1
|
Tsubota T, Sakai H, Sezutsu H. Genome Editing of Silkworms. Methods Mol Biol 2023; 2637:359-374. [PMID: 36773160 DOI: 10.1007/978-1-0716-3016-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Silkworm is a lepidopteran insect that has been used as a model for a wide variety of biological studies. The microinjection technique is available, and it is possible to cause transgenesis as well as target gene disruption via the genome editing technique. TALEN-mediated knockout is especially effective in this species. We also succeeded in the precise and efficient integration of a donor vector using the precise integration into target chromosome (PITCh) method. Here we describe protocols for ZFN (zinc finger nuclease)-, TALEN (transcription activator-like effector nuclease)-, and CRISPR/Cas9-mediated genome editing as well as the PITCh technique in the silkworm. We consider that all of these techniques can contribute to the further promotion of various biological studies in the silkworm and other insect species.
Collapse
Affiliation(s)
- Takuya Tsubota
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hiroki Sakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| |
Collapse
|
2
|
Wang YX, Chen HF, Yin ZY, Chen WL, Lu LT. The genetic adaptations of Toxoptera aurantii facilitated its rapid multiple plant hosts dispersal and invasion. Genomics 2022; 114:110472. [PMID: 36055573 DOI: 10.1016/j.ygeno.2022.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 01/14/2023]
Abstract
Toxoptera aurantii Boyer de Fonscolombe (Hemiptera: Aphididae) can attack many plant hosts, including tea (Camellia sinensis L.), citrus (Citrus spp.), lychee (Litchi chinensis Sonn.), banana (Musa spp.), and pineapple (Ananas comasus L.) among others. It is a widely distributed hexapod and one of the most destructive pests in tea plantations, causing enormous economic losses in tea production each year. A high-quality reference genome is important to study the phylogenetics and evolution of T. aurantii because its genome is highly heterozygous and repetitive. We obtained a de novo genome assembly of T. aurantii at the chromosome level using a combination of long Nanopore reads from sequencing with high-throughput chromosome conformation capture technology. When finally assembled, the genome was 318.95 Mb on four chromosomes with a 15.19 Mb scaffold N50. A total of 12,162 genes encoded proteins, while there were 22.01% repetitive sequences that totaled 67.73 Mb. Phylogenetic analyses revealed that T. aurantii and Aphis gossypii parted ways approximately 7.6 million years ago (Mya). We used a combination of long-read single-molecule sequencing with Hi-C-based chromatin interaction maps that resulted in a reference chromosomal level reference genome of T. aurantii that was high quality. Our results will enable the exploration of the genetics behind the special biological features of T. aurantii and also provide a source of data that should be useful to compare the compare genome among the Hemiptera.
Collapse
Affiliation(s)
- Yan-Xia Wang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Hu-Fang Chen
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Zheng-Yan Yin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Wen-Long Chen
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| | - Li-Tang Lu
- College of Tea Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Accumulation of uric acid in the epidermis forms the white integument of Samia ricini larvae. PLoS One 2018; 13:e0205758. [PMID: 30321229 PMCID: PMC6188861 DOI: 10.1371/journal.pone.0205758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/01/2018] [Indexed: 02/04/2023] Open
Abstract
The white color in the larval integument of the silkworm Bombyx mori is considered the result of uric acid accumulation in its epidermal cells. Larvae of the eri silkworm Samia ricini (Lepidoptera; Saturniidae) also have a white and opaque integument, but little is known about its coloration mechanism. In this study, we first performed a feeding assay of S. ricini larvae using allopurinol, an inhibitor of xanthine oxidase, which catalyzes the degradation of xanthine to uric acid. This treatment induced a clear translucent integument phenotype, indicating that the larval color of S. ricini is also determined by uric acid accumulation. Next, to investigate the genetic basis that controls uric acid accumulation in S. ricini larvae, we isolated and characterized the S. ricini homolog of mammalian biogenesis of lysosome-related organelles complex 1, subunit 2 (BLOS2), which is known to play a crucial role in urate granule biosynthesis. We created a transcription activator-like effector nuclease (TALEN)-mediated gene knockout of S. ricini BLOS2 (SrBLOS2) and succeeded in establishing SrBLOS2 knockout strains (SrBLOS2KO). SrBLOS2KO mutants exhibited a translucent larval integument phenotype and lacked uric acid in the epidermis, as also observed in allopurinol-fed larvae. In addition, electron microscopy revealed that urate granules were rarely observed in the epidermis of SrBLOS2KO larvae, whereas abundant granules were found in the epidermis of wild-type larvae. These results clearly demonstrated that larval S. ricini accumulates uric acid as urate granules in the epidermis and that the genetic basis that controls uric acid accumulation is evolutionarily conserved in S. ricini and B. mori.
