1
|
Oeyen JP, Baa-Puyoulet P, Benoit JB, Beukeboom LW, Bornberg-Bauer E, Buttstedt A, Calevro F, Cash EI, Chao H, Charles H, Chen MJM, Childers C, Cridge AG, Dearden P, Dinh H, Doddapaneni HV, Dolan A, Donath A, Dowling D, Dugan S, Duncan E, Elpidina EN, Friedrich M, Geuverink E, Gibson JD, Grath S, Grimmelikhuijzen CJP, Große-Wilde E, Gudobba C, Han Y, Hansson BS, Hauser F, Hughes DST, Ioannidis P, Jacquin-Joly E, Jennings EC, Jones JW, Klasberg S, Lee SL, Lesný P, Lovegrove M, Martin S, Martynov AG, Mayer C, Montagné N, Moris VC, Munoz-Torres M, Murali SC, Muzny DM, Oppert B, Parisot N, Pauli T, Peters RS, Petersen M, Pick C, Persyn E, Podsiadlowski L, Poelchau MF, Provataris P, Qu J, Reijnders MJMF, von Reumont BM, Rosendale AJ, Simao FA, Skelly J, Sotiropoulos AG, Stahl AL, Sumitani M, Szuter EM, Tidswell O, Tsitlakidis E, Vedder L, Waterhouse RM, Werren JH, Wilbrandt J, Worley KC, Yamamoto DS, van de Zande L, Zdobnov EM, Ziesmann T, Gibbs RA, Richards S, Hatakeyama M, Misof B, Niehuis O. Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera. Genome Biol Evol 2021; 12:1099-1188. [PMID: 32442304 PMCID: PMC7455281 DOI: 10.1093/gbe/evaa106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts.
Collapse
Affiliation(s)
- Jan Philip Oeyen
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Lead Contact
| | | | | | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | | | - Anja Buttstedt
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Germany
| | - Federica Calevro
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Elizabeth I Cash
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University.,Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Hubert Charles
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Mei-Ju May Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | | | - Andrew G Cridge
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Peter Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Alexander Donath
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Daniel Dowling
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Elizabeth Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Joshua D Gibson
- Department of Biology, Georgia Southern University, Statesboro.,Department of Entomology, Purdue University, West Lafayette
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | | - Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague (CULS), Praha 6-Suchdol, Czech Republic
| | - Cameron Gudobba
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Frank Hauser
- Department of Biology, University of Copenhagen, Denmark
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Emmanuelle Jacquin-Joly
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Versailles, France
| | | | - Jeffery W Jones
- Department of Biological Sciences, Oakland University, Rochester
| | - Steffen Klasberg
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Peter Lesný
- Institute of Evolutionary Biology and Ecology, Zoology and Evolutionary Biology, University of Bonn, Germany
| | - Mackenzie Lovegrove
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Sebastian Martin
- Institute of Evolutionary Biology and Ecology, Zoology and Evolutionary Biology, University of Bonn, Germany
| | | | - Christoph Mayer
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Nicolas Montagné
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Paris, France
| | - Victoria C Moris
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| | - Monica Munoz-Torres
- Berkeley Bioinformatics Open-source Projects (BBOP), Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Shwetha Canchi Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, Kansas
| | - Nicolas Parisot
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Thomas Pauli
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| | - Ralph S Peters
- Arthropoda Department, Center for Taxonomy and Evolutionary Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Malte Petersen
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Emma Persyn
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Paris, France
| | - Lars Podsiadlowski
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | | | - Panagiotis Provataris
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Björn Marcus von Reumont
- Institute for Insect Biotechnology, University of Gießen, Germany.,Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | | | - Felipe A Simao
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - John Skelly
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | | | - Aaron L Stahl
- Department of Biological Sciences, University of Cincinnati.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Megumi Sumitani
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Owashi, Tsukuba, Japan
| | - Elise M Szuter
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University
| | - Olivia Tidswell
- Biochemistry Department, University of Otago, Dunedin, New Zealand.,Zoology Department, University of Cambridge, United Kingdom
