1
|
Liu Y, Zou K, Wang T, Guan M, Duan H, Yu H, Wu D, Du J. Genome-Wide Identification and Analysis of Family Members with Juvenile Hormone Binding Protein Domains in Spodoptera frugiperda. INSECTS 2024; 15:573. [PMID: 39194778 DOI: 10.3390/insects15080573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Juvenile hormone binding proteins (JHBPs) are carrier proteins that bind to juvenile hormone (JH) to form a complex, which then transports the JH to target organs to regulate insect growth and development. Through bioinformatics analysis, 76 genes encoding JHBP in S. frugiperda were identified from whole genome data (SfJHBP1-SfJHBP76). These genes are unevenly distributed across 8 chromosomes, with gene differentiation primarily driven by tandem duplication. Most SfJHBP proteins are acidic, and their secondary structures are mainly composed of α-helices and random coils. Gene structure and conserved motif analyses reveal significant variations in the number of coding sequences (CDS) and a high diversity in amino acid sequences. Phylogenetic analysis classified the genes into four subfamilies, with a notable presence of directly homologous genes between S. frugiperda and S. litura, suggesting a close relationship between the two species. RNA-seq data from public databases and qPCR of selected SfJHBP genes show that SfJHBP20, SfJHBP50, and SfJHBP69 are highly expressed at most developmental stages, while SfJHBP8 and SfJHBP14 exhibit specific expression during the pupal stage and in the midgut. These findings provide a theoretical basis for future studies on the biological functions of this gene family.
Collapse
Affiliation(s)
- Yang Liu
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Kunliang Zou
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Tonghan Wang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Minghui Guan
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haiming Duan
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haibing Yu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| |
Collapse
|
2
|
González-González A, Yañez O, Ballesteros GI, Palma-Millanao R, Figueroa CC, Niemeyer HM, Ramírez CC. A mutation increases the specificity to plant compounds in an insect chemosensory protein. J Mol Graph Model 2022; 114:108191. [DOI: 10.1016/j.jmgm.2022.108191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
|
3
|
Li MY, Wang Y, Lei X, Xu CT, Wang DD, Liu S, Li SG. Molecular characterization of a catalase gene from the green peach aphid (Myzus persicae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21835. [PMID: 34309077 DOI: 10.1002/arch.21835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The green peach aphid, Myzus persicae (Sulzer), is a serious agricultural pest with a worldwide distribution. Catalase (CAT), which is encoded by the catalase (Cat) gene, is an extremely important antioxidant enzyme that plays a pivotal role in protecting cells against the toxic effects of hydrogen peroxide. The Cat gene has not been characterized in M. persicae; therefore, this study describes the identification of the Cat (MpCat) gene from M. persicae. MpCat contains an open reading frame of 1515 bp and encodes a MpCAT protein consisting of 504 amino-acid residues. MpCAT possesses features typical of other insect catalases, including 7 conserved amino acids involved in binding heme and 15 involved in binding nicotinamide adenine dinucleotide phosphate. Phylogenetic analysis showed that MpCAT was closely related to orthologs from other aphid species. MpCat consisted of nine exons and eight introns, and the number and insertion sites of introns are consistent with those of Cat genes from Acyrthosiphon pisum (Harris) and Aphis gossypii Glover. The mRNA transcripts of MpCat were detected at all tested developmental stages, with the highest mRNA level in alate adults. The expression of MpCat was significantly upregulated when M. persicae was exposed to low and high temperatures, ultraviolet radiation, Beauveria bassiana, and permethrin. The transcription of MpCat and the activity of catalase were suppressed by RNA interference, and knockdown of MpCat significantly reduced the survival rate in M. persicae under heat stress. The results provide valuable information for further study on the physiological functions of MpCat.
Collapse
Affiliation(s)
- Mao-Ye Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yun Wang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiao Lei
- Department of Tobacco Production and Management, Luzhou Branch of Sichuan Tobacco Corporation, Luzhou, China
| | - Chuan-Tao Xu
- Department of Tobacco Production and Management, Luzhou Branch of Sichuan Tobacco Corporation, Luzhou, China
| | - Dong-Dong Wang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shi-Guang Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Peng X, Wang S, Huang L, Su S, Chen M. Characterization of Rhopalosiphum padi takeout-like genes and their role in insecticide susceptibility. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104725. [PMID: 33357548 DOI: 10.1016/j.pestbp.2020.104725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 10/10/2020] [Indexed: 06/12/2023]
Abstract
Due to the extensive use of chemical insecticides, the field populations of Rhopalosiphum padi, a serious wheat pest worldwide, have developed resistance to insecticides. Therefore, deep understanding of the mechanisms of the aphid's physiological response to insecticides would be of importance for the management of insecticide resistance in pests. Takeout belongs to a protein superfamily found exclusively in insects. Previous research showed that the takeout gene had various functions in insect physiology and behavior. However, few studies have explored the functions of takeout in insect insecticide susceptibility. The susceptibility of R. padi to imidacloprid and beta-cypermethrin was tested. Thirteen takeout-like genes were identified based on the genome database of R. padi. The number of exons was variable in these takeout-like genes, and nine highly conserved amino acids (two Cysteine, two Proline, four Glycine and one Aspartic acid) were identified. Expression levels of takeout-like-2, takeout-like-3, takeout-like-5, takeout-like-8, takeout-like-10 and takeout-like-11 were significantly increased after imidacloprid treatment; seven genes (takeout-like-1, takeout-like-2, takeout-like-5, takeout-like-6, takeout-like-7, takeout-like-8 and takeout-like-11) tended to be upregulated after beta-cypermethrin treatment. RNA interference results showed that the mortalities of R. padi injected with dsTOL-2, dsTOL-5, dsTOL-8, dsTOL-10 and dsTOL-11 were significantly increased after exposure to imidacloprid in comparison with control (injection of dsGFP). Under two sublethal concentrations of beta-cypermethrin, the silencing of takeout-like-2, takeout-like-5 and takeout-like-11 significantly increased the mortalities of R. padi. These results provide evidence for the involvement of takeout-like genes in insecticide susceptibility of R. padi, which improves our understanding the determinant of insecticide susceptibility.