Collapse
|
4
|
Fujii T, Yamamoto K, Banno Y. Translucent larval integument and flaccid paralysis caused by genome editing in a gene governing molybdenum cofactor biosynthesis in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 99:11-16. [PMID: 29803701 DOI: 10.1016/j.ibmb.2018.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Translucency of the larval integument in Bombyx mori is caused by a lack of uric acid in the epidermis. Hime'nichi translucent (ohi) is a unique mutation causing intermediate translucency of the larval integument and male-specific flaccid paralysis. To determine the gene associated with the ohi mutation, the ohi locus was mapped to a 400-kb region containing 29 predicted genes. Among the genes in this region, we focused on Bombyx homolog of mammalian Gephyrin (BmGphn), which regulates molybdenum cofactor (MoCo) biosynthesis, because MoCo is indispensable for the activity of xanthine dehydrogenase (XDH), a key enzyme in uric acid biosynthesis. The translucent integument of ohi larvae turned opaque after injection of bovine xanthine oxidase, which is a mammalian equivalent to XDH, indicating that XDH activity is defective in ohi larvae. RT-PCR and sequencing analysis showed that (i) in ohi larvae, expression of the BmGphn gene was repressed in the fat body where uric acid is synthesized, and (ii) there was no amino acid substitution in the ohi mutant allele. Finally, we obtained BmGphn knockout alleles (hereafter denoted as BmGphnΔ) by using CRISPR/Cas9. The resulting ohi/BmGphnΔ larvae had translucent integuments, demonstrating that BmGphn is the gene responsible for the ohi phenotype. Our results show that repressed expression of BmGphn is a causative factor for the defective MoCo biosynthesis and XDH activity observed in ohi larvae. Interestingly, all male BmGphnΔ homozygotes died before pupation and showed a flaccid paralysis phenotype. The genetic and physiological mechanisms underlying this flaccid paralysis phenotype are also discussed.
Collapse
Affiliation(s)
- Tsuguru Fujii
- Laboratory of Silkworm Genetic Resources, Institute of Genetic Resources, Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Kazunori Yamamoto
- Laboratory of Silkworm Genetic Resources, Institute of Genetic Resources, Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Yutaka Banno
- Laboratory of Silkworm Genetic Resources, Institute of Genetic Resources, Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, Fukuoka, 812-8581, Japan.
| |
Collapse
|
5
|
Zhu GH, Peng YC, Zheng MY, Zhang XQ, Sun JB, Huang Y, Dong SL. CRISPR/Cas9 mediated BLOS2 knockout resulting in disappearance of yellow strips and white spots on the larval integument in Spodoptera litura. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:29-35. [PMID: 28927827 DOI: 10.1016/j.jinsphys.2017.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
The custom-design bacterial CRISPR/Cas9 system has been recently used in some insects, indicating a powerful technique for studies on gene function and transgenic insects. However, its use in lepidopteran pests is scarce. Here, we reported a CRISPR/Cas9 system mediated mutagenesis of biogenesis of lysosome-related organelles complex1, subunit 2 (BLOS2) gene in a noctuid pest Spodoptera litura. A fragment of SlitBLOS2 was identified by analyzing a S. litura transcriptome database by local basic BLAST, and the full length cDNA was acquired by RACE strategy. To clarify the function of SlitBLOS2, CRISPR/Cas9 based target mutagenesis of SlitBLOS2 was achieved, displaying a mosaic translucent integument in 62.3-70.6% larvae of G0 generation. Further PCR-based genotype analysis demonstrated various mutations occurred at the SlitBLOS2 specific target site. A homozygote mutant individual was obtained in G1 generation, in which the yellow strips and white spots on the larval integument completely disappeared. Our study clearly demonstrates the function of SlitBLOS2 in the integument coloration, and thus provides a useful marker gene for genome editing based gene functional study and pest control strategy in S. litura as well as other lepidopteran pests.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying-Chuan Peng
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei-Yan Zheng
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Qing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jia-Bin Sun
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai Institutes for Biological Sciences, Shanghai 200032, China
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Fujii T, Yamamoto K, Banno Y. Molybdenum cofactor deficiency causes translucent integument, male-biased lethality, and flaccid paralysis in the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 73:20-26. [PMID: 27041280 DOI: 10.1016/j.ibmb.2016.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 06/05/2023]
Abstract
Uric acid accumulates in the epidermis of Bombyx mori larvae and renders the larval integument opaque and white. Yamamoto translucent (oya) is a novel spontaneous mutant with a translucent larval integument and unique phenotypic characteristics, such as male-biased lethality and flaccid larval paralysis. Xanthine dehydrogenase (XDH) that requires a molybdenum cofactor (MoCo) for its activity is a key enzyme for uric acid synthesis. It has been observed that injection of a bovine xanthine oxidase, which corresponds functionally to XDH and contains its own MoCo activity, changes the integuments of oya mutants from translucent to opaque and white. This finding suggests that XDH/MoCo activity might be defective in oya mutants. Our linkage analysis identified an association between the oya locus and chromosome 23. Because XDH is not linked to chromosome 23 in B. mori, MoCo appears to be defective in oya mutants. In eukaryotes, MoCo is synthesized by a conserved biosynthesis pathway governed by four loci (MOCS1, MOCS2, MOCS3, and GEPH). Through a candidate gene approach followed by sequence analysis, a 6-bp deletion was detected in an exon of the B. mori molybdenum cofactor synthesis-step 1 gene (BmMOCS1) in the oya strain. Moreover, recombination was not observed between the oya and BmMOCS1 loci. These results indicate that the BmMOCS1 locus is responsible for the oya locus. Finally, we discuss the potential cause of male-biased lethality and flaccid paralysis observed in the oya mutants.
