Collapse
|
25
|
Wang XW, Wang JX. Diversity and multiple functions of lectins in shrimp immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:27-38. [PMID: 22561073 DOI: 10.1016/j.dci.2012.04.009] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/22/2012] [Accepted: 04/21/2012] [Indexed: 05/19/2023]
Abstract
Lectins play important roles in many biological processes, including protein trafficking, cell signaling, pathogen recognition, as effector molecules, and so on, because of their capacity to bind carbohydrates. Presently, seven groups of lectins have been identified in shrimp: C-type, L-type, P-type, M-type, fibrinogen-like domain lectins, galectins, and calnexin/calreticulin. These lectins have different structures, diverse expression patterns, and multiple functions in the shrimp immune response. This review summarizes the research progress and analyzes the diversity of shrimp lectins, focusing mainly on the C-type lectin family. Shrimp C-type lectins show considerable diversity in their domain architectures, sugar substrates, tissue distributions, expression patterns responding to pathogen challenge and functions in shrimp immunity.
Collapse
Affiliation(s)
- Xian-Wei Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | |
Collapse
|
26
|
Identification and molecular characterization of a C-type lectin-like protein from Chinese shrimp (Fenneropenaeus chinensis). Mol Biol Rep 2012. [DOI: 10.1007/s11033-012-2284-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Wang JL, Liu XS, Zhang Q, Zhao HB, Wang YF. Expression profiles of six novel C-type lectins in response to bacterial and 20E injection in the cotton bollworm (Helicoverpa armigera). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:221-232. [PMID: 22516747 DOI: 10.1016/j.dci.2012.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/07/2012] [Accepted: 04/09/2012] [Indexed: 05/31/2023]
Abstract
C-type lectins can act as pattern recognition receptors (PRRs) and play an important role in innate immunity. Two C-type lectins (HaCTL1 and HaCTL2) have been previously identified in the cotton bollworm (Helicoverpa armigera). Here we isolate six C-type lectins from H. armigera (HaCTL3, 4, 5, 6, 7 and 8). All six new HaCTLs encode a signal peptide (or partial signal peptide) and complete tandem carbohydrate-recognition domains (CRDs). HaCTL4, 5, 6, 7 and 8 mRNA increased in the fat body after injection with both killed Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, whereas HaCTL3 mRNA was upregulated following E. coli injection only. Recombinant HaCTL3 exhibited agglutinating activity against both Gram-negative and Gram-positive bacteria in a calcium-dependent manner. Agglutination inhibitory analysis indicated that rHaCTL3 recognizes maltose, trehalose, peptidoglycan and lipopolysaccharides. HaCTL3 and HaCTL8 mRNA showed upregulation while HaCTL4, 5, and 6 mRNA downregulation post 20-Hydroxyecdysone (20E) injection. Our results indicate that the six novel C-type lectins of H. armigera may play important roles in defending against bacteria as PRRs and the hormone 20E can function in regulating immunity through lectins.
Collapse
Affiliation(s)
- Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China.
| | | | | | | | | |
Collapse
|
28
|
Shi XZ, Yu XQ. The extended loop of the C-terminal carbohydrate-recognition domain of Manduca sexta immulectin-2 is important for ligand binding and functions. Amino Acids 2011; 42:2383-91. [PMID: 21805136 DOI: 10.1007/s00726-011-0980-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/07/2011] [Indexed: 11/24/2022]
Abstract
Our previous research showed that immulectin-2 (IML-2), a C-type lectin from the tobacco hornworn, Manduca sexta, is a pattern recognition receptor (PRR) that can bind to pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS), peptidoglycan (PG) and β-1,3-glucan, and IML-2 plays an important role in cellular encapsulation, melanization, phagocytosis, and prophenoloxidase (proPO) activation. Unlike most mammalian C-type lectins that contain a single carbohydrate-recognition domain (CRD), IML-2 is composed of tandem CRDs, and the C-terminal CRD2 contains an extended loop, which is not present in most C-type CRDs. We hypothesize that the extended loop may participate in ligand binding, encapsulation, melanization, phagocytosis and/or proPO activation in M. sexta. To test this hypothesis, two deletion mutant proteins (IML-2Δ220-244 and IML-2Δ220-257), in which the extended loop of the CRD2 was partially or completely deleted, were expressed and purified. By comparing the characteristics of recombinant IML-2, IML-2Δ220-244 and IML-2Δ220-257, we found that deletion of the extended loop in CRD2 impaired the ability of IML-2 to bind microbial PAMPs and to stimulate proPO activation, indicating that the extended loop of IML-2 plays an important role in ligand binding and biological functions.
