1
|
Freitas LM, Souza BHS, Ferreira FS, Antunes APA, Bruzi AT. Resistance of Bt and Non-Bt Soybean Cultivars Adapted to Novel Growing Regions of Brazil to Chrysodeixis includens and Spodoptera frugiperda. NEOTROPICAL ENTOMOLOGY 2024:10.1007/s13744-024-01208-8. [PMID: 39320422 DOI: 10.1007/s13744-024-01208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Soybean is a highly valuable commodity crop for Brazil's economy. However, it faces significant threats from the attack of a complex of lepidopteran pests, particularly Chrysodeixis includens (Walker) and Spodoptera frugiperda (J. E. Smith). These pests have been managed primarily using transgenic Bt soybeans, but limited knowledge exists about the resistance levels of Bt and non-Bt cultivars adapted to novel soybean-growing areas in Brazil, such as the Minas Gerais state. This study evaluated the resistance levels of Bt and non-Bt soybean cultivars to C. includens and S. frugiperda, and whether the Bt cultivars can differentially affect these pests across larval stages. No-choice bioassays were conducted using Bt (NS6010 IPRO and P97R50 IPRO) and non-Bt soybeans (UFLA 6301 RR, P96R90 RR, and ANsc 80111 RR) at V4-stage in the laboratory with neonate (24 h) and third-instar larvae. Larvae were fed leaf discs in Petri dishes, recording the mortality, leaf consumption, and weight gain after 7 days. There was high mortality of C. includens neonates on the Bt cultivars, but this trend was not observed for older larvae. For S. frugiperda neonates, there was high mortality on the Bt cultivar NS 6010 IPRO and non-Bt cultivar UFLA 6301 RR, but only the former was effective for older larvae. Although the Bt cultivars did not kill the third instars, antinutritional effects were found, such that leaf tissue consumed was not converted to larval weight gain. These findings are important for defining regional strategies of integrated and resistance management of C. includens and S. frugiperda in expanding regions of soybean cultivation in Brazil.
Collapse
Affiliation(s)
- Larah M Freitas
- Dept of Entomology, Federal Univ of Lavras (UFLA), Lavras, MG, Brazil
| | - Bruno H S Souza
- Dept of Entomology, Federal Univ of Lavras (UFLA), Lavras, MG, Brazil.
| | | | - Ana P A Antunes
- Dept of Entomology, Federal Univ of Lavras (UFLA), Lavras, MG, Brazil
| | | |
Collapse
|
2
|
Deng D, Hu S, Lin Z, Geng J, Qian Z, Zhang K, Ning X, Cheng Y, Zhang C, Yin S. High temperature aggravated hypoxia-induced intestine toxicity on juvenile Chinese mitten crab (Eriocheir sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101288. [PMID: 39002349 DOI: 10.1016/j.cbd.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
High temperature and hypoxia in water due to global warming threaten the growth and development of aquatic animals. In natural or cultured environments, stress usually does not occur independently, whereas the synergistic effect of high temperature and hypoxia on Chinese mitten crab (Eriocheir sinensis) are rarely reported. In this study, 450 juvenile crabs were equally divided into control group (24 °C ± 0.5 °C, DO 6.8 ± 0.1 mg/L), hypoxia stress group (24 °C ± 0.5 °C, DO 1 ± 0.1 mg/L) and combined stress group (30 °C ± 0.5 °C, DO 1 ± 0.1 mg/L), and the intestinal health status, microbial diversity and metabolite profiles were evaluated for 24 h treatment. The results showed that hypoxia stress induced the expression level of pro-inflammatory related genes were significantly up-regulated in intestine of juvenile E. sinensis, and intestinal peritrophic membrane factor related genes were significantly down-regulated. High temperature further amplified the effects of hypoxia on pro-inflammatory and peritrophic membrane factor-related genes. Interesting, hypoxia stress induced a significant up-regulated of intestinal antioxidant-related genes, whereas high temperature reversed this trend. In addition, single stress or/and combined stress led to changes in intestinal microbiota diversity and abundance, and intestinal metabolite profiles. Compared with hypoxia stress, the synergistic effect of high temperature and hypoxia led to an increase in the abundance of pathogenic bacteria and a decrease in the abundance of probiotic bacteria. Moreover, intestinal metabolic pathways were significantly changed, especially amino acid metabolism and glycerophospholipid metabolism. Therefore, the results indicated that hypoxia stress could induce intestinal inflammatory response and oxidative stress, and lead to abnormal changes in intestinal microbiota and metabolic profiles, whereas high temperature further aggravate the toxic effects of hypoxia on the intestine. This study preliminarily revealed the synergistic toxic effects of high temperature and hypoxia on the intestine of juvenile E. sinensis.