Collapse
Affiliation(s)
- Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lei Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sha Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
5
|
Zhang C, Liu XD. Transcriptomic Analysis Suggests Genes Expressed Stage-Independently and Stage-Dependently Modulating the Wing Dimorphism of the Brown Planthopper. Genes (Basel) 2019; 11:E19. [PMID: 31878073 PMCID: PMC7017061 DOI: 10.3390/genes11010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Wing dimorphism is considered as an adaptive trait of insects. Brown planthoppers (BPHs) Nilaparvata lugens, a serious pest of rice, are either macropterous or brachypterous. Genetic and environmental factors are both likely to control wing morph determination in BPHs, but the hereditary law and genes network are still unknown. Here, we investigated changes in gene expression levels between macropterous and brachypterous BPHs by creating artificially bred morphotype lines. The nearly pure-bred strains of macropterous and brachypterous BPHs were established, and their transcriptomes and gene expression levels were compared. Over ten-thousand differentially expressed genes (DEGs) between macropterous and brachypterous strains were found in the egg, nymph, and adult stages, and the three stages shared 6523 DEGs. The regulation of actin cytoskeleton, focal adhesion, tight junction, and adherens junction pathways were consistently enriched with DEGs across the three stages, whereas insulin signaling pathway, metabolic pathways, vascular smooth muscle contraction, platelet activation, oxytocin signaling pathway, sugar metabolism, and glycolysis/gluconeogenesis were significantly enriched by DEGs in a specific stage. Gene expression trend profiles across three stages were different between the two strains. Eggs, nymphs, and adults from the macropterous strain were distinguishable from the brachypterous based on gene expression levels, and genes that were related to wing morphs were differentially expressed between wing strains or strain × stage. A proposed mode based on genes and environments to modulate the wing dimorphism of BPHs was provided.
Collapse
Affiliation(s)
| | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
6
|
Comparative transcriptomics of social insect queen pheromones. Nat Commun 2019; 10:1593. [PMID: 30962449 PMCID: PMC6453924 DOI: 10.1038/s41467-019-09567-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Queen pheromones are chemical signals that mediate reproductive division of labor in eusocial animals. Remarkably, queen pheromones are composed of identical or chemically similar compounds in some ants, wasps and bees, even though these taxa diverged >150MYA and evolved queens and workers independently. Here, we measure the transcriptomic consequences of experimental exposure to queen pheromones in workers from two ant and two bee species (genera: Lasius, Apis, Bombus), and test whether they are similar across species. Queen pheromone exposure affected transcription and splicing at many loci. Many genes responded consistently in multiple species, and the set of pheromone-sensitive genes was enriched for functions relating to lipid biosynthesis and transport, olfaction, production of cuticle, oogenesis, and histone (de)acetylation. Pheromone-sensitive genes tend to be evolutionarily ancient, positively selected, peripheral in the gene coexpression network, hypomethylated, and caste-specific in their expression. Our results reveal how queen pheromones achieve their effects, and suggest that ants and bees use similar genetic modules to achieve reproductive division of labor.
Collapse
|
7
|
The genes expression difference between winged and wingless bird cherry-oat aphid Rhopalosiphum padi based on transcriptomic data. Sci Rep 2019; 9:4754. [PMID: 30894649 PMCID: PMC6426873 DOI: 10.1038/s41598-019-41348-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/23/2019] [Indexed: 01/05/2023] Open
Abstract
Aphids produce wing and wingless morphs, depending on the environmental conditions during their complex life cycles. Wing and wingless variations play an important role in migration and host alternation, affecting the migration and host alternation processes. Several transcriptional studies have concentrated on aphids and sought to determine how an organism perceives environmental cues and responds in a plastic manner, but the underlying mechanisms have remained unclear. Therefore, to better understand the molecular mechanisms underlying the wing polyphenism of this fascinating phenomenon, we provide the first report concerning the wing development of aphids in bird cherry-oat aphid Rhopalosiphum padi with comparative transcriptional analysis of all the developmental stages by RNA-Seq. We identified several candidate genes related to biogenic amines and hormones that may be specifically involved in wing development. Moreover, we found that the third instar stage might be a critical stage for visibility of alternative morphs as well as changes in the expression of thirty-three genes associated with wing development. Several genes, i.e., Wnt2, Fng, Uba1, Hh, Foxo, Dpp, Brk, Ap, Dll, Hth, Tsh, Nub, Scr, Antp, Ubx, Asc, Srf and Fl, had different expression levels in different developmental stages and may play important roles in regulating wing polyphenism.
Collapse
|
8
|
Repellency, Toxicity, Gene Expression Profiling and In Silico Studies to Explore Insecticidal Potential of Melaleuca alternifolia Essential Oil against Myzus persicae. Toxins (Basel) 2018; 10:toxins10110425. [PMID: 30366370 PMCID: PMC6266121 DOI: 10.3390/toxins10110425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 12/02/2022] Open
Abstract
In the current study, deterrent assay, contact bioassay, lethal concentration (LC) analysis and gene expression analysis were performed to reveal the repellent or insecticidal potential of M. alternifolia oil against M. persicae. M. alternifolia oil demonstrated an excellent deterrence index (0.8) at 2 g/L after 48 h. The oil demonstrated a pronounced contact mortality rate (72%) at a dose of 4 g/L after 24 h. Probit analysis was performed to estimate LC-values of M. alternifolia oil (40%) against M. persicae (LC30 = 0.115 g/L and LC50 = 0.37 g/L respectively) after 24 h. Furthermore, to probe changes in gene expression due to M. alternifolia oil contact in M. persicae, the expression of HSP 60, FPPS I, OSD, TOL and ANT genes were examined at doses of LC30 and LC50. Four out of the five selected genes—OSD, ANT, HSP 60 and FPPS I—showed upregulation at LC50, whereas, TOL gene showed maximum upregulation expression at LC30. Finally, the major components of M. alternifolia oil (terpinen-4-ol) were docked and MD simulated into the related proteins of the selected genes to explore ligand–protein modes of interactions and changes in gene expression. The results show that M. alternifolia oil has remarkable insecticidal and deterrent effects and also has the ability to affect the reproduction and development in M. persicae by binding to proteins.