| | | | - Lucia Vedder
- Center for Bioinformatics Tübingen (ZBIT), University of Tübingen, Germany
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Jeanne Wilbrandt
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Yakushiji, Shimotsuke, Japan
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Tanja Ziesmann
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Masatsugu Hatakeyama
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| |
Collapse
|
2
|
Gamboa M. Hemocyanin and hexamerins expression in response to hypoxia in stoneflies (Plecoptera, Insecta). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21743. [PMID: 32979236 DOI: 10.1002/arch.21743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Many freshwater ecosystems worldwide undergo hypoxia events that can trigger physiological, behavioral, and molecular responses in many organisms. Among such molecular responses, the regulation of the hemocyanin (Hc) protein expression which plays a major role in oxygen transportation within aquatic insects remains poorly understood. The stoneflies (Plecoptera) are aquatic insects that possess a functional Hc in the hemolymph similar to crustacean that co-occurs with a nonfunctional Hc protein, hexamerins (Hx). However, the role of both proteins during hypoxia remains undetermined. Here, we evaluated the effect of hypoxia on the expression of Hc and Hx proteins via a comparison between hypoxia and normoxia amino acid sequence variation and protein expression pattern within 23 stonefly species. We induced short-term hypoxia in wild-caught stoneflies species, sequenced the target region of Hc and Hx by complementary DNA synthesis, characterized the protein biochemistry using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, ultrafiltration, and polarographic fluorometric method, and amplified the genome region of the hypoxia-inducible factor (HIF) transcriptional response element that regulated Hc using genome walking library approach. We found a lack of Hc expression in all examined species during hypoxia conditions, despite recognition of the HIF gene region as a possible regulatory factor of Hc, suggesting that compensatory responses as metabolic changes or behavioral tracheal movements to enhance respiratory efficiency could be possible mechanics to compensate for hypoxia. A short Hc-like novel isoform was detected instead in these 23 species, possibly due to either protein degradation or alternative splicing mechanisms, suggesting that the protein could be performing a different function other than oxygen transportation. Hx during hypoxia was expressed and exhibited species-level amino acid changes, highlighting a possible role during hypoxia. Our results demonstrate that hypoxia could enable a similar potential adaptive response of multiple species regarding specific physiological requirements, thereby shedding light on community behavior in stress environments that may help us to improve conservation practices and biomonitoring.
Collapse
Affiliation(s)
- Maribet Gamboa
- Department of Civil and Environmental Engineering, Faculty of Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
3
|
Hotaling S, Shah AA, McGowan KL, Tronstad LM, Giersch JJ, Finn DS, Woods HA, Dillon ME, Kelley JL. Mountain stoneflies may tolerate warming streams: Evidence from organismal physiology and gene expression. GLOBAL CHANGE BIOLOGY 2020; 26:5524-5538. [PMID: 32698241 DOI: 10.1111/gcb.15294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Rapid glacier recession is altering the physical conditions of headwater streams. Stream temperatures are predicted to rise and become increasingly variable, putting entire meltwater-associated biological communities at risk of extinction. Thus, there is a pressing need to understand how thermal stress affects mountain stream insects, particularly where glaciers are likely to vanish on contemporary timescales. In this study, we measured the critical thermal maximum (CTMAX ) of stonefly nymphs representing multiple species and a range of thermal regimes in the high Rocky Mountains, USA. We then collected RNA-sequencing data to assess how organismal thermal stress translated to the cellular level. Our focal species included the meltwater stonefly, Lednia tumana, which was recently listed under the U.S. Endangered Species Act due to climate-induced habitat loss. For all study species, critical thermal maxima (CTMAX > 20°C) far exceeded the stream temperatures mountain stoneflies experience (<10°C). Moreover, while evidence for a cellular stress response was present, we also observed constitutive expression of genes encoding proteins known to underlie thermal stress (i.e., heat shock proteins) even at low temperatures that reflected natural conditions. We show that high-elevation aquatic insects may not be physiologically threatened by short-term exposure to warm temperatures and that longer-term physiological responses or biotic factors (e.g., competition) may better explain their extreme distributions.