Collapse
Affiliation(s)
- Dunqian Deng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Shengyu Hu
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Ziqi Lin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Jiayin Geng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Ziang Qian
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Yongxu Cheng
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Cong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China.
| |
Collapse
|
3
|
Jiang Z, Qian D, Liang Z, Jia Y, Xu C, Li E. Effects of dietary plant protein sources intake on growth, digestive enzyme activity, edible tissue nutritional status and intestinal health of the omnivorous Redclaw crayfish, Cherax quadricarinatus. Br J Nutr 2023; 130:978-995. [PMID: 36597816 DOI: 10.1017/s0007114522004044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For the omnivorous Cherax quadricarinatus crayfish, plant raw materials can be good alternatives to dietary fish meal (FM). A 56-d feeding trial was conducted in C. quadricarinatus (11·70 (se 0·13) g). Diet with 100 % FM as the protein source was the control. Seven experimental diets were formulated by replacing 75 or 100 % of FM with soyabean meal (SM75, SM100) or cottonseed meal (CM75 and CM100), and a mixture of SM and CM (protein content is 1:1) replacing 50, 75 or 100 % of FM (SC50, SC75 and SC100). Crayfish fed the CM100 and SC100 showed significantly lower weight gain (WG), specific growth rate, trypsin and pepsin activities compared with the control diet. Crayfish in CM100 group showed significantly higher GPx, alanine aminotransferase, aspartate aminotransferase activities and malondialdehyde content than the control. SM100 and CM100 diets can cause slight separation of the peritrophic membrane from the intestinal folds. The pepsin activity of crayfish in SC50 was significantly higher than those in other experimental diets. The highest WG and muscle arginine content were also found in crayfish fed SC50. The relative abundance of Proteobacteria, Unclassified Enterobacteriaceae and Candidatus Bacilloplasma was significantly higher, but Actinobacteriota was significantly lower in SM100, CM100 and SC100 than in control. Microbiota functional prediction indicated that the relative abundance of 'cell motility' pathway in crayfish fed CM100 was significantly decreased compared with the control. In conclusion, only half of the FM can be effectively substituted with a mixture of SM and CM (protein content is 1:1) for C. quadricarinatus.
Collapse
Affiliation(s)
- Zongzheng Jiang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Dunwei Qian
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Zhenye Liang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Yongyi Jia
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Freshwater Aquaculture Genetics and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, People's Republic of China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| |
Collapse
|
4
|
Bitencourt RDOB, dos Santos-Mallet JR, Lowenberger C, Ventura A, Gôlo PS, Bittencourt VREP, Angelo IDC. A Novel Model of Pathogenesis of Metarhizium anisopliae Propagules through the Midguts of Aedes aegypti Larvae. INSECTS 2023; 14:insects14040328. [PMID: 37103143 PMCID: PMC10146130 DOI: 10.3390/insects14040328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/31/2023]
Abstract
We assessed the effect of the entomopathogenic fungus Metarhizium anisopliae against Aedes aegypti. Conidia of M. anisopliae strains CG 489, CG 153, and IBCB 481 were grown in Adamek medium under different conditions to improve blastospore production. Mosquito larvae were exposed to blastospores or conidia of the three fungal strains at 1 × 107 propagules mL-1. M. anisopliae IBCB 481 and CG 153 reduced larval survival by 100%, whereas CG 489 decreased survival by about 50%. Blastospores of M. anisopliae IBCB 481 had better results in lowering larval survival. M. anisopliae CG 489 and CG 153 reduced larval survival similarly. For histopathology (HP) and scanning electron microscopy (SEM), larvae were exposed to M. anisopliae CG 153 for 24 h or 48 h. SEM confirmed the presence of fungi in the digestive tract, while HP confirmed that propagules reached the hemocoel via the midgut, damaged the peritrophic matrix, caused rupture and atrophy of the intestinal mucosa, caused cytoplasmic disorganization of the enterocytes, and degraded the brush border. Furthermore, we report for the first time the potential of M. anisopliae IBCB 481 to kill Ae. aegypti larvae and methods to improve the production of blastospores.