Collapse
Affiliation(s)
- Tsuguru Fujii
- Laboratory of Silkworm Genetic Resources, Institute of Genetic Resources, Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Kimiko Yamamoto
- National Institute of Agrobiological Sciences, Tsukuba 305-8634, Japan
| | - Yutaka Banno
- Laboratory of Silkworm Genetic Resources, Institute of Genetic Resources, Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
7
|
Tabunoki H, Bono H, Ito K, Yokoyama T. Can the silkworm ( Bombyx mori) be used as a human disease model? Drug Discov Ther 2016; 10:3-8. [DOI: 10.5582/ddt.2016.01011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hiroko Tabunoki
- Department of Biological Production, Faculty of Agriculture, Tokyo university of Agriculture and Technology
| | - Hidemasa Bono
- Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS)
| | - Katsuhiko Ito
- Department of Biological Production, Faculty of Agriculture, Tokyo university of Agriculture and Technology
| | - Takeshi Yokoyama
- Department of Biological Production, Faculty of Agriculture, Tokyo university of Agriculture and Technology
| |
Collapse
|
8
|
Fujii T, Abe H, Kawamoto M, Banno Y, Shimada T. Positional cloning of the sex-linked giant egg (Ge) locus in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2015; 24:213-221. [PMID: 25469867 DOI: 10.1111/imb.12150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The giant egg (Ge) locus is a Z-linked mutation that leads to the production of large eggs. Cytological observations suggest that an unusual translocation of a large fragment of the W chromosome bearing a putative egg size-determining gene, Esd, gave rise to giant egg mutants. However, there is currently no molecular evidence confirming either a W-Z translocation or the presence of Esd on the W chromosome. To elucidate the origin of giant egg mutants, we performed positional cloning. We observed that the Bombyx mori. orthologue of the human Phytanoyl-CoA dioxygenase domain containing 1 gene (PHYHD1) is disrupted in giant egg mutants. PHYHD1 is highly conserved in eukaryotes and is predicted to be a Fe(II) and 2-oxoglutarate-dependent oxygenase. Exon skipping in one of the two available Ge mutants is probably caused by the insertion of a non-long terminal repeat transposon into intron 4 in the vicinity of the 5' splice site. Segmental duplication in Ge(2) , an independent allele, was caused by unequal recombination between short interspersed elements inserted into introns 3 and 5. Our results indicate that (1) Bombyx PHYHD1 is responsible for the Ge mutants and that (2) the Ge locus is unrelated to the W-linked putative Esd. To our knowledge, this is the first report describing the phenotypic defects caused by mutations in PHYHD1 orthologues.