Collapse
|
9
|
Song L, Gao Y, Li J, Ban L. iTRAQ-Based Comparative Proteomic Analysis Reveals Molecular Mechanisms Underlying Wing Dimorphism of the Pea Aphid, Acyrthosiphon pisum. Front Physiol 2018; 9:1016. [PMID: 30131706 PMCID: PMC6090017 DOI: 10.3389/fphys.2018.01016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/09/2018] [Indexed: 01/14/2023] Open
Abstract
Wing dimorphism is a widespread phenomenon in insects with an associated trade-off between flight capability and fecundity. Despite the molecular underpinnings of phenotypic plasticity that has already been elucidated, it is still not fully understood. In this study, we focused on the differential proteomics profiles between alate and apterous morphs of the pea aphid, Acyrthosiphon pisum at the fourth instar nymph and adult stages, using isobaric tags for relative and absolute quantitation (iTRAQ) in a proteomic-based approach. A total of 5,116 protein groups were identified and quantified in the three biological replicates, of which 836 were differentially expressed between alate and apterous morphs. A bioinformatics analysis of differentially expressed protein groups (DEPGs) was performed based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). KEGG enrichment analysis showed that DEPGs mainly participated in energy metabolism, amino acid biosynthesis and metabolism, and signal sensing and transduction. To verify the reliability of proteomics data, the transcriptional expression of 29 candidates of differentially expressed proteins were analyzed by quantitative real-time PCR (qRT-PCR), showing that 26 genes were consistent with those at proteomic levels. In addition, differentially expressed proteins between winged and wingless morphs that were linked to olfactory sense were investigated. Quantitative real-time PCR revealed the tissue- and morph-biased expression profiles. These results suggested that olfactory sense plays a key role in wing dimorphism of aphids. The comparative proteomic analysis between alate and apterous morphs of the pea aphid provides a novel insight into wing development and dimorphism in aphids and will help facilitate our understanding of these concepts at molecular levels.
Collapse
Affiliation(s)
- Limei Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuhao Gao
- Affiliated High School of Peking University, Beijing, China
| | - Jindong Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Liping Ban
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Liu MG, Jiang CX, Mao M, Liu C, Li Q, Wang XG, Yang QF, Wang HJ. Effect of the Insecticide Dinotefuran on the Ultrastructure of the Flight Muscle of Female Sogatella furcifera (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:632-640. [PMID: 28334253 DOI: 10.1093/jee/tow320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Indexed: 06/06/2023]
Abstract
Sogatella furcifera Horváth (Hemiptera: Delphacidae), is a major migratory pest of rice crops in Asia. The ultrastructure of the flight muscle directly affects the flight ability of insects. The ultrastructure of the flight muscle of some insects can be affected by insecticides. However, the ultrastructure of the flight muscle of S. furcifera and the effect of insecticides on the flight muscle of S. furcifera are not well understood. The present study was conducted to determine the effect of the insecticide dinotefuran on the ultrastructure of the flight muscle of S. furcifera females. In this study, the cross-sectional area and the diameter of the myofibril cross-sections of dinotefuran-treated S. furcifera females increased with the number of days after emergence (DAE), and they were higher than in untreated females. The sarcomere length of myofibrils increased with the number of DAE, and it differed from that of the untreated females. On the first day after emergence, the higher the concentration of dinotefuran, the smaller was the extent of decrease. On the third day after emergence, the higher the concentration of dinotefuran, the larger was the extent of enhancement. For the percentage of mitochondria, those of LC10 and LC20 dinotefuran-treated S. furcifera females increased with the number of DAE and were higher than in untreated females. LC10 dinotefuran-treated S. furcifera females exhibited the largest increase. Thus, our results suggest that the flight ability of S. furcifera increased with time. Some concentrations of dinotefuran can enhance the flight capacity of S. furcifera.
Collapse
Affiliation(s)
- M G Liu
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| | - C X Jiang
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| | - M Mao
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| | - C Liu
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| | - Q Li
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| | - X G Wang
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| | - Q F Yang
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| | - H J Wang
- College of Agronomy, Sichuan Agricultural University, 211 Huimin Rd., Wenjiang District, Chengdu, Sichuan 611130, P.R. China (; ; ; ; ; ; ; )
| |
Collapse
|
11
|
Vellichirammal NN, Gupta P, Hall TA, Brisson JA. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism. Proc Natl Acad Sci U S A 2017; 114:1419-1423. [PMID: 28115695 PMCID: PMC5307454 DOI: 10.1073/pnas.1617640114] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The wing polyphenism of pea aphids is a compelling laboratory model with which to study the molecular mechanisms underlying phenotypic plasticity. In this polyphenism, environmental stressors such as high aphid density cause asexual, viviparous adult female aphids to alter the developmental fate of their embryos from wingless to winged morphs. This polyphenism is transgenerational, in that the pea aphid mother experiences the environmental signals, but it is her offspring that are affected. Previous research suggested that the steroid hormone ecdysone may play a role in this polyphenism. Here, we analyzed ecdysone-related gene expression patterns and found that they were consistent with a down-regulation of the ecdysone pathway being involved in the production of winged offspring. We therefore predicted that reduced ecdysone signaling would result in more winged offspring. Experimental injections of ecdysone or its analog resulted in a decreased production of winged offspring. Conversely, interfering with ecdysone signaling using an ecdysone receptor antagonist or knocking down the ecdysone receptor gene with RNAi resulted in an increased production of winged offspring. Our results are therefore consistent with the idea that ecdysone plays a causative role in the regulation of the proportion of winged offspring produced in response to crowding in this polyphenism. Our results also show that an environmentally regulated maternal hormone can mediate phenotype production in the next generation, as well as provide significant insight into the molecular mechanisms underlying the functioning of transgenerational phenotypic plasticity.