Collapse
Affiliation(s)
- Xiu-Zhen Shi
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | | |
Collapse
|
29
|
Lopes-Ferreira M, Magalhães GS, Fernandez JH, Junqueira-de-Azevedo IDLM, Le Ho P, Lima C, Valente RH, Moura-da-Silva AM. Structural and biological characterization of Nattectin, a new C-type lectin from the venomous fish Thalassophryne nattereri. Biochimie 2011; 93:971-80. [DOI: 10.1016/j.biochi.2011.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
|
30
|
Zhang XW, Wang XW, Sun C, Zhao XF, Wang JX. C-type lectin from red swamp crayfish Procambarus clarkii participates in cellular immune response. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 76:168-184. [PMID: 21322006 DOI: 10.1002/arch.20416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Lectins are potential immune recognition proteins. In this study, a novel C-type lectin (Pc-Lec1) is reported in freshwater crayfish Procambarus clarkii. Pc-Lec1 encodes a protein of 163 amino acids with a putative signal peptide and a single carbohydrate recognition domain. It was constitutively expressed in various tissues of a normal crayfish, especially in the hepatopancreas and gills. Expressions of Pc-Lec1 were up-regulated in the hepatopancreas and gills of crayfish challenged with Vibrio anguillarum, Staphylococcus aureus, or the white spot syndrome virus. Recombinant mature Pc-Lec1 bound bacteria and polysaccharides (peptidoglycan, lipoteichoic acid, and lipopolysaccharide) but did not agglutinate bacteria. Pc-Lec1 enhanced hemocyte encapsulation of the sepharose beads in vitro, and the blocking of beads by a polyclonal antibody inhibited encapsulation. Pc-Lec1 promoted clearance of V. anguillarum in vivo. These results suggest that Pc-Lec1 is a pattern recognition receptor and participates in cellular immune response. Pc-Lec1 performs its function as an opsonin by enhancing the encapsulation or clearance of pathogenic bacteria.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
31
|
Zhang H, Kong P, Wang L, Zhou Z, Yang J, Zhang Y, Qiu L, Song L. Cflec-5, a pattern recognition receptor in scallop Chlamys farreri agglutinating yeast Pichia pastoris. FISH & SHELLFISH IMMUNOLOGY 2010; 29:149-156. [PMID: 20211738 DOI: 10.1016/j.fsi.2010.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/26/2010] [Accepted: 02/28/2010] [Indexed: 05/28/2023]
Abstract
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles as pattern recognition receptors (PRRs) in the innate immunity. In this study, the full-length cDNA of a C-type lectin was cloned from scallop Chlamys farreri (designated as Cflec-5) by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The full-length cDNA of Cflec-5 was of 1412 bp. The open reading frame encoded a polypeptide of 153 amino acids, including a signal sequence and a conserved carbohydrate-recognition domain with the EPN motif determining the mannose-binding specificity. The deduced amino acid sequence of Cflec-5 showed high similarity to members of C-type lectin superfamily. The quantitative real-time PCR was performed to investigate the tissue distribution of Cflec-5 mRNA and its temporal expression profiles in hemocytes post pathogen-associated molecular patterns (PAMPs) stimulation. In healthy scallops, the Cflec-5 mRNA was mainly detected in gill and mantle, and marginally in other tissues. The mRNA expression of Cflec-5 could be significantly induced by lipopolysaccharide (LPS) and glucan stimulation and reached the maximum level at 6 h and 12 h, respectively. But its expression level did not change significantly during peptidoglycan (PGN) stimulation. The function of Cflec-5 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta Gami (DE3). The recombinant Cflec-5 agglutinated Pichia pastoris in a calcium-independent way. The agglutinating activity could be inhibited by d-mannose, LPS and glucan, but not by d-galactose or PGN. These results collectively suggested that Cflec-5 was involved in the innate immune response of scallops and might contribute to nonself-recognition through its interaction with various PAMPs.