Collapse
Affiliation(s)
- Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Alisha A Shah
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Kerry L McGowan
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Lusha M Tronstad
- Wyoming Natural Diversity Database, University of Wyoming, Laramie, WY, USA
| | - J Joseph Giersch
- U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, MT, USA
| | - Debra S Finn
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
4
|
Ebner JN, Ritz D, von Fumetti S. Abiotic and past climatic conditions drive protein abundance variation among natural populations of the caddisfly Crunoecia irrorata. Sci Rep 2020; 10:15538. [PMID: 32968134 PMCID: PMC7512004 DOI: 10.1038/s41598-020-72569-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
Deducing impacts of environmental change on species and the populations they form in nature is an important goal in contemporary ecology. Achieving this goal is hampered by our limited understanding of the influence of naturally occurring environmental variation on the molecular systems of ecologically relevant species, as the pathways underlying fitness-affecting plastic responses have primarily been studied in model organisms and under controlled laboratory conditions. Here, to test the hypothesis that proteome variation systematically relates to variation in abiotic conditions, we establish such relationships by profiling the proteomes of 24 natural populations of the spring-dwelling caddisfly Crunoecia irrorata. We identified protein networks whose abundances correlated with environmental (abiotic) gradients such as in situ pH, oxygen- and nitrate concentrations but also climatic data such as past thermal minima and temperature seasonality. Our analyses suggest that variations in abiotic conditions induce discrete proteome responses such as the differential abundance of proteins associated with cytoskeletal function, heat-shock proteins and proteins related to post-translational modification. Identifying these drivers of proteome divergence characterizes molecular "noise", and positions it as a background against which molecular signatures of species' adaptive responses to stressful conditions can be identified.
Collapse
Affiliation(s)
- Joshua Niklas Ebner
- Geoecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| | - Danilo Ritz
- Proteomics Core Facility, University of Basel, Biozentrum Basel, Switzerland
| | - Stefanie von Fumetti
- Geoecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Liang Y, Xie W, Luan Y. Developmental expression and evolution of hexamerin and haemocyanin from Folsomia candida (Collembola). INSECT MOLECULAR BIOLOGY 2019; 28:716-727. [PMID: 30953580 PMCID: PMC6850205 DOI: 10.1111/imb.12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Haemocyanins constitute a group of copper-containing respiratory proteins, and hexamerins were derived from hexapod haemocyanin but lost the ability to transport oxygen and serve as storage proteins. Although hexamerins have been reported in most insect species, none of them has been identified in Collembola, one of the most primitive hexapod lineages, thereby preventing us from exploring relevant evolutionary scenarios regarding the origin and evolution of hexamerins in hexapods. Here we report on collembolan hexamerins for the first time, and investigated the temporal expression profiles of hexamerin and haemocyanin in the collembolan Folsomia candida. Haemocyanin was expressed over the entire life cycle, with higher expression at the embryonic stage than at other stages, whereas hexamerin expression was restricted to embryos, unlike insect hexamerins, which are generally expressed from larval to adult stages. A phylogenetic analysis and molecular clock estimation suggested that all investigated hexapod hexamerins have a single and ancient origin (~423 Ma), coincident with the rise of atmospheric oxygen levels in the Silurian-Devonian period, indicating a physiological link between molecular evolution and Palaeozoic oxygen changes.
Collapse
Affiliation(s)
- Y. Liang
- Key Laboratory of Insect Developmental and Evolutionary BiologyShanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghaiChina
- School of Biological and Chemical Sciences, Queen Mary University of LondonLondonUK
| | - W. Xie
- Key Laboratory of Insect Developmental and Evolutionary BiologyShanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghaiChina
| | - Y.‐X. Luan
- Key Laboratory of Insect Developmental and Evolutionary BiologyShanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghaiChina
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied TechnologyInstitute of Insect Science and Technology, School of Life Sciences, South China Normal UniversityGuangzhouChina
| |
Collapse
|
6
|
Nitta Y, Matsui S, Kato Y, Kaga Y, Sugimoto K, Sugie A. Analysing the evolutional and functional differentiation of four types of Daphnia magna cryptochrome in Drosophila circadian clock. Sci Rep 2019; 9:8857. [PMID: 31222139 PMCID: PMC6586792 DOI: 10.1038/s41598-019-45410-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/06/2019] [Indexed: 12/02/2022] Open
Abstract
Cryptochrome (CRY) plays an important role in the input of circadian clocks in various species, but gene copies in each species are evolutionarily divergent. Type I CRYs function as a photoreceptor molecule in the central clock, whereas type II CRYs directly regulate the transcriptional activity of clock proteins. Functions of other types of animal CRYs in the molecular clock remain unknown. The water flea Daphnia magna contains four Cry genes. However, it is still difficult to analyse these four genes. In this study, we took advantage of powerful genetic resources available from Drosophila to investigate evolutionary and functional differentiation of CRY proteins between the two species. We report differences in subcellular localisation of each D. magna CRY protein when expressed in the Drosophila clock neuron. Circadian rhythm behavioural experiments revealed that D. magna CRYs are not functionally conserved in the Drosophila molecular clock. These findings provide a new perspective on the evolutionary conservation of CRY, as functions of the four D. magna CRY proteins have diverse subcellular localisation levels. Furthermore, molecular clocks of D. magna have been evolutionarily differentiated from those of Drosophila. This study highlights the extensive functional diversity existing among species in their complement of Cry genes.