Collapse
Affiliation(s)
- T Fujii
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan; Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
9
|
Wang L, Kiuchi T, Fujii T, Daimon T, Li M, Banno Y, Kikuta S, Kikawada T, Katsuma S, Shimada T. Mutation of a novel ABC transporter gene is responsible for the failure to incorporate uric acid in the epidermis of ok mutants of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:562-571. [PMID: 23567590 DOI: 10.1016/j.ibmb.2013.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
ok mutants of the silkworm, Bombyx mori, exhibit highly translucent larval skin resulting from the inability to incorporate uric acid into the epidermal cells. Here we report the identification of a gene responsible for the ok mutation using positional cloning and RNAi experiments. In two independent ok mutant strains, we found a 49-bp deletion and a 233-bp duplication, respectively, in mRNAs of a novel gene, Bm-ok, which encodes a half-type ABC transporter, each of which results in translation of a truncated protein in each mutant. Although the Bm-ok sequence was homologous to well-known transporter genes, white, scarlet, and brown in Drosophila, the discovery of novel orthologs in the genomes of lepidopteran, hymenopteran, and hemipteran insects identifies it as a member of a new distinct subfamily of transporters. Embryonic RNAi of Bm-ok demonstrated that repression of Bm-ok causes a translucent phenotype in the first-instar silkworm larva. We discuss the possibility that Bm-ok forms a heterodimer with another half-type ABC transporter, Bmwh3, and acts as a uric acid transporter in the silkworm epidermis.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang L, Kiuchi T, Fujii T, Daimon T, Li M, Banno Y, Katsuma S, Shimada T. Reduced expression of the dysbindin-like gene in the Bombyx mori ov mutant exhibiting mottled translucency of the larval skin. Genome 2013; 56:101-8. [DOI: 10.1139/gen-2012-0127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ov (mottled translucent of Var) mutant, an oily mutant of Bombyx mori, exhibits mottled translucent skin with a varying degree of transparency among individuals. By linkage analysis of 2112 backcross individuals using polymorphic DNA markers, we successfully mapped a 179-kb region of chromosome 20 responsible for the ov phenotype. This region contains nine predicted genes. We compared the mRNA expression of these nine genes between the wild type and mutants and found that the expression of one of them, Bmdysb, was strikingly decreased in the epidermis of ov as well as its allelomorph, ovp. Moreover, its expression level was well correlated with the degree of transparency among individuals. Bmdysb was homologous to DTNBP1 encoding human dysbindin, a subunit of the biogenesis of lysosome-related organelles complex-1. Our results suggest that the translucent skin may be due to repression of Bmdysb in the ov mutants and that Bmdysb plays an important role in the formation and accumulation of urate granules in the silkworm epidermis.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Tsuguru Fujii
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Takaaki Daimon
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Muwang Li
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Yutaka Banno
- Institute of Genetic Resources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, Japan
| |
Collapse
|
11
|
Sajwan S, Takasu Y, Tamura T, Uchino K, Sezutsu H, Zurovec M. Efficient disruption of endogenous Bombyx gene by TAL effector nucleases. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:17-23. [PMID: 23142190 DOI: 10.1016/j.ibmb.2012.10.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 06/01/2023]
Abstract
Engineered nucleases are proteins that are able to cleave DNA at specified sites in the genome. These proteins have recently been used for gene targeting in a number of organisms. We showed earlier that zinc finger nucleases (ZFNs) can be used for generating gene-specific mutations in Bombyx mori by an error-prone DNA repair process of non-homologous end joining (NHEJ). Here we test the utility of another type of chimeric nuclease based on bacterial TAL effector proteins in order to induce targeted mutations in silkworm DNA. We designed three TAL effector nucleases (TALENs) against the genomic locus BmBLOS2, previously targeted by ZFNs. All three TALENs were able to induce mutations in silkworm germline cells suggesting a higher success rate of this type of chimeric enzyme. The efficiency of two of the tested TALENs was slightly higher than of the successful ZFN used previously. Simple design, high frequency of candidate targeting sites and comparable efficiency of induction of NHEJ mutations make TALENs an important alternative to ZFNs.
Collapse
Affiliation(s)
- Suresh Sajwan
- Institute of Entomology, Biology Centre ASCR, and Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | | | | | | | | | | |
Collapse
|
12
|
Fujii T, Banno Y, Abe H, Katsuma S, Shimada T. A homolog of the human Hermansky–Pudluck syndrome-5 (HPS5) gene is responsible for the oa larval translucent mutants in the silkworm, Bombyx mori. Genetica 2012; 140:463-8. [DOI: 10.1007/s10709-012-9694-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
|
13
|
Hara K, Fujii T, Suzuki Y, Sugano S, Shimada T, Katsuma S, Kawaoka S. Altered expression of testis-specific genes, piRNAs, and transposons in the silkworm ovary masculinized by a W chromosome mutation. BMC Genomics 2012; 13:119. [PMID: 22452797 PMCID: PMC3342102 DOI: 10.1186/1471-2164-13-119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the silkworm, Bombyx mori, femaleness is strongly controlled by the female-specific W chromosome. Originally, it was presumed that the W chromosome encodes female-determining gene(s), accordingly called Fem. However, to date, neither Fem nor any protein-coding gene has been identified from the W chromosome. Instead, the W chromosome is occupied with numerous transposon-related sequences. Interestingly, the silkworm W chromosome is a source of female-enriched PIWI-interacting RNAs (piRNAs). piRNAs are small RNAs of 23-30 nucleotides in length, which are required for controlling transposon activity in animal gonads. A recent study has identified a novel mutant silkworm line called KG, whose mutation in the W chromosome causes severe female masculinization. However, the molecular nature of KG line has not been well characterized yet. RESULTS Here we molecularly characterize the KG line. Genomic PCR analyses using currently available W chromosome-specific PCR markers indicated that no large deletion existed in the KG W chromosome. Genetic analyses demonstrated that sib-crosses within the KG line suppressed masculinization. Masculinization reactivated when crossing KG females with wild type males. Importantly, the KG ovaries exhibited a significantly abnormal transcriptome. First, the KG ovaries misexpressed testis-specific genes. Second, a set of female-enriched piRNAs was downregulated in the KG ovaries. Third, several transposons were overexpressed in the KG ovaries. CONCLUSIONS Collectively, the mutation in the KG W chromosome causes broadly altered expression of testis-specific genes, piRNAs, and transposons. To our knowledge, this is the first study that describes a W chromosome mutant with such an intriguing phenotype.