Collapse
Affiliation(s)
| | - Jacenir Reis dos Santos-Mallet
- Oswaldo Cruz Foundation, IOC-FIOCRUZ-RJ, Rio de Janeiro 21040-900, RJ, Brazil
- Oswaldo Cruz Foundation, IOC-FIOCRUZ-PI, Teresina 64001-350, PI, Brazil
- Laboratory of Surveillance and Biodiversity in Health, Iguaçu University-UNIG, Nova Iguaçu 28300-000, RJ, Brazil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Adriana Ventura
- Department of Animal Biology, Institute of Health and Biological Sciences, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Patrícia Silva Gôlo
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | | | - Isabele da Costa Angelo
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| |
Collapse
|
5
|
de Oliveira Barbosa Bitencourt R, Corrêa TA, Santos-Mallet J, Santos HA, Lowenberger C, Moreira HVS, Gôlo PS, Bittencourt VREP, da Costa Angelo I. Beauveria bassiana interacts with gut and hemocytes to manipulate Aedes aegypti immunity. Parasit Vectors 2023; 16:17. [PMID: 36650591 PMCID: PMC9847134 DOI: 10.1186/s13071-023-05655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Mosquito-borne diseases affect millions of people. Chemical insecticides are currently employed against mosquitoes. However, many cases of insecticide resistance have been reported. Entomopathogenic fungi (EPF) have demonstrated potential as a bioinsecticide. Here, we assessed the invasion of the EPF Beauveria bassiana into Aedes aegypti larvae and changes in the activity of phenoloxidase (PO) as a proxy for the general activation of the insect innate immune system. In addition, other cellular and humoral responses were evaluated. METHODS Larvae were exposed to blastospores or conidia of B. bassiana CG 206. After 24 and 48 h, scanning electron microscopy (SEM) was conducted on the larvae. The hemolymph was collected to determine changes in total hemocyte concentration (THC), the dynamics of hemocytes, and to observe hemocyte-fungus interactions. In addition, the larvae were macerated to assess the activity of PO using L-DOPA conversion, and the expression of antimicrobial peptides (AMPs) was measured using quantitative Real-Time PCR. RESULTS Propagules invaded mosquitoes through the midgut, and blastopores were detected inside the hemocoel. Both propagules decreased the THC regardless of the time. By 24 h after exposure to conidia the percentage of granulocytes and oenocytoids increased while the prohemocytes decreased. By 48 h, the oenocytoid percentage increased significantly (P < 0.05) in larvae exposed to blastospores; however, the other hemocyte types did not change significantly. Regardless of the time, SEM revealed hemocytes adhering to, and nodulating, blastospores. For the larvae exposed to conidia, these interactions were observed only at 48 h. Irrespective of the propagule, the PO activity increased only at 48 h. At 24 h, cathepsin B was upregulated by infection with conidia, whereas both propagules resulted in a downregulation of cecropin and defensin A. At 48 h, blastospores and conidia increased the expression of defensin A suggesting this may be an essential AMP against EPF. CONCLUSION By 24 h, B. bassiana CG 206 occluded the midgut, reduced THC, did not stimulate PO activity, and downregulated AMP expression in larvae, all of which allowed the fungus to impair the larvae to facilitate infection. Our data reports a complex interplay between Ae. aegypti larvae and B. bassiana CG 206 demonstrating how this fungus can infect, affect, and kill Ae. aegypti larvae.