Collapse
Affiliation(s)
- Yohei Nitta
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Sayaka Matsui
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yukine Kato
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yosuke Kaga
- School of Medicine, Niigata University, Niigata, Japan
| | - Kenkichi Sugimoto
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, Japan.
| | - Atsushi Sugie
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan.
- Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
7
|
Li Y, Zhang Z, Feng L, Zhao X, Zhang DC, Yin H. Gene and expression analysis of the hexamerin family proteins from the grasshopper, Locusta migratoria(Orthoptera: Acridoidea). BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1373601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yanli Li
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Zitong Zhang
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Li Feng
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Xueqian Zhao
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Dao Chuan Zhang
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
- The Key Laboratory of Zoological Systematics and Application, Hebei University, Baoding, Hebei, PR China
| | - Hong Yin
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
- The Key Laboratory of Zoological Systematics and Application, Hebei University, Baoding, Hebei, PR China
| |
Collapse
|
8
|
Burmester T. Expression and evolution of hexamerins from the tobacco hornworm, Manduca sexta, and other Lepidoptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:226-34. [PMID: 25497415 DOI: 10.1016/j.ibmb.2014.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/04/2014] [Accepted: 11/28/2014] [Indexed: 05/27/2023]
Abstract
Hexamerins are large hemolymph-proteins that accumulate during the late larval stages of insects. Hexamerins have emerged from hemocyanin, but have lost the ability to bind oxygen. Hexamerins are mainly considered as storage proteins for non-feeding stages, but may also have other functions, e.g. in cuticle formation, transport and immune response. The genome of the hornworm Manduca sexta harbors six hexamerin genes. Two of them code for arylphorins (Msex2.01690, Msex2.15504) and two genes correspond to a methionine-rich hexamerin (Msex2.10735) and a moderately methionine-rich hexamerin (Msex2.01694), respectively. Two other genes do not correspond to any known hexamerin and distantly resemble the arylphorins (Msex2.01691, Msex2.01693). Five of the six hexamerin genes are clustered within ∼45 kb on scaffold 00023, which shows conserved synteny in various lepidopteran genomes. The methionine-rich hexamerin gene is located at a distinct site. M. sexta and other Lepidoptera have lost the riboflavin-binding hexamerin. With the exception of Msex2.01691, which displays low mRNA levels throughout the life cycle, all hexamerins are most highly expressed during pre-wandering phase of the 5th larval instar of M. sexta, supporting their role as storage proteins. Notably, Msex2.01691 is most highly expressed in the brain, suggesting a divergent function. Phylogenetic analyses showed that hexamerin evolution basically follows insect systematics. Lepidoptera display an unparalleled diversity of hexamerins, which exceeds that of other hexapod orders. In contrast to previous analyses, the lepidopteran hexamerins were found monophyletic. Five distinct types of hexamerins have been identified in this order, which differ in terms of amino acid composition and evolutionary history: i. the arylphorins, which are rich in aromatic amino acids (∼20% phenylalanine and tyrosine), ii. the distantly related arylphorin-like hexamerins, iii. the methionine-rich hexamerins, iv. the moderately methionine rich hexamerins, and v. the riboflavin-binding hexamerins.
Collapse
Affiliation(s)
- Thorsten Burmester
- Institute of Zoology and Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany.
| |
Collapse
|
9
|
Xie W, Luan YX. Evolutionary implications of dipluran hexamerins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 46:17-24. [PMID: 24462816 DOI: 10.1016/j.ibmb.2014.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 06/03/2023]
Abstract
Hexamerin, as a member of the highly conserved arthropod hemocyanin superfamily, has been shown to be a good marker for the phylogenetic study of insects. However, few studies have been conducted on hexamerins in basal hexapods. The first Diplura hexamerin CspHex1 was reported only recently (Pick and Burmester, 2009). Remarkably, CspHex1 was suggested to have evolved from hexapod hemocyanin subunit type 2, which is very different from all insect hexamerins originated from hexapod hemocyanin subunit type 1. Does this finding suggest double or even multiple origins of hexamerins in Hexapoda? To find more evidence on the evolution of dipluran hexamerins, eight putative hexamerin gene sequences were obtained from three dipluran species, as were three hemocyanin genes from two collembolan species. Unexpectedly, after adding the new sequences into the phylogenetic analyses, all dipluran hexamerins including CspHex1 grouped together and as sister to the insect hexamerins, with high likelihood and Bayesian support. Our analysis supports a single origin of the hexamerins in Hexapoda, and suggests the close relationship between Diplura and Insecta. In addition, our study indicates that a relatively comprehensive taxa sampling is essential to solve some problems in phylogenetic reconstruction.