Collapse
Affiliation(s)
- Kahori Hara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The ability to manipulate the genomes of many insects has become a practical reality over the past 15 years. This has been led by the identification of several useful transposon vector systems that have allowed the identification and development of generalized, species-specific, and tissue-specific promoter systems for controlled expression of gene products upon introduction into insect genomes. Armed with these capabilities, researchers have made significant strides in both fundamental and applied transgenics in key model systems such as Bombyx mori, Tribolium casteneum, Aedes aegypti, and Anopheles stephensi. Limitations of transposon systems were identified, and alternative tools were developed, thus significantly increasing the potential for applied transgenics for control of both agricultural and medical insect pests. The next 10 years promise to be an exciting time of transitioning from the laboratory to the field, from basic research to applied control, during which the full potential of gene manipulation in insect systems will ultimately be realized.
Collapse
Affiliation(s)
- Malcolm J Fraser
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369, USA.
| |
Collapse
|
15
|
Kiuchi T, Banno Y, Katsuma S, Shimada T. Mutations in an amino acid transporter gene are responsible for sex-linked translucent larval skin of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:680-687. [PMID: 21619931 DOI: 10.1016/j.ibmb.2011.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/20/2011] [Accepted: 04/27/2011] [Indexed: 05/30/2023]
Abstract
The sex-linked translucent (os) mutation in the silkworm, Bombyx mori, confers slightly translucent larval skin resulting from a decrease in the incorporation of uric acid into epidermal cells. By positional cloning, we narrowed a region linked to the os phenotype to approximately 157 kb located on scaffold Bm_scaf72 on the Z chromosome (chromosome 1). The region contained four gene models. Sequencing analysis revealed that one of the candidate genes had a 7-bp deletion in the coding region. We also found a 111-bp deletion or single-nucleotide substitution in the same gene using independent os mutant strains. Because all the mutations caused the generation of abnormal transcripts followed by translation of a truncated protein, we conclude that the mutation of this candidate gene is responsible for the translucent larval skin of the os mutant. Sequence analysis indicated that the gene responsible for the os mutation had homology to amino acid transporters of the solute carrier family of proteins. Our results suggest that solute carrier proteins are involved in uric acid transport in insects and other invertebrates.
Collapse
Affiliation(s)
- Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
16
|
A rearrangement of the Z chromosome topology influences the sex-linked gene display in the European corn borer, Ostrinia nubilalis. Mol Genet Genomics 2011; 286:37-56. [DOI: 10.1007/s00438-011-0624-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 04/16/2011] [Indexed: 12/22/2022]
|
17
|
Fujii T, Abe H, Katsuma S, Shimada T. Identification and characterization of the fusion transcript, composed of the apterous homolog and a putative protein phosphatase gene, generated by 1.5-Mb interstitial deletion in the vestigial (Vg) mutant of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:306-312. [PMID: 21296154 DOI: 10.1016/j.ibmb.2011.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 01/13/2011] [Accepted: 01/24/2011] [Indexed: 05/30/2023]
Abstract
The vestigial (Vg) mutant is a Z-linked mutant that causes vestigial wings in the silkworm, Bombyx mori. We have previously reported a 1.5-Mb interstitial deletion on the Z chromosome bearing the Vg mutation (Z(Vg) chromosome). In this study, we found that exons 3-8 of a gene named Bmptp-Z encoding a putative tyrosine-specific protein phosphatase are deleted by the 1.5-Mb interstitial deletion. We found that a gene encoding the Bombyx homolog of Drosophila Apterous (BmAp-A) protein is located 4.5 kb downstream of the distal breakpoint of the 1.5-Mb interstitial deletion. Moreover, an in-frame fusion transcript composed of the 5' part of Bmptp-Z and the 3' part of Bmap-A is generated specific to the Z(Vg) chromosome. Effects of the in-frame fusion transcript on the vestigial phenotype are discussed.