Collapse
Affiliation(s)
| | - Purba Gupta
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Tannice A Hall
- Department of Life Sciences, University of the West Indies, Mona, Kingston 7, Jamaica
| | | |
Collapse
|
12
|
Comparative profiling of microRNAs in the winged and wingless English grain aphid, Sitobion avenae (F.) (Homoptera: Aphididae). Sci Rep 2016; 6:35668. [PMID: 27762301 PMCID: PMC5071838 DOI: 10.1038/srep35668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are short single-stranded non-coding RNAs that regulate gene expression, particularly during development. In this study, 345 miRNAs were identified from the English green aphid, Sitobion avenae (F.), of which 168 were conserved and 177 were S. avenae-specific. Quantitative comparison of miRNA expression levels indicated that 16 and 12 miRNAs were significantly up-regulated in winged and wingless S. avenae small RNA libraries, respectively. Differential expression of these miRNAs was confirmed by real-time quantitative RT-PCR validation. The putative transcript targets for these candidate miRNAs were predicted based on sequences from a model species Drosophila melanogaster and four aphid species Acyrthosiphon pisum, Myzus persicae, Toxoptera citricida, and Aphis gosspii. Gene Ontology and KEGG pathway analyses shed light on the potential functions of these miRNAs in the regulation of genes involved in the metabolism, development and wing polyphenism of S. avenae.
Collapse
|
13
|
Vellichirammal NN, Madayiputhiya N, Brisson JA. The genomewide transcriptional response underlying the pea aphid wing polyphenism. Mol Ecol 2016; 25:4146-60. [PMID: 27393739 PMCID: PMC5021599 DOI: 10.1111/mec.13749] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/07/2016] [Accepted: 07/05/2016] [Indexed: 01/17/2023]
Abstract
Phenotypic plasticity is a key life history strategy used by many plants and animals living in heterogeneous environments. A multitude of studies have investigated the costs and limits of plasticity, as well as the conditions under which it evolves. Much less well understood are the molecular genetic mechanisms that enable an organism to sense its environment and respond in a plastic manner. The pea aphid wing polyphenism is a compelling laboratory model to study these mechanisms. In this polyphenism, environmental stressors like high density cause asexual, viviparous adult female aphids to change the development of their embryos from wingless to winged morphs. The life history trade-offs between the two morphs have been intensively studied, but the molecular mechanisms underlying this process remain largely unknown. We therefore performed a genomewide study of the maternal transcriptome at two time points with and without a crowding stress to discover the maternal molecular changes that lead to the development of winged vs. wingless offspring. We observed significant transcriptional changes in genes associated with odorant binding, neurotransmitter transport, hormonal activity and chromatin remodelling in the maternal transcriptome. We also found that titres of serotonin, dopamine and octopamine were higher in solitary compared to crowded aphids. We use these results to posit a model for how maternal signals inform a developing embryo to be winged or wingless. Our findings add significant insights into the identity of the molecular mechanisms that underlie environmentally induced morph determination and suggest a possible role for biogenic amine regulation in polyphenisms generally.
Collapse
Affiliation(s)
| | | | - Jennifer A. Brisson
- School of Biological Sciences, University of Nebraska-Lincoln, Nebraska, USA
| |
Collapse
|
14
|
Liu G, Ma H, Xie H, Xuan N, Guo X, Fan Z, Rajashekar B, Arnaud P, Offmann B, Picimbon JF. Biotype Characterization, Developmental Profiling, Insecticide Response and Binding Property of Bemisia tabaci Chemosensory Proteins: Role of CSP in Insect Defense. PLoS One 2016; 11:e0154706. [PMID: 27167733 PMCID: PMC4864240 DOI: 10.1371/journal.pone.0154706] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/18/2016] [Indexed: 02/03/2023] Open
Abstract
Chemosensory proteins (CSPs) are believed to play a key role in the chemosensory process in insects. Sequencing genomic DNA and RNA encoding CSP1, CSP2 and CSP3 in the sweet potato whitefly Bemisia tabaci showed strong variation between B and Q biotypes. Analyzing CSP-RNA levels showed not only biotype, but also age and developmental stage-specific expression. Interestingly, applying neonicotinoid thiamethoxam insecticide using twenty-five different dose/time treatments in B and Q young adults showed that Bemisia CSP1, CSP2 and CSP3 were also differentially regulated over insecticide exposure. In our study one of the adult-specific gene (CSP1) was shown to be significantly up-regulated by the insecticide in Q, the most highly resistant form of B. tabaci. Correlatively, competitive binding assays using tryptophan fluorescence spectroscopy and molecular docking demonstrated that CSP1 protein preferentially bound to linoleic acid, while CSP2 and CSP3 proteins rather associated to another completely different type of chemical, i.e. α-pentyl-cinnamaldehyde (jasminaldehyde). This might indicate that some CSPs in whiteflies are crucial to facilitate the transport of fatty acids thus regulating some metabolic pathways of the insect immune response, while some others are tuned to much more volatile chemicals known not only for their pleasant odor scent, but also for their potent toxic insecticide activity.
Collapse
Affiliation(s)
- Guoxia Liu
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Hongmei Ma
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Hongyan Xie
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Ning Xuan
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Xia Guo
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Zhongxue Fan
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Balaji Rajashekar
- University of Tartu, Institute of Computer Science, 2 Liivi, Tartu, Estonia
| | - Philippe Arnaud
- University of Nantes, Protein Engineering and Functionality Unit, UMR CNRS 6286, 2 La Houssinière, Nantes, France
| | - Bernard Offmann
- University of Nantes, Protein Engineering and Functionality Unit, UMR CNRS 6286, 2 La Houssinière, Nantes, France
| | | |
Collapse
|
15
|
Ayyanath MM, Scott-Dupree CD, Cutler GC. Effect of low doses of precocene on reproduction and gene expression in green peach aphid. CHEMOSPHERE 2015; 128:245-251. [PMID: 25723717 DOI: 10.1016/j.chemosphere.2015.01.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Insect reproduction can be stimulated by exposure to sublethal doses of insecticide that kill the same insects at high doses. This bi-phasic dose response to a stressor is known as hormesis and has been demonstrated with many different insect-insecticide models. The specific mechanisms of the increased reproduction in insects following sublethal pesticide exposure are unknown, but may be related to juvenile hormone (JH), which has a major role in regulation of metamorphosis and reproductive development in insects. We tested the hypothesis that exposure to sublethal concentrations of precocene, an antagonist of JH, would not result in stimulated reproductive outputs in the green peach aphid, Myzus persicae, as can be demonstrated with many neurotoxic insecticides. We also measured JH titers and the expression of various developmental (FPPS I), stress response (Hsp60), and dispersal (OSD, TOL and ANT) genes in aphids following exposure to the same precocene treatments. We found that when aphid nymphs were treated with certain sublethal concentrations of precocene, 1.5- to 2-fold increased reproductive stimulation occurred when they became adults, but this effect subsided in the following generation. Precocene treatments to nymphs resulted in no measurable effects on JH levels in subsequent reproducing adults. Although we detected major effects on gene expression following some precocene treatments (e.g. 100- to 300-fold increased expression of some genes), there were no clear relationships between gene expression and reproductive responses for a given treatment.