Collapse
Affiliation(s)
- Huan Zhang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Song KK, Li DF, Zhang MC, Yang HJ, Ruan LW, Xu X. Cloning and characterization of three novel WSSV recognizing lectins from shrimp Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2010; 28:596-603. [PMID: 20045060 DOI: 10.1016/j.fsi.2009.12.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 12/14/2009] [Accepted: 12/15/2009] [Indexed: 05/28/2023]
Abstract
C-type lectins (CTLs) acting as pattern recognition receptors play essential roles in shrimp innate immune responses. Using WSSV envelope proteins (VP26, VP28, and VP281) to screen a phage display library of Marsupenaeus japonicus, three lectins (termed as MjLecA, MjLecB, and MjLecC) were found to interact with WSSV. Sequence analysis revealed that these MjLecs shared low similarities with each other. Phylogenetic analysis indicated MjLecA and MjLecB are likely to belong to the same lectin sub-family, while MjLecC belongs to another sub-family. These MjLecs showed broad, unique carbohydrate binding spectra. Also, the three MjLecs could interact with several envelope proteins of WSSV and could recognize a wide range of microorganisms. Moreover, binding of MjLecA or MjLecB to WSSV reduced the viral infection rate in vitro. These results suggest that various kinds of CTLs with structural and functional diversities may constitute a recognizing network against invading pathogens such as bacteria and virus, and play essential roles in the defence system of shrimp.
Collapse
Affiliation(s)
- Kang-Kang Song
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184# DaXue Road, Xiamen 361005, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Tian YY, Liu Y, Zhao XF, Wang JX. Characterization of a C-type lectin from the cotton bollworm, Helicoverpa armigera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:772-779. [PMID: 19185587 DOI: 10.1016/j.dci.2009.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/27/2008] [Accepted: 01/11/2009] [Indexed: 05/27/2023]
Abstract
C-type lectins can specifically recognize sugars on the surface of microorganisms and cause a series of immune responses to effectively resist pathogenic invasions. In previous work in our laboratory, we obtained a C-type lectin from Helicoverpa armigera (Ha-lectin). It has two different carbohydrate recognition domains (CRDs) CRD1 and CRD2 arranged in tandem. In this study, recombinant CRD1 and CRD2 were expressed separately in Escherichia coli and purified. They have the ability to agglutinate Gram-negative and Gram-positive bacteria and fungi in the presence of Ca2+. They also have different spectra of sugar binding abilities. The rHa-lectin, rCRD1 and rCRD2 could inhibit the growth in quantity of Bacillus thuringiensis in vivo by increasing hemocyte phagocytosis. These results suggested that Ha-lectin and its two domains could function as a pattern recognition receptor or an opsonin in vivo to promote the hemocyte phagocytosis of pathogens and protect the insect from bacterial infection.
Collapse
Affiliation(s)
- Yuan-Yuan Tian
- School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | | | | | | |
Collapse
|
34
|
Takase H, Watanabe A, Yoshizawa Y, Kitami M, Sato R. Identification and comparative analysis of three novel C-type lectins from the silkworm with functional implications in pathogen recognition. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:789-800. [PMID: 19201380 DOI: 10.1016/j.dci.2009.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/19/2009] [Accepted: 01/21/2009] [Indexed: 05/27/2023]
Abstract
C-type lectins can act as pattern recognition receptors (PRRs) in innate immunity. Previously, we identified two C-type lectins from silkworm (Bombyx mori), BmLBP and BmMBP, as PRRs. In the present study, we identified three homologs of these lectins by searching the silkworm genome database. These novel B. mori low-expression lectins were designated BmLEL-1, BmLEL-2, and BmLEL-3. Although Western-blot analysis failed to detect BmLEL-1, -2, or -3 in plasma, affinity precipitation of larval plasma with various microorganisms revealed that BmLEL-1 and -2 bind to rough and smooth strains of Gram-negative bacteria, respectively. BmLEL-1, -2, and -3 were found to be expressed in testis and ovary, where BmLEL-2 expression was up-regulated after bacteria infection. These results indicate that the novel C-type lectins might play a role in the innate immunity in these tissues as PRRs. Here, we discuss the roles and members of the C-type lectins as primary PRRs in B. mori cellular immunity.