Collapse
Affiliation(s)
- T Fujii
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
18
|
Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, Blaxter ML. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS One 2011; 6:e19315. [PMID: 21541297 PMCID: PMC3082572 DOI: 10.1371/journal.pone.0019315] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/30/2011] [Indexed: 11/19/2022] Open
Abstract
Restriction-site associated DNA (RAD) sequencing is a powerful new method for targeted sequencing across the genomes of many individuals. This approach has broad potential for genetic analysis of non-model organisms including genotype-phenotype association mapping, phylogeography, population genetics and scaffolding genome assemblies through linkage mapping. We constructed a RAD library using genomic DNA from a Plutella xylostella (diamondback moth) backcross that segregated for resistance to the insecticide spinosad. Sequencing of 24 individuals was performed on a single Illumina GAIIx lane (51 base paired-end reads). Taking advantage of the lack of crossing over in homologous chromosomes in female Lepidoptera, 3,177 maternally inherited RAD alleles were assigned to the 31 chromosomes, enabling identification of the spinosad resistance and W/Z sex chromosomes. Paired-end reads for each RAD allele were assembled into contigs and compared to the genome of Bombyx mori (n = 28) using BLAST, revealing 28 homologous matches plus 3 expected fusion/breakage events which account for the difference in chromosome number. A genome-wide linkage map (1292 cM) was inferred with 2,878 segregating RAD alleles inherited from the backcross father, producing chromosome and location specific sequenced RAD markers. Here we have used RAD sequencing to construct a genetic linkage map de novo for an organism that has no previous genome data. Comparative analysis of P. xyloxtella linkage groups with B. mori chromosomes shows for the first time, genetic synteny appears common beyond the Macrolepidoptera. RAD sequencing is a powerful system capable of rapidly generating chromosome specific data for non-model organisms.
Collapse
Affiliation(s)
- Simon W Baxter
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
19
|
Fujii T, Abe H, Shimada T. Molecular analysis of sex chromosome-linked mutants in the silkworm Bombyx mori. J Genet 2011; 89:365-74. [PMID: 20877003 DOI: 10.1007/s12041-010-0048-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In Bombyx mori, the W chromosome determines the female sex. A few W chromosome-linked mutations that cause masculinization of the female genitalia have been found. In female antennae of a recently isolated mutant, both female-type and male-type Bmdsx mRNAs were expressed, and BmOr1 (bombykol receptor) and BmOr3 (bombykal receptor), which are predominantly expressed in the antennae of male moths, were expressed about 50 times more abundantly in the antennae of mutant females than in those of normal females. These mutants are valuable resources for the molecular analysis of the sexdetermination system. Besides the Fem gene, the quantitative egg size-determining gene Esd is thought to be present on the W chromosome, based on the observation that ZWW triploid moths produce larger eggs than ZZW triploids. The most recently updated B. mori genome assembly comprises 20.5 Mb of Z chromosome sequence. Using these sequence data, responsible genes or candidate genes for four Z-linked mutants have been reported. The od (distinct oily) and spli (soft and pliable) are caused by mutation in BmBLOS2 and Bmacj6, respectively. Bmap is a candidate gene for Vg (vestigial). Similarly, Bmprm is a candidate gene for Md (muscle dystrophy), causing abnormal development of indirect flight muscle.
Collapse
Affiliation(s)
- Tsuguru Fujii
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
20
|
Fujii T, Daimon T, Uchino K, Banno Y, Katsuma S, Sezutsu H, Tamura T, Shimada T. Transgenic analysis of the BmBLOS2 gene that governs the translucency of the larval integument of the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2010; 19:659-667. [PMID: 20546041 DOI: 10.1111/j.1365-2583.2010.01020.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The larval integument of the silkworm, Bombyx mori, is opaque because urate granules accumulate in the epidermis. Although the biosynthetic pathway of uric acid is well studied, little is known about how uric acid accumulates as urate granules in epidermal cells. In the distinct oily (od) mutant silkworm, the larval integument is translucent because of the inability to construct urate granules. Recently, we have found that the od mutant has a genomic deletion in the B. mori homologue of the human biogenesis of lysosome-related organelles complex1, subunit 2 (BLOS2) gene (BmBLOS2). Here, we performed a molecular and functional characterization of BmBLOS2. Northern blot analysis showed that BmBLOS2 was ubiquitously expressed in various tissues. We analysed the structure of a newly isolated mutant (od(B) ) allelic to od and found a premature stop codon in the coding sequence of BmBLOS2 in this new mutation. Moreover, the translucent phenotype was rescued by the germ-line transformation of the wild-type BmBLOS2 allele into the od mutant. Our results suggest that BmBLOS2 is responsible for the od mutant phenotype and plays a crucial role in biogenesis of urate granules in the larval epidermis of the silkworm. The relationships amongst Hermansky-Pudlak syndrome (HPS) genes in mammals, granule group genes in Drosophila and translucent mutant genes in B. mori are discussed.