Collapse
Affiliation(s)
- Murali-Mohan Ayyanath
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada; School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Cynthia D Scott-Dupree
- School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - G Christopher Cutler
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada.
| |
Collapse
|
16
|
Integrative Genomic Approaches to Studying Epigenetic Mechanisms of Phenotypic Plasticity in the Aphid. SHORT VIEWS ON INSECT GENOMICS AND PROTEOMICS 2015. [DOI: 10.1007/978-3-319-24235-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Kliot A, Kontsedalov S, Ramsey JS, Jander G, Ghanim M. Adaptation to nicotine in the facultative tobacco-feeding hemipteran Bemisia tabaci. PEST MANAGEMENT SCIENCE 2014; 70:1595-603. [PMID: 24464822 DOI: 10.1002/ps.3739] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/16/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Plant defensive metabolites such as nicotine can provide barriers to host-range expansion by generalist herbivores. Nicotine is one of the most abundant and toxic plant secondary metabolites in nature and is defined by high toxicity to plant-feeding insects. There is significant variation in nicotine tolerance among Bemisia tabaci (tobacco whitefly) isolates. Some nicotine-tolerant B. tabaci strains can consume 40-fold higher nicotine levels than susceptible strains, and also show cross-resistance to neonicotinoid insecticides. In this study, biological and molecular assays were used to investigate the responses of B. tabaci strains that differ in their ability to tolerate dietary nicotine. RESULTS Egg laying and honeydew secretion bioassays as well as gene expression microarrays were used to measure B. tabaci biological parameters and gene transcripts misregulated in response to nicotine in resistant and susceptible strains. The resistant B. tabaci strain laid significantly fewer eggs and excreted more honeydew on a tobacco strain with high levels of nicotine, suggesting a fitness cost effect. The molecular response was drastic in the susceptible strain, while the resistant strain exhibited moderate response. Higher expression of the previously identified CYP6CM1 P450 monooxygenase gene related to the resistance to neonicotinoids, as well as other P450s and metabolic genes, was identified in the resistant and susceptible strains after exposure to nicotine. CONCLUSIONS Nicotine is a very toxic plant natural compound, and its mode of action resembles that of synthetic neonicotinoids. The biological and molecular responses observed in this study suggest that nicotine may play an important role in providing barriers for host-plant expansion by generalists, and may act as a natural factor that contributes to the development of insect populations resistant to synthetic pesticides.
Collapse
Affiliation(s)
- Adi Kliot
- Department of Entomology, Volcani Center, Bet Dagan, Israel
| | | | | | | | | |
Collapse
|
18
|
Ayyanath MM, Cutler GC, Scott-Dupree CD, Prithiviraj B, Kandasamy S, Prithiviraj K. Gene expression during imidacloprid-induced hormesis in green peach aphid. Dose Response 2014; 12:480-97. [PMID: 25249837 DOI: 10.2203/dose-response.13-057.cutler] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Imidacloprid-induced hormesis in the form of stimulated reproduction has previously been reported in green peach aphid, Myzus persicae. Changes in gene expression accompanying this hormetic response have not been previously investigated. In this study, expression of stress response (Hsp60), dispersal (OSD, TOL and ANT), and developmental (FPPS I) genes were examined for two generations during imidacloprid-induced reproductive stimulation in M. persicae. Global DNA methylation was also measured to test the hypothesis that changes in gene expression are heritable. At hormetic concentrations, down-regulation of Hsp60 was followed by up-regulation of this gene in the subsequent generation. Likewise, expression of dispersal-related genes and FPPS I varied with concentration, life stage, and generation. These results indicate that reproductive hormesis in M. persicae is accompanied by a complex transgenerational pattern of up- and down-regulation of genes that likely reflects trade-offs in gene expression and related physiological processes during the phenotypic dose-response. Moreover, DNA methylation in second generation M. persicae occurred at higher doses than in first-generation aphids, suggesting that heritable adaptability to low doses of the stressor might have occurred.
Collapse
Affiliation(s)
- Murali-Mohan Ayyanath
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, CANADA; ; School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, CANADA
| | - G Christopher Cutler
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, CANADA
| | - Cynthia D Scott-Dupree
- School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, CANADA
| | - Balakrishnan Prithiviraj
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, CANADA
| | - Saveetha Kandasamy
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, CANADA
| | - Kalyani Prithiviraj
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, CANADA
| |
Collapse
|
19
|
Yang X, Liu X, Xu X, Li Z, Li Y, Song D, Yu T, Zhu F, Zhang Q, Zhou X. Gene expression profiling in winged and wingless cotton aphids, Aphis gossypii (Hemiptera: Aphididae). Int J Biol Sci 2014; 10:257-67. [PMID: 24644424 PMCID: PMC3957081 DOI: 10.7150/ijbs.7629] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/22/2014] [Indexed: 11/05/2022] Open
Abstract
While trade-offs between flight capability and reproduction is a common phenomenon in wing dimorphic insects, the molecular basis is largely unknown. In this study, we examined the transcriptomic differences between winged and wingless morphs of cotton aphids, Aphis gossypii, using a tag-based digital gene expression (DGE) approach. Ultra high-throughput Illumina sequencing generated 5.30 and 5.39 million raw tags, respectively, from winged and wingless A. gossypii DGE libraries. We identified 1,663 differentially expressed transcripts, among which 58 were highly expressed in the winged A. gossypii, whereas 1,605 expressed significantly higher in the wingless morphs. Bioinformatics tools, including Gene Ontology, Cluster of Orthologous Groups, euKaryotic Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes pathways, were used to functionally annotate these transcripts. In addition, 20 differentially expressed transcripts detected by DGE were validated by the quantitative real-time PCR. Comparative transcriptomic analysis of sedentary (wingless) and migratory (winged) A. gossyii not only advances our understanding of the trade-offs in wing dimorphic insects, but also provides a candidate molecular target for the genetic control of this agricultural insect pest.