Collapse
Affiliation(s)
- Wei Xie
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yun-Xia Luan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
10
|
Poteat MD, Garland T, Fisher NS, Wang WX, Buchwalter DB. Evolutionary patterns in trace metal (cd and zn) efflux capacity in aquatic organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7989-7995. [PMID: 23772993 DOI: 10.1021/es401368u] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The ability to eliminate (efflux) metals is a physiological trait that acts as a major driver of bioaccumulation differences among species. This species-specific trait plays a large role in determining the metal loads that species will need to detoxify to persist in chronically contaminated environments and, therefore, contributes significantly to differences in environmental sensitivity among species. To develop a better understanding of how efflux varies within and among taxonomic groupings, we compared Cd and Zn efflux rate constants (ke values) among members of two species-rich aquatic insect families, Ephemerellidae and Hydropsychidae, and discovered that ke values strongly covaried across species. This relationship allowed us to successfully predict Zn efflux from Cd data gathered from aquatic species belonging to other insect orders and families. We then performed a broader, comparative analysis of Cd and Zn ke values from existing data for arthropods, mollusks, annelids, and chordates (77 species total) and found significant phylogenetic patterns. Taxonomic groups exhibited marked variability in ke magnitudes and ranges, suggesting that some groups are more constrained than others in their abilities to eliminate metals. Understanding broader patterns of variability can lead to more rational extrapolations across species and improved protectiveness in water-quality criteria and ecological assessment.
Collapse
Affiliation(s)
- Monica D Poteat
- Department of Environmental and Molecular Toxicology, North Carolina State University , Raleigh, North Carolina 27695, USA
| | | | | | | | | |
Collapse
|
11
|
Amore V, García MAP, Timperio AM, Egidi G, Ubero-Pascal N, Fochetti R. Comparative proteomic analysis of hemocyanins in Dinocras cephalotes and Perla marginata (Plecoptera). ENVIRONMENTAL ENTOMOLOGY 2011; 40:167-171. [PMID: 22182626 DOI: 10.1603/en10088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Hemocyanins are large oligomeric respiratory proteins found in many arthropods and mollusks. The overall expression of hemocyanin mRNA, revealed by studies on Plecoptera hemocyanin sequencing, has raised the question of whether the protein is expressed or not. In fact, the presence of expressed hemocyanin has only been reported in the literature for one species, Perla marginata (Panzer, 1799). In this paper, we report the presence of hemocyanin and hexamerin proteins in Dinocras cephalotes (Curtis, 1827), a species closely related to P. marginata. To assess the presence of hemocyanin, we used a reproducible and highly sensitive method based on liquid chromatography tandem mass spectrometry. We conclude that regardless of its putative function (respiratory, immune defense, storage protein), the hemocyanin is actually expressed in species in which its mRNA is present.
Collapse
Affiliation(s)
- V Amore
- Dipartimento di Scienze Ambientali, Università della Tuscia, Viterbo, Italia
| | | | | | | | | | | |
Collapse
|
12
|
Amore V, Gaetani B, Angeles Puig M, Fochetti R. New data on the presence of hemocyanin in Plecoptera: recomposing a puzzle. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:153. [PMID: 22236413 PMCID: PMC3391926 DOI: 10.1673/031.011.15301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 10/12/2011] [Indexed: 05/31/2023]
Abstract
The specific role of hemocyanin in Plecoptera (stoneflies) is still not completely understood, since none of the hypotheses advanced have proven fully convincing. Previous data show that mRNA hemocyanin sequences are not present in all Plecoptera, and that hemocyanin does not seem to be uniformly distributed within the order. All species possess hexamerins, which are multifunction proteins that probably originated from hemocyanin. In order to obtain an increasingly detailed picture on the presence and distribution of hemocyanin across the order, this study presents new data regarding nymphs and adults of selected Plecoptera species. Results confirm that the hemocyanin expression differs among nymphs in the studied stonefly species. Even though previous studies have found hemocyanin in adults of two stonefly species it was not detected in the present study, even in species where nymphs show hemocyanin, suggesting that the physiological need of this protein can change during life cycle. The phylogenetic pattern obtained using hemocyanin sequences matches the accepted scheme of traditional phylogeny based on morphology, anatomy, and biology. It is remarkable to note that the hemocyanin conserved region acts like a phylogenetic molecular marker within Plecoptera.