Collapse
Affiliation(s)
- Hinako Takase
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | | | | | | | | |
Collapse
|
35
|
Zhang XW, Xu WT, Wang XW, Mu Y, Zhao XF, Yu XQ, Wang JX. A novel C-type lectin with two CRD domains from Chinese shrimp Fenneropenaeus chinensis functions as a pattern recognition protein. Mol Immunol 2009; 46:1626-37. [DOI: 10.1016/j.molimm.2009.02.029] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 02/19/2009] [Accepted: 02/24/2009] [Indexed: 01/28/2023]
|
36
|
Giannoulis P, Brooks CL, Dunphy GB, Niven DF, Mandato CA. Surface antigens of Xenorhabdus nematophila (F. Enterobacteriaceae) and Bacillus subtilis (F. Bacillaceae) react with antibacterial factors of Malacosoma disstria (C. Insecta: O. Lepidoptera) hemolymph. J Invertebr Pathol 2008; 97:211-22. [DOI: 10.1016/j.jip.2007.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 09/10/2007] [Accepted: 10/11/2007] [Indexed: 11/29/2022]
|
37
|
Zheng P, Wang H, Zhao J, Song L, Qiu L, Dong C, Wang B, Gai Y, Mu C, Li C, Ni D, Xing K. A lectin (CfLec-2) aggregating Staphylococcus haemolyticus from scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2008; 24:286-293. [PMID: 18203621 DOI: 10.1016/j.fsi.2007.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/16/2007] [Accepted: 11/18/2007] [Indexed: 05/25/2023]
Abstract
Lectins are a family of carbohydrate-recognition proteins which play crucial roles in innate immunity. In this study, a new lectin (CfLec-2) gene was cloned from Chlamys farreri by EST and RACE approaches. The full-length cDNA of CfLec-2 was composed of 708bp, encoding a typical long form carbohydrate-recognition domain of 130 residues. The deduced amino acid sequence showed high similarity to Brevican in Homo sapiens, C-type lectin-1 and lectin-2 in Anguilla japonica. The cDNA fragment encoding the mature peptide of CfLec-2 was recombined into plasmid pET-32a (+) and expressed in Escherichia coli Rosseta-Gami (DE3). The recombinant CfLec-2 (rCfLec-2) protein exhibited aggregative activity toward Staphylococcus haemolyticus, and the agglutination could be inhibited by d-mannose but not EDTA or d-galactose, indicating that CfLec-2 was a Ca2+ independent lectin. Moreover, rCfLec-2 could suppress the growth of E. coli TOP10F'. These results suggested that CfLec-2 was perhaps involved in the recognition and clearance of bacterial pathogens in scallop.
Collapse
Affiliation(s)
- Peilin Zheng
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yu Y, Yu Y, Huang H, Feng K, Pan M, Yuan S, Huang S, Wu T, Guo L, Dong M, Chen S, Xu A. A Short-Form C-Type Lectin from Amphioxus Acts as a Direct Microbial Killing Protein via Interaction with Peptidoglycan and Glucan. THE JOURNAL OF IMMUNOLOGY 2007; 179:8425-34. [DOI: 10.4049/jimmunol.179.12.8425] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Ao J, Ling E, Yu XQ. Drosophila C-type lectins enhance cellular encapsulation. Mol Immunol 2007; 44:2541-8. [PMID: 17287021 PMCID: PMC1876673 DOI: 10.1016/j.molimm.2006.12.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 12/17/2006] [Indexed: 11/19/2022]
Abstract
C-type lectins are calcium-dependent carbohydrate binding proteins, and animal C-type lectins participate in innate immunity and cell-cell interactions. In the fruit fly Drosophila melanogaster, more than 30 genes encode C-type lectin domains. However, functions of Drosophila C-type lectins in innate immunity are not well understood. This study is to investigate whether two Drosophila C-type lectins, CG33532 and CG33533 (designated as DL2 and DL3, respectively), are involved in innate immune responses. Recombinant DL2 and DL3 were expressed and purified. Both DL2 and DL3 agglutinated Gram-negative Escherichia coli in a calcium-dependent manner. Though DL2 and DL3 are predicted to be secreted proteins, they were detected on the surface of Drosophila hemocytes, and recombinant DL2 and DL3 also directly bound to hemocytes. Coating of agarose beads with recombinant DL2 and DL3 enhanced their encapsulation and melanization by Drosophila hemocytes in vitro. However, hemocyte encapsulation was blocked when the lectin-coated beads were pre-incubated with rat polyclonal antibody specific for DL2 or DL3. Our results suggest that DL2 and DL3 may act as pattern recognition receptors to mediate hemocyte encapsulation and melanization by directly recruiting hemocytes to the lectin-coated surface.
Collapse
Affiliation(s)
| | | | - Xiao-Qiang Yu
- Send correspondence to: Xiao-Qiang Yu, Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, Telephone: (816)-235-6379, Fax: (816)-235-1503,
| |
Collapse
|