Collapse
Affiliation(s)
- Ricardo de Oliveira Barbosa Bitencourt
- grid.412391.c0000 0001 1523 2582Graduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ Brazil
| | - Thaís Almeida Corrêa
- grid.412391.c0000 0001 1523 2582Graduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ Brazil
| | - Jacenir Santos-Mallet
- grid.418068.30000 0001 0723 0931Oswaldo Cruz Foundation, IOC-FIOCRUZ-RJ, Rio de Janeiro, RJ Brazil ,FIOCRUZ-PI, Teresina, Piauí Brazil ,grid.441915.c0000 0004 0501 3011Iguaçu University-UNIG, Nova Iguaçu, RJ Brazil
| | - Huarrison Azevedo Santos
- grid.412391.c0000 0001 1523 2582Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ Brazil
| | - Carl Lowenberger
- grid.61971.380000 0004 1936 7494Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Haika Victória Sales Moreira
- grid.412391.c0000 0001 1523 2582Graduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ Brazil
| | - Patrícia Silva Gôlo
- grid.412391.c0000 0001 1523 2582Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ Brazil
| | - Vânia Rita Elias Pinheiro Bittencourt
- grid.412391.c0000 0001 1523 2582Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ Brazil
| | - Isabele da Costa Angelo
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil.
| |
Collapse
|
6
|
Peritrophin-like Genes Are Associated with Delousing Drug Response and Sensitivity in the Sea Louse Caligus rogercresseyi. Int J Mol Sci 2022; 23:ijms232113341. [DOI: 10.3390/ijms232113341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Caligus rogercresseyi is the main ectoparasite that affects the salmon industry in Chile. The mechanisms used by the parasite to support its life strategy are of great interest for developing control strategies. Due to the critical role of insect peritrophins in host–parasite interactions and response to pest control drugs, this study aimed to identify and characterize the peritrophin-like genes present in C. rogercresseyi. Moreover, the expression of peritrophin-like genes was evaluated on parasites exposed to delousing drugs such as pyrethroids and azamethiphos. Peritrophin genes were identified by homology analysis among the sea louse transcriptome database and arthropods peritrophin-protein database obtained from GenBank and UniProt. Moreover, the gene loci in the parasite genome were located. Furthermore, peritrophin gene expression levels were evaluated by RNA-Seq analysis in sea louse developmental stages and sea lice exposed to delousing drugs deltamethrin, cypermethrin, and azamethiphos. Seven putative peritrophin-like genes were identified in C. rogercresseyi with high homology with other crustacean peritrophins. Differences in the presence of signal peptides, the number of chitin-binding domains, and the position of conserved cysteines were found. In addition, seven peritrophin-like gene sequences were identified in the C. rogercresseyi genome. Gene expression analysis revealed a stage-dependent expression profile. Notably, differential regulation of peritrophin genes in resistant and susceptible populations to delousing drugs was found. These data are the first report and characterization of peritrophin genes in the sea louse C. rogercresseyi, representing valuable knowledge to understand sea louse biology. Moreover, this study provides evidence for a deeper understanding of the molecular basis of C. rogercresseyi response to delousing drugs.