Collapse
Affiliation(s)
- Valentina Amore
- Environmental Sciences Department, University of Viterbo, 01100 Viterbo, Italy
- Centro de Estudios Avanzados de Blanes (CEAB-CSIC), 17300 Blanes, España
| | - Brunella Gaetani
- Environmental Sciences Department, University of Viterbo, 01100 Viterbo, Italy
| | - Maria Angeles Puig
- Centro de Estudios Avanzados de Blanes (CEAB-CSIC), 17300 Blanes, España
| | - Romolo Fochetti
- Environmental Sciences Department, University of Viterbo, 01100 Viterbo, Italy
| |
Collapse
|
13
|
Manohar D, Gullipalli D, Dutta-Gupta A. Ecdysteroid-mediated expression of hexamerin (arylphorin) in the rice moth, Corcyra cephalonica. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1224-1231. [PMID: 20361975 DOI: 10.1016/j.jinsphys.2010.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/13/2010] [Accepted: 03/20/2010] [Indexed: 05/29/2023]
Abstract
The insect development is intricately controlled by morphogenetic hormones, juvenile hormone (JH) and 20-hydroxyecdysone (20E) through the regulation of gene/protein expression. The role of hexamerins in the metamorphosis of insects and reproduction and their control by 20E at the gene level has been widely reported in insects. In the present study we for the first time report the role of ecdysteroids in the regulation of hexamerin synthesis in a lepidopteran insect Corcyra cephalonica. The hormonal studies were carried out using the normal and the thorax-ligated insects with both 20E and its non-steroidal agonist RH-5992. The in vitro as well as in vivo studies showed a stimulatory effect of 20E and its agonist on the hexamerin synthesis including arylphorin (Hex 2), whereas hormone blockade with azadirachtin caused a time dependent reduction in synthesis. The northern analysis using Hex 2b cDNA as probe too confirmed the above result. This was followed by the cloning of the Hex 2b gene. The full length of the genomic clone was found to be 3.5kb long and has four exons interspersed by three introns. The genome walking analysis revealed the presence of a steroid hormone binding sequence "Ecdysone response element" (EcRE) in the 5' untranscribed region (UTR) of the gene. The data presented in this paper clearly suggest that hexamerin synthesis in C. cephalonica is transcriptionally regulated by 20E.
Collapse
Affiliation(s)
- Damara Manohar
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | | |
Collapse
|
14
|
Two storage hexamerins from the beet armyworm Spodoptera exigua: cloning, characterization and the effect of gene silencing on survival. BMC Mol Biol 2010; 11:65. [PMID: 20807423 PMCID: PMC2939506 DOI: 10.1186/1471-2199-11-65] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 08/31/2010] [Indexed: 11/16/2022] Open
Abstract
Background In insects, hemocyanin superfamily proteins accumulate apparently to serve as sources of amino acids during metamorphosis, reproduction and development. Storage hexamerins are important members of the hemocyanin superfamily. Although insects possess storage hexamerins, very little is known about the character and specific functions of hexamerin 1 and storage protein 1 in insect development. Results To gain insight into the function of storage proteins in insects, cDNAs for two storage proteins were cloned from the fat body of Spodoptera exigua. S. exigua hexamerin 1 (SeHex) cDNA contained an open reading frame of 2124 nucleotides encoding a protein of 707 amino acids with a predicted molecular weight of 82.12 kDa. S. exigua storage protein 1 (SeSP1) cDNA contained an open reading frame of 2256 bp encoding a protein of 751 amino acids with a predicted molecular weight of ~88.84 kDa. Northern blotting analyses revealed that SeHex mRNA is expressed in the fat body, cuticle, midgut and Malpighian tubules and SeSP1 in fat body, Malpighian tubules and tracheae. SeHex and SeSP1 mRNAs were expressed in fat body at different levels from first instar larvae to pupae, with expression was much lower from first instar larvae to first-day fifth instar larvae. SeHex transcript expression was high in fat body of wandering larvae (pre-pupae) and steadily decreased to the seventh pupal day. SeSP1 transcript expression was high in fat body of wandering larvae, 2-day-old fifth instar larvae and 2-, 4- and 7-day-old pupae. SeHex and SeSP1 mRNAs levels were expressed lower than control on the condition of starvation at 12 h. Of insects injected with SeHex and SeSP1 dsRNA, 38.7% and 24.3% survived to 204 h after treatment, respectively. This was significantly lower than in the controls groups. Conclusions These findings provide new data on the tissue distribution, expression patterns and the function in starvation of storage proteins. RNA interference results revealed that storage protein genes are key in metamorphosis, reproduction and insect development. The results for SeHex and SeSP1 interference reveal that a potential method to control this pest is to disrupt the regulation of storage proteins.