Collapse
Affiliation(s)
- Xiaowei Yang
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiaoxia Liu
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiangli Xu
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Yisong Li
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Dongyan Song
- 2. Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Tian Yu
- 2. Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Fang Zhu
- 2. Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Qingwen Zhang
- 1. Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xuguo Zhou
- 2. Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| |
Collapse
|
20
|
Nanoth Vellichirammal N, Zera AJ, Schilder RJ, Wehrkamp C, Riethoven JJM, Brisson JA. De novo transcriptome assembly from fat body and flight muscles transcripts to identify morph-specific gene expression profiles in Gryllus firmus. PLoS One 2014; 9:e82129. [PMID: 24416137 PMCID: PMC3885399 DOI: 10.1371/journal.pone.0082129] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022] Open
Abstract
Wing polymorphism is a powerful model for examining many aspects of adaptation. The wing dimorphic cricket species, Gryllus firmus, consists of a long-winged morph with functional flight muscles that is capable of flight, and two flightless morphs. One (obligately) flightless morph emerges as an adult with vestigial wings and vestigial flight muscles. The other (plastic) flightless morph emerges with fully-developed wings but later in adulthood histolyzes its flight muscles. Importantly both flightless morphs have substantially increased reproductive output relative to the flight-capable morph. Much is known about the physiological and biochemical differences between the morphs with respect to adaptations for flight versus reproduction. In contrast, little is known about the molecular genetic basis of these morph-specific adaptations. To address this issue, we assembled a de novo transcriptome of G. firmus using 141.5 million Illumina reads generated from flight muscles and fat body, two organs that play key roles in flight and reproduction. We used the resulting 34,411 transcripts as a reference transcriptome for differential gene expression analyses. A comparison of gene expression profiles from functional flight muscles in the flight-capable morph versus histolyzed flight muscles in the plastic flight incapable morph identified a suite of genes involved in respiration that were highly expressed in pink (functional) flight muscles and genes involved in proteolysis highly expressed in the white (histolyzed) flight muscles. A comparison of fat body transcripts from the obligately flightless versus the flight-capable morphs revealed differential expression of genes involved in triglyceride biosynthesis, lipid transport, immune function and reproduction. These data provide a valuable resource for future molecular genetics research in this and related species and provide insight on the role of gene expression in morph-specific adaptations for flight versus reproduction.
Collapse
Affiliation(s)
| | - Anthony J. Zera
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Rudolf J. Schilder
- Department of Biology, Penn State University, State College, Pennsylvania, United States of America
| | - Cody Wehrkamp
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jean-Jack M. Riethoven
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Bioinformatics Core Research Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jennifer A. Brisson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
21
|
Hamiaux C, Basten L, Greenwood DR, Baker EN, Newcomb RD. Ligand promiscuity within the internal cavity of Epiphyas postvittana Takeout 1 protein. J Struct Biol 2013; 182:259-63. [DOI: 10.1016/j.jsb.2013.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
|
22
|
Vanaphan N, Dauwalder B, Zufall RA. Diversification of takeout, a male-biased gene family in Drosophila. Gene 2012; 491:142-8. [DOI: 10.1016/j.gene.2011.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/20/2011] [Accepted: 10/01/2011] [Indexed: 01/01/2023]
|
23
|
|
24
|
Brisson JA. Aphid wing dimorphisms: linking environmental and genetic control of trait variation. Philos Trans R Soc Lond B Biol Sci 2010; 365:605-16. [PMID: 20083636 PMCID: PMC2817143 DOI: 10.1098/rstb.2009.0255] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Both genetic and environmental factors underlie phenotypic variation. While research at the interface of evolutionary and developmental biology has made excellent advances in understanding the contribution of genes to morphology, less well understood is the manner in which environmental cues are incorporated during development to influence the phenotype. Also virtually unexplored is how evolutionary transitions between environmental and genetic control of trait variation are achieved. Here, I review investigations into molecular mechanisms underlying phenotypic plasticity in the aphid wing dimorphism system. Among aphids, some species alternate between environmentally sensitive (polyphenic) and genetic (polymorphic) control of wing morph determination in their life cycle. Therefore, a traditional molecular genetic approach into understanding the genetically controlled polymorphism may provide a unique avenue into not only understanding the molecular basis of polyphenic variation in this group, but also the opportunity to compare and contrast the mechanistic basis of environmental and genetic control of similar dimorphisms.
Collapse
Affiliation(s)
- Jennifer A Brisson
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
25
|
Mahadav A, Kontsedalov S, Czosnek H, Ghanim M. Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:668-76. [PMID: 19683053 DOI: 10.1016/j.ibmb.2009.08.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 07/31/2009] [Accepted: 08/07/2009] [Indexed: 05/23/2023]
Abstract
The whitefly Bemisia tabaci (Gennadius) causes tremendous losses to agriculture by direct feeding on plants and by vectoring several families of plant viruses. The B. tabaci species complex comprises over 10 genetic groups (biotypes) that are well defined by DNA markers and biological characteristics. B and Q are amongst the most dominant and damaging biotypes, differing considerably in fecundity, host range, insecticide resistance, virus vectoriality, and the symbiotic bacteria they harbor. We used a spotted B. tabaci cDNA microarray to compare the expression patterns of 6000 ESTs of B and Q biotypes under standard 25 degrees C regime and heat stress at 40 degrees C. Overall, the number of genes affected by increasing temperature in the two biotypes was similar. Gene expression under 25 degrees C normal rearing temperature showed clear differences between the two biotypes: B exhibited higher expression of mitochondrial genes, and lower cytoskeleton, heat-shock and stress-related genes, compared to Q. Exposing B biotype whiteflies to heat stress was accompanied by rapid alteration of gene expression. For the first time, the results here present differences in gene expression between very closely related and sympatric B. tabaci biotypes, and suggest that these clear-cut differences are due to better adaptation of one biotype over another and might eventually lead to changes in the local and global distribution of both biotypes.