Collapse
Affiliation(s)
- T Fujii
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abe H, Fujii T, Shimada T, Mita K. Novel non-autonomous transposable elements on W chromosome of the silkworm, Bombyx mori. J Genet 2010. [DOI: 10.1007/s12041-010-0049-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Repression of tyrosine hydroxylase is responsible for the sex-linked chocolate mutation of the silkworm, Bombyx mori. Proc Natl Acad Sci U S A 2010; 107:12980-5. [PMID: 20615980 DOI: 10.1073/pnas.1001725107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pigmentation patterning has long interested biologists, integrating topics in ecology, development, genetics, and physiology. Wild-type neonatal larvae of the silkworm, Bombyx mori, are completely black. By contrast, the epidermis and head of larvae of the homozygous recessive sex-linked chocolate (sch) mutant are reddish brown. When incubated at 30 degrees C, mutants with the sch allele fail to hatch; moreover, homozygous mutants carrying the allele sch lethal (sch(l)) do not hatch even at room temperature (25 degrees C). By positional cloning, we narrowed a region containing sch to 239,622 bp on chromosome 1 using 4,501 backcross (BC1) individuals. Based on expression analyses, the best sch candidate gene was shown to be tyrosine hydroxylase (BmTh). BmTh coding sequences were identical among sch, sch(l), and wild-type. However, in sch the approximately 70-kb sequence was replaced with approximately 4.6 kb of a Tc1-mariner type transposon located approximately 6 kb upstream of BmTh, and in sch(l), a large fragment of an L1Bm retrotransposon was inserted just in front of the transcription start site of BmTh. In both cases, we observed a drastic reduction of BmTh expression. Use of RNAi with BmTh prevented pigmentation and hatching, and feeding of a tyrosine hydroxylase inhibitor also suppressed larval pigmentation in the wild-type strain, pnd(+) and in a pS (black-striped) heterozygote. Feeding L-dopa to sch neonate larvae rescued the mutant phenotype from chocolate to black. Our results indicate the BmTh gene is responsible for the sch mutation, which plays an important role in melanin synthesis producing neonatal larval color.
Collapse
|
23
|
Fujii T, Kuwazaki S, Yamamoto K, Abe H, Ohnuma A, Katsuma S, Mita K, Shimada T. Identification and molecular characterization of a sex chromosome rearrangement causing a soft and pliable (spli) larval body phenotype in the silkworm, Bombyx mori. Genome 2010; 53:45-54. [PMID: 20130748 DOI: 10.1139/g09-083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We carried out genetic and cytogenetic analyses of X-ray-induced deleterious Z chromosomes that result in a soft and pliable (spli) phenotype in the silkworm, Bombyx mori. In a B. mori strain with a spli phenotype, we found the Z chromosome broken between the sch (1-21.5) and od (1-49.6) loci. We also found a chromosomal fragment bearing a fifth-chromosome locus for egg and eye pigmentation fused to a Z chromosome fragment. By means of fluorescence in situ hybridization using bacterial artificial chromosome clones as probes, we confirmed that the fused chromosome is composed of a fragment of chromosome 5 and a fragment of the Z chromosome. Moreover, a predicted gene, GA002017, the Bombyx ortholog of the Drosophila gene acj6 (Bmacj6), was completely deleted by the Z chromosome breakage event. The relationship between Bmacj6 and the spli phenotype is discussed.
Collapse
Affiliation(s)
- Tsuguru Fujii
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Futahashi R, Banno Y, Fujiwara H. Caterpillar color patterns are determined by a two-phase melanin gene prepatterning process: new evidence from tan and laccase2. Evol Dev 2010; 12:157-67. [PMID: 20433456 DOI: 10.1111/j.1525-142x.2010.00401.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryo Futahashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | | | | |
Collapse
|
25
|
Ito K, Katsuma S, Yamamoto K, Kadono-Okuda K, Mita K, Shimada T. Yellow-e determines the color pattern of larval head and tail spots of the silkworm Bombyx mori. J Biol Chem 2009; 285:5624-9. [PMID: 19996320 DOI: 10.1074/jbc.m109.035741] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yellow proteins form a large family in insects. In Drosophila melanogaster, there are 14 yellow genes in the genome. Previous studies have shown that the yellow gene is necessary for normal pigmentation; however, the roles of other yellow genes in body coloration are not known. Here, we provide the first evidence that yellow-e is required for normal body color pattern in insect larvae. In two mutant strains, bts and its allele bts2, of the silkworm Bombyx mori, the larval head cuticle and anal plates are reddish brown instead of the white color found in the wild type. Positional cloning revealed that deletions in the Bombyx homolog of the Drosophila yellow-e gene (Bmyellow-e) were responsible for the bts/bts2 phenotype. Bmyellow-e mRNA was strongly expressed in the trachea, testis, and integument, and expression markedly increased at the molting stages. This profile is quite similar to that of Bmyellow, a regulator of neonatal body color and body markings in Bombyx. Quantitative reverse transcription-PCR analysis showed that Bmyellow-e mRNA was heavily expressed in the integument of the head and tail in which the bts phenotype is observed. The present results suggest that Yellow-e plays a crucial role in the pigmentation process of lepidopteran larvae.