Collapse
|
15
|
Martins JR, Nunes FMF, Cristino AS, Simões ZLP, Bitondi MMG. The four hexamerin genes in the honey bee: structure, molecular evolution and function deduced from expression patterns in queens, workers and drones. BMC Mol Biol 2010; 11:23. [PMID: 20346164 PMCID: PMC2861669 DOI: 10.1186/1471-2199-11-23] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 03/26/2010] [Indexed: 11/26/2022] Open
Abstract
Background Hexamerins are hemocyanin-derived proteins that have lost the ability to bind copper ions and transport oxygen; instead, they became storage proteins. The current study aimed to broaden our knowledge on the hexamerin genes found in the honey bee genome by exploring their structural characteristics, expression profiles, evolution, and functions in the life cycle of workers, drones and queens. Results The hexamerin genes of the honey bee (hex 70a, hex 70b, hex 70c and hex 110) diverge considerably in structure, so that the overall amino acid identity shared among their deduced protein subunits varies from 30 to 42%. Bioinformatics search for motifs in the respective upstream control regions (UCRs) revealed six overrepresented motifs including a potential binding site for Ultraspiracle (Usp), a target of juvenile hormone (JH). The expression of these genes was induced by topical application of JH on worker larvae. The four genes are highly transcribed by the larval fat body, although with significant differences in transcript levels, but only hex 110 and hex 70a are re-induced in the adult fat body in a caste- and sex-specific fashion, workers showing the highest expression. Transcripts for hex 110, hex 70a and hex70b were detected in developing ovaries and testes, and hex 110 was highly transcribed in the ovaries of egg-laying queens. A phylogenetic analysis revealed that HEX 110 is located at the most basal position among the holometabola hexamerins, and like HEX 70a and HEX 70c, it shares potential orthology relationship with hexamerins from other hymenopteran species. Conclusions Striking differences were found in the structure and developmental expression of the four hexamerin genes in the honey bee. The presence of a potential binding site for Usp in the respective 5' UCRs, and the results of experiments on JH level manipulation in vivo support the hypothesis of regulation by JH. Transcript levels and patterns in the fat body and gonads suggest that, in addition to their primary role in supplying amino acids for metamorphosis, hexamerins serve as storage proteins for gonad development, egg production, and to support foraging activity. A phylogenetic analysis including the four deduced hexamerins and related proteins revealed a complex pattern of evolution, with independent radiation in insect orders.
Collapse
Affiliation(s)
- Juliana R Martins
- Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
16
|
Hathaway M, Hatle J, Li S, Ding X, Barry T, Hong F, Wood H, Borst D. Characterization of hexamerin proteins and their mRNAs in the adult lubber grasshopper: The effects of nutrition and juvenile hormone on their levels. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:323-32. [DOI: 10.1016/j.cbpa.2009.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
|
17
|
Pick C, Burmester T. A putative hexamerin from a Campodea sp. suggests an independent origin of haemocyanin-related storage proteins in Hexapoda. INSECT MOLECULAR BIOLOGY 2009; 18:673-679. [PMID: 19754744 DOI: 10.1111/j.1365-2583.2009.00910.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Haemocyanins are copper-containing respiratory proteins in the arthropod haemolymph. In hexapods, haemocyanins gave rise to hexamerins, which have lost the ability to bind copper and thus oxygen. Hexamerins are thought to act mainly as storage proteins in nonfeeding periods. So far, hexamerins have only been identified in ectognathan hexapods, but not in Entognatha. Here we report the identification of a putative hexamerin from Campodea sp. (Diplura). The full-length cDNA of Campodea sp. hexamerin 1 (CspHex1) measures 2188 bp and translates into a native polypeptide of 667 amino acids. As in other hexamerins, the six copper-coordinating histidines are not conserved. However, sequence comparison and phylogenetic analyses demonstrated that CspHex1 is not closely related to other hexapod hexamerins, which derive from hexapod type 1 haemocyanin subunits in the ectognathan lineage, but rather resembles a derivative of hexapod type 2 haemocyanin subunits. Hence, haemocyanin-related storage proteins emerged at least two times independently in Hexapoda.