Collapse
Affiliation(s)
- Assaf Mahadav
- The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture and the Minerva Otto Warburg Center for Agricultural Biotechnology, Rehovot, Israel
| | | | | | | |
Collapse
|
26
|
Dombrovsky A, Arthaud L, Ledger TN, Tares S, Robichon A. Profiling the repertoire of phenotypes influenced by environmental cues that occur during asexual reproduction. Genome Res 2009; 19:2052-63. [PMID: 19635846 DOI: 10.1101/gr.091611.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The aphid Acyrthosiphon pisum population is composed of different morphs, such as winged and wingless parthenogens, males, and sexual females. The combined effect of reduced photoperiodicity and cold in fall triggers the apparition of sexual morphs. In contrast they reproduce asexually in spring and summer. In our current study, we provide evidence that clonal individuals display phenotypic variability within asexual morph categories. We describe that clones sharing the same morphological features, which arose from the same founder mother, constitute a repertoire of variants with distinct behavioral and physiological traits. Our results suggest that the prevailing environmental conditions influence the recruitment of adaptive phenotypes from a cohort of clonal individuals exhibiting considerable molecular diversity. However, we observed that the variability might be reduced or enhanced by external factors, but is never abolished in accordance with a model of stochastically produced phenotypes. This overall mechanism allows the renewal of colonies from a few adapted individuals that survive drastic episodic changes in a fluctuating environment.
Collapse
Affiliation(s)
- Aviv Dombrovsky
- INRA/CNRS/UNSA University Nice Sophia Antipolis, Sophia Antipolis 06903 BP 167, France.
| | | | | | | | | |
Collapse
|
27
|
Zhang S, Zhang YJ, Su HH, Gao XW, Guo YY. Identification and Expression Pattern of Putative Odorant-Binding Proteins and Chemosensory Proteins in Antennae of the Microplitis mediator (Hymenoptera: Braconidae). Chem Senses 2009; 34:503-12. [DOI: 10.1093/chemse/bjp027] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Nguyen TTA, Michaud D, Cloutier C. A proteomic analysis of the aphid Macrosiphum euphorbiae under heat and radiation stress. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:20-30. [PMID: 19000926 DOI: 10.1016/j.ibmb.2008.09.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 05/15/2023]
Abstract
Temperature and solar radiation can be important sources of abiotic stress for small herbivorous insects living in close association with plants. We examined the effects of daily fluctuations of heat and UV radiation on the proteome and performance of winged and wingless morphs of the aphid Macrosiphum euphorbiae. A daily regime of 4h of heat stress at 35 degrees C had more negative effects on the aphid's fitness than a similar period of UV-B stress (11.6kJm(-2) per day), and these effects were most pronounced on wingless aphids. Aphid proteomes as detected on 2-D gels revealed approximately 470 protein spots, with the fluctuating heat stress leading to many more changes than exposure to UV-B. The reduced performance of aphids under heat stress correlated with lower abundance of several enzymes in central pathways of energy metabolism, including the TCA cycle and the respiratory chain. Several exoskeletal proteins were induced or their abundance was increased under high temperature stress, suggesting that cuticle barrier enhancement at molting in response to heat stress is an aphid adaptation to stressful thermal conditions. The proteome of winged aphids was more broadly modulated under stress than that of wingless aphids. Greater homeostatic capabilities as revealed at the proteomic level could explain the higher tolerance of the alate aphid morph to environmental stress and its more stable performance and fitness.
Collapse
Affiliation(s)
- Thi Thuy An Nguyen
- Département de biologie, Pavillon Vachon, Université Laval, Québec, Québec, Canada
| | | | | |
Collapse
|
29
|
Genetic changes accompanying the evolution of host specialization in Drosophila sechellia. Genetics 2008; 181:721-36. [PMID: 19033155 DOI: 10.1534/genetics.108.093419] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in host specialization contribute to the diversification of phytophagous insects. When shifting to a new host, insects evolve new physiological, morphological, and behavioral adaptations. Our understanding of the genetic changes responsible for these adaptations is limited. For instance, we do not know how often host shifts involve gain-of-function vs. loss-of-function alleles. Recent work suggests that some genes involved in odor recognition are lost in specialists. Here we show that genes involved in detoxification and metabolism, as well as those affecting olfaction, have reduced gene expression in Drosophila sechellia-a specialist on the fruit of Morinda citrifolia. We screened for genes that differ in expression between D. sechellia and its generalist sister species, D. simulans. We also screened for genes that are differentially expressed in D. sechellia when these flies chose their preferred host vs. when they were forced onto other food. D. sechellia increases expression of genes involved with oogenesis and fatty acid metabolism when on its host. The majority of differentially expressed genes, however, appear downregulated in D. sechellia. For several functionally related genes, this decrease in expression is associated with apparent loss-of-function alleles. For example, the D. sechellia allele of Odorant binding protein 56e (Obp56e) harbors a premature stop codon. We show that knockdown of Obp56e activity significantly reduces the avoidance response of D. melanogaster toward M. citrifolia. We argue that apparent loss-of-function alleles like Obp56e potentially contributed to the initial adaptation of D. sechellia to its host. Our results suggest that a subset of genes reduce or lose function as a consequence of host specialization, which may explain why, in general, specialist insects tend to shift to chemically similar hosts.