Collapse
|
7
|
Exploring Sea Lice Vaccines against Early Stages of Infestation in Atlantic Salmon (Salmo salar). Vaccines (Basel) 2022; 10:vaccines10071063. [PMID: 35891227 PMCID: PMC9324576 DOI: 10.3390/vaccines10071063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
The sea louse Caligus rogercresseyi genome has opened the opportunity to apply the reverse vaccinology strategy for identifying antigens with potential effects on lice development and its application in sea lice control. This study aimed to explore the efficacy of three sea lice vaccines against the early stage of infestation, assessing the transcriptome modulation of immunized Atlantic salmon. Therein, three experimental groups of Salmo salar (Atlantic salmon) were vaccinated with the recombinant proteins: Peritrophin (prototype A), Cathepsin (prototype B), and the mix of them (prototype C), respectively. Sea lice infestation was evaluated during chalimus I-II, the early-infective stages attached at 7-days post infestation. In parallel, head kidney and skin tissue samples were taken for mRNA Illumina sequencing. Relative expression analyses of genes were conducted to identify immune responses, iron transport, and stress responses associated with the tested vaccines during the early stages of sea lice infection. The vaccine prototypes A, B, and C reduced the parasite burden by 24, 44, and 52% compared with the control group. In addition, the RNA-Seq analysis exhibited a prototype-dependent transcriptome modulation. The high expression differences were observed in genes associated with metal ion binding, molecular processes, and energy production. The findings suggest a balance between the host’s inflammatory response and metabolic process in vaccinated fish, increasing their transcriptional activity, which can alter the early host–parasite interactions. This study uncovers molecular responses produced by three vaccine prototypes at the early stages of infestation, providing new knowledge for sea lice control in the salmon aquaculture.
Collapse
|
8
|
Mulamba C, Williams C, Kreppel K, Ouedraogo JB, Olotu AI. Evaluation of the Pfs25-IMX313/Matrix-M malaria transmission-blocking candidate vaccine in endemic settings. Malar J 2022; 21:159. [PMID: 35655174 PMCID: PMC9161629 DOI: 10.1186/s12936-022-04173-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
Malaria control relies heavily on the use of anti-malarial drugs and insecticides against malaria parasites and mosquito vectors. Drug and insecticide resistance threatens the effectiveness of conventional malarial interventions; alternative control approaches are, therefore, needed. The development of malaria transmission-blocking vaccines that target the sexual stages in humans or mosquito vectors is among new approaches being pursued. Here, the immunological mechanisms underlying malaria transmission blocking, status of Pfs25-based vaccines are viewed, as well as approaches and capacity for first in-human evaluation of a transmission-blocking candidate vaccine Pfs25-IMX313/Matrix-M administered to semi-immune healthy individuals in endemic settings. It is concluded that institutions in low and middle income settings should be supported to conduct first-in human vaccine trials in order to stimulate innovative research and reduce the overdependence on developed countries for research and local interventions against many diseases of public health importance.
Collapse
Affiliation(s)
- Charles Mulamba
- Interventions & Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.,Nelson Mandela African Institution of Science and Technology, Tengeru, P. O. Box 447, Arusha, Tanzania
| | - Chris Williams
- The Jenner Institute, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Katharina Kreppel
- Nelson Mandela African Institution of Science and Technology, Tengeru, P. O. Box 447, Arusha, Tanzania
| | | | - Ally I Olotu
- Interventions & Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.
| |
Collapse
|
9
|
Keleta Y, Ramelow J, Cui L, Li J. Molecular interactions between parasite and mosquito during midgut invasion as targets to block malaria transmission. NPJ Vaccines 2021; 6:140. [PMID: 34845210 PMCID: PMC8630063 DOI: 10.1038/s41541-021-00401-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Despite considerable effort, malaria remains a major public health burden. Malaria is caused by five Plasmodium species and is transmitted to humans via the female Anopheles mosquito. The development of malaria vaccines against the liver and blood stages has been challenging. Therefore, malaria elimination strategies advocate integrated measures, including transmission-blocking approaches. Designing an effective transmission-blocking strategy relies on a sophisticated understanding of the molecular mechanisms governing the interactions between the mosquito midgut molecules and the malaria parasite. Here we review recent advances in the biology of malaria transmission, focusing on molecular interactions between Plasmodium and Anopheles mosquito midgut proteins. We provide an overview of parasite and mosquito proteins that are either targets for drugs currently in clinical trials or candidates of promising transmission-blocking vaccines.