Collapse
Affiliation(s)
- C Pick
- Institute of Zoology, University of Hamburg, Hamburg, Germany
| | | |
Collapse
|
18
|
Isolation, Characterisation and Molecular Imaging of a High-Molecular-Weight Insect Biliprotein, a Member of the Hexameric Arylphorin Protein Family. J Mol Biol 2009; 389:74-89. [DOI: 10.1016/j.jmb.2009.03.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 03/28/2009] [Accepted: 03/31/2009] [Indexed: 11/30/2022]
|
19
|
Amore V, Belardinelli M, Guerra L, Buonocore F, Fausto AM, Ubero-Pascal N, Fochetti R. Do all stoneflies nymphs have respiratory proteins? Further data on the presence of hemocyanin in the larval stages of plecoptera species. INSECT MOLECULAR BIOLOGY 2009; 18:203-211. [PMID: 19320761 DOI: 10.1111/j.1365-2583.2008.00859.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Contrary to what was assumed regarding the presence of respiratory proteins in insects, a functional hemocyanin was recently found in larvae and adults of the stoneflies species Perla marginata, whereas in the close species Perla grandis, hemocyanin functionality was deduced from sequence data. In order to verify if the presence of this ancient trait is widespread within the order and to investigate why stoneflies have maintained it, we have extended the search for hemocyanin to species of other Plecoptera families. In particular, we assessed the presence of hemocyanin in the larval stage of nine Plecoptera species, belonging to six of the seven families of the European stonefly-fauna, and analyzed its potential functionality as deduced by sequence data. We cloned and sequenced the corresponding cDNAs and studied their expression with RT-PCR technique. Moreover, we performed homology studies using the deduced amino acid sequences. On the basis of our analysis, we hypothesized a functional role of the hemocyanin only for two species: Dinocras cephalotes and Isoperla grammatica (Perloidea). In all the investigated Nemouroidea and in Siphonoperla torrentium (Perloidea), this protein may have been lost. Larval size, life-cycle length, trophic role and environmental induction are discussed as possible explanations of these different physiological requirements.
Collapse
Affiliation(s)
- V Amore
- Dipartimento di Scienze Ambientali, Università della Tuscia, Viterbo, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Hemocyanins are copper-containing, respiratory proteins that have been thoroughly studied in various arthropod subphyla. Specific O(2)-transport proteins have long been considered unnecessary in Hexapoda (including Insecta), which acquire O(2) via an elaborate tracheal system. However, we recently identified a functional hemocyanin in the stonefly Perla marginata (Plecoptera) and in the firebrat Thermobia domestica (Zygentoma). We used RT-PCR and RACE experiments to study the presence of hemocyanin in a broad range of ametabolous and hemimetabolous hexapod taxa. We obtained a total of 12 full-length and 5 partial cDNA sequences of hemocyanins from representatives of Collembola, Archeognatha, Dermaptera, Orthoptera, Phasmatodea, Mantodea, Isoptera and Blattaria. No hemocyanin could be identified in Protura, Diplura, Ephemeroptera, Odonata, or in the Eumetabola (Holometabola + Hemiptera). It is not currently known why hemocyanin has been lost in some taxa. Hexapod hemocyanins usually consist of two distinct subunit types. Whereas type 1 subunits may represent the central building block, type 2 subunits may be absent in some species. Phylogenetic analyses support the Pancrustacea hypothesis and show that type 1 and type 2 subunits diverged before the emergence of the Hexapoda. The copperless insect storage hexamerins evolved from hemocyanin type 1 subunits, with Machilis germanica (Archeognatha) hemocyanin being a possible 'intermediate'. The evolution of hemocyanin subunits follows the widely accepted phylogeny of the Hexapoda and provides strong evidence for the monophyly of the Polyneoptera (Plecoptera, Dermaptera, Orthoptera, Phasmatodea, Mantodea, Isoptera, Blattaria) and the Dictyoptera (Mantodea, Isoptera, Blattaria). The Blattaria are paraphyletic with respect to the termites.
Collapse
Affiliation(s)
- Christian Pick
- Institute of Zoology and Zoological Museum, University of Hamburg, Hamburg, Germany
| | | | | |
Collapse
|