Collapse
Affiliation(s)
- Katsuhiko Ito
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Fujii T, Ozaki M, Masamoto T, Katsuma S, Abe H, Shimada T. A Bombyx mandarina mutant exhibiting translucent larval skin is controlled by the molybdenum cofactor sulfurase gene. Genes Genet Syst 2009; 84:147-52. [PMID: 19556708 DOI: 10.1266/ggs.84.147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
During the maintenance of the wild silkworm, Bombyx mandarina, a mutant phenotype exhibiting translucent skin was identified. Based on the crossing experiments with the domesticated silkworm, Bombyx mori, we found that the mutant was controlled by molybdenum cofactor sulfurase (MoCoS) gene. We designated the mutant ''Ozaki's translucent'' (og(Z)). We found a 2.1-kb deletion containing the transcription initiation site, exons 1 and 2, and the 5' end of exon 3 of the MoCoS gene. The transcript of the MoCoS gene was not detected in the og(Z) homozygote. We concluded that og(Z) is a complete loss-of-function allele generated by a disruption of the MoCoS gene.
Collapse
Affiliation(s)
- Tsuguru Fujii
- Department of Agricultural and Environmental Biology, Graduate School of Agricultual and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Ito K, Katsuma S, Yamamoto K, Kadono-Okuda K, Mita K, Shimada T. A 25bp-long insertional mutation in the BmVarp gene causes the waxy translucent skin of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:287-293. [PMID: 19552891 DOI: 10.1016/j.ibmb.2009.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/13/2009] [Accepted: 01/15/2009] [Indexed: 05/28/2023]
Abstract
In Bombyx mori, there are more than 35 mutant strains whose larval skin color is transparent. The waxy translucent strain ow is one of the oily mutants which lack accumulation of uric acid in the epidermis. Here we performed positional cloning of the ow gene using the Bombyx draft genome sequence. For fine structure mapping, we succeeded to narrow the ow linked region to approximately 150kb, and identified the ow candidate gene by annotation analysis and DNA sequencing. The complete cDNA sequences of the ow gene from wild-type strains were 3501bp-long and potentially encoded a protein of 920 amino acids. We found a 25bp-long insertion in this gene in the ow mutant strain, resulting in a frame-shift mutation and generation of a premature stop codon. A BLAST search revealed that this protein had high homology to Varp, a recently identified protein containing a vacuolar sorting protein 9 domain and ankyrin repeats, and we termed the silkworm protein BmVarp. Varp has been shown to regulate endosome dynamics, suggesting that BmVarp may play an important role in the incorporation and/or accumulation of uric acid in the epidermis.
Collapse
Affiliation(s)
- Katsuhiko Ito
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
28
|
The International Silkworm Genome Consortium. The genome of a lepidopteran model insect, the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:1036-45. [PMID: 19121390 DOI: 10.1016/j.ibmb.2008.11.004] [Citation(s) in RCA: 493] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 11/28/2008] [Accepted: 11/28/2008] [Indexed: 05/21/2023]
Abstract
Bombyx mori, the domesticated silkworm, is a major insect model for research, and the first lepidopteran for which draft genome sequences became available in 2004. Two independent data sets from whole-genome shotgun sequencing were merged and assembled together with newly obtained fosmid- and BAC-end sequences. The remarkably improved new assembly is presented here. The 8.5-fold sequence coverage of an estimated 432 Mb genome was assembled into scaffolds with an N50 size of approximately 3.7 Mb; the largest scaffold was 14.5 million base pairs. With help of a high-density SNP linkage map, we anchored 87% of the scaffold sequences to all 28 chromosomes. A particular feature was the high repetitive sequence content estimated to be 43.6% and that consisted mainly of transposable elements. We predicted 14,623 gene models based on a GLEAN-based algorithm, a more accurate prediction than the previous gene models for this species. Over three thousand silkworm genes have no homologs in other insect or vertebrate genomes. Some insights into gene evolution and into characteristic biological processes are presented here and in other papers in this issue. The massive silk production correlates with the existence of specific tRNA clusters, and of several sericin genes assembled in a cluster. The silkworm's adaptation to feeding on mulberry leaves, which contain toxic alkaloids, is likely linked to the presence of new-type sucrase genes, apparently acquired from bacteria. The silkworm genome also revealed the cascade of genes involved in the juvenile hormone biosynthesis pathway, and a large number of cuticular protein genes.
Collapse
|