Collapse
|
30
|
Cortés T, Tagu D, Simon JC, Moya A, Martínez-Torres D. Sex versus parthenogenesis: a transcriptomic approach of photoperiod response in the model aphid Acyrthosiphon pisum (Hemiptera: Aphididae). Gene 2008; 408:146-56. [PMID: 18065167 DOI: 10.1016/j.gene.2007.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/12/2007] [Accepted: 10/22/2007] [Indexed: 02/07/2023]
Abstract
Most aphids develop a cyclic parthenogenesis life-cycle. After several generations of viviparous parthenogenetic females, it follows a single annual generation of sexual individuals, usually in autumn, that mate and lay the sexual eggs. Shortening of photoperiod at the end of the summer is a key factor inducing the sexual response. With the survey here reported we aimed at identifying a collection of candidate genes to participate at some point in the cascade of events that lead to the sexual phenotypes. Following a suppression subtractive hybridization methodology (SSH) on the model aphid Acyrthosiphon pisum, we built and characterised two reciprocal cDNA libraries (SDU and SDD) enriched respectively in genes up-regulated or down-regulated by short photoperiod conditions that lead to the sexual response in this aphid species. A total of 557 ESTs were obtained altogether representing 223 non-overlapping contigs. 29% of these were new sequences not present in previous aphid EST libraries. BLAST searches allowed putative identification of about 54% of the contigs present in both libraries. Relative quantification of expression through real-time quantitative PCR demonstrated the differential expression in relation with the photoperiod of 6 genes (3 up-regulated and 3 down-regulated by shortening the day length). Among these, expression of a tubulin gene, two cuticular proteins and a yet unidentified sequence along the day-night cycle was further investigated. Implications for current studies on gene regulation of the dichotomy sex vs. parthenogenesis in aphids are discussed.
Collapse
Affiliation(s)
- T Cortés
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado de Correos 22085, 46071, València, Spain
| | | | | | | | | |
Collapse
|
31
|
Hardie J, Leckstein P. Antibiotics, primary symbionts and wing polyphenism in three aphid species. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:886-90. [PMID: 17628287 DOI: 10.1016/j.ibmb.2007.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 05/03/2007] [Accepted: 05/08/2007] [Indexed: 05/16/2023]
Abstract
The possible role of the primary Buchnera symbionts in wing polyphenism is examined in three aphid species. Presumptive winged aphids were fed on antibiotic-treated beans to destroy these symbionts. As previously reported, this leads to inhibited growth and low/zero fecundity. When such treatment is applied to the short-day-induced gynoparae (the winged autumn migrant) of the black bean aphid, Aphis fabae, it also causes many insects to develop as wingless or winged/wingless intermediate adult forms (apterisation). However, whilst antibiotic treatment of crowd-induced, long-day winged forms of the pea aphid, Acyrthosiphon pisum (a green and a pink clone) and the vetch aphid, Megoura viciae has similar effects on size and fecundity, it does not affect wing development. Food deprivation also promotes apterisation in A. fabae gynoparae but not in the crowd-induced winged morphs of the other two species. Thus, it appears that apterisation in A. fabae is not a direct effect of antibiotic treatment or a novel role for symbionts but is most likely related to impaired nutrition induced by the loss of the symbiont population.
Collapse
Affiliation(s)
- Jim Hardie
- Imperial College London, Faculty of Natural Sciences, Division of Biology, Silwood Park campus, Ascot, Berks SL5 7PY, UK.
| | | |
Collapse
|
32
|
Ghanim M, Kontsedalov S. Gene expression in pyriproxyfen-resistant Bemisia tabaci Q biotype. PEST MANAGEMENT SCIENCE 2007; 63:776-83. [PMID: 17569108 DOI: 10.1002/ps.1410] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Pyriproxyfen is a biorational insecticide that acts as a juvenile hormone (JH) analogue and disrupts insect development with an unknown molecular mode of action. Pyriproxyfen is one of the major insecticides used to control the whitefly Bemisia tabaci (Gennadius) and comply with integrated pest management (IPM) programmes, resulting in minimal effects on the environment, humans and beneficial organisms. During the last few years, resistance to pyriproxyfen has been observed in several locations in Israel, sometimes reaching a thousandfold or more. No information exists about the molecular basis underlying this resistance that may lead to understanding the mode of action of pyriproxyfen and developing molecular markers for rapid monitoring of resistance outbreaks. In this communication, a cDNA microarray from B. tabaci was used to monitor changes in gene expression in a resistant B. tabaci population. Based on statistical analysis, 111 expressed sequence tags (ESTs) were identified that were differentially upregulated in the resistant strain after pyriproxyfen treatment. Many of the upregulated ESTs observed in the present study belong to families usually associated with resistance and xenobiotic detoxification such as mitochondrial genes, P450s and oxidative stress, genes associated with protein, lipid and carbohydrate metabolism and others related to JH-associated processes in insects such as oocyte and egg development.
Collapse
Affiliation(s)
- Murad Ghanim
- Institute of Plant Protection, Department of Entomology, Volcani Centre, Bet Dagan 50250, Israel.
| | | |
Collapse
|
33
|
Brisson JA, Davis GK, Stern DL. Common genome-wide patterns of transcript accumulation underlying the wing polyphenism and polymorphism in the pea aphid (Acyrthosiphon pisum). Evol Dev 2007; 9:338-46. [PMID: 17651358 DOI: 10.1111/j.1525-142x.2007.00170.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pea aphid, Acyrthosiphon pisum, exhibits several environmentally cued polyphenisms, in which discrete, alternative phenotypes are produced. At low-density, parthenogenetic females produce unwinged female progeny, but at high-density females produce progeny that develop with wings. These alternative phenotypes represent a solution to the competing demands of dispersal and reproduction. Males also develop as either winged or unwinged, but these alternatives are determined by a genetic polymorphism. Winged and unwinged males are morphologically less distinct from each other than winged and unwinged females, possibly because males experience fewer trade-offs between dispersal and reproduction. To assess whether shared physiological differences mirror the shared morphological differences that characterize the wing polyphenism and polymorphism, we used a cDNA microarray representing an estimated 10% of the coding genome (1734 genes) to examine differential transcript accumulation between winged and unwinged females and males. We identified several transcripts that differentially accumulate between winged and unwinged morphs in both sexes, the majority of which are involved in energy production. Unexpectedly, the extent of differential transcript accumulation between winged and unwinged morphs was greater for adult males than for adult females. Together, these results suggest not only that similar physiological differences underlie the polyphenism and polymorphism, but that male morphs, like females, are subject to trade-offs between reproduction and dispersal that are reflected in levels of transcript accumulation and possibly genome-wide patterns of gene regulation. These data also provide a baseline for future studies of the molecular and physiological basis of life-history trade-offs.
Collapse
|