Collapse
Affiliation(s)
- Yacob Keleta
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Julian Ramelow
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Liwang Cui
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
10
|
Susceptibility of Field-Collected Nyssorhynchus darlingi to Plasmodium spp. in Western Amazonian Brazil. Genes (Basel) 2021; 12:genes12111693. [PMID: 34828299 PMCID: PMC8623036 DOI: 10.3390/genes12111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Mosquito susceptibility to Plasmodium spp. infection is of paramount importance for malaria occurrence and sustainable transmission. Therefore, understanding the genetic features underlying the mechanisms of susceptibility traits is pivotal to assessing malaria transmission dynamics in endemic areas. The aim of this study was to investigate the susceptibility of Nyssorhynchus darlingi-the dominant malaria vector in Brazil-to Plasmodium spp. using a reduced representation genome-sequencing protocol. The investigation was performed using a genome-wide association study (GWAS) to identify mosquito genes that are predicted to modulate the susceptibility of natural populations of the mosquito to Plasmodium infection. After applying the sequence alignment protocol, we generated the variant panel and filtered variants; leading to the detection of 202,837 SNPs in all specimens analyzed. The resulting panel was used to perform GWAS by comparing the pool of SNP variants present in Ny. darlingi infected with Plasmodium spp. with the pool obtained in field-collected mosquitoes with no evidence of infection by the parasite (all mosquitoes were tested separately using RT-PCR). The GWAS results for infection status showed two statistically significant variants adjacent to important genes that can be associated with susceptibility to Plasmodium infection: Cytochrome P450 (cyp450) and chitinase. This study provides relevant knowledge on malaria transmission dynamics by using a genomic approach to identify mosquito genes associated with susceptibility to Plasmodium infection in Ny. darlingi in western Amazonian Brazil.
Collapse
|
11
|
Hoermann A, Tapanelli S, Capriotti P, Del Corsano G, Masters EK, Habtewold T, Christophides GK, Windbichler N. Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement. eLife 2021; 10:58791. [PMID: 33845943 PMCID: PMC8043746 DOI: 10.7554/elife.58791] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 03/21/2021] [Indexed: 12/15/2022] Open
Abstract
Gene drives for mosquito population replacement are promising tools for malaria control. However, there is currently no clear pathway for safely testing such tools in endemic countries. The lack of well-characterized promoters for infection-relevant tissues and regulatory hurdles are further obstacles for their design and use. Here we explore how minimal genetic modifications of endogenous mosquito genes can convert them directly into non-autonomous gene drives without disrupting their expression. We co-opted the native regulatory sequences of three midgut-specific loci of the malaria vector Anopheles gambiae to host a prototypical antimalarial molecule and guide-RNAs encoded within artificial introns that support efficient gene drive. We assess the propensity of these modifications to interfere with the development of Plasmodium falciparum and their effect on fitness. Because of their inherent simplicity and passive mode of drive such traits could form part of an acceptable testing pathway of gene drives for malaria eradication.
Collapse
Affiliation(s)
- Astrid Hoermann
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sofia Tapanelli
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Paolo Capriotti
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Ellen Kg Masters
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Talyuli OAC, Bottino-Rojas V, Polycarpo CR, Oliveira PL, Paiva-Silva GO. Non-immune Traits Triggered by Blood Intake Impact Vectorial Competence. Front Physiol 2021; 12:638033. [PMID: 33737885 PMCID: PMC7960658 DOI: 10.3389/fphys.2021.638033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Blood-feeding arthropods are considered an enormous public health threat. They are vectors of a plethora of infectious agents that cause potentially fatal diseases like Malaria, Dengue fever, Leishmaniasis, and Lyme disease. These vectors shine due to their own physiological idiosyncrasies, but one biological aspect brings them all together: the requirement of blood intake for development and reproduction. It is through blood-feeding that they acquire pathogens and during blood digestion that they summon a collection of multisystemic events critical for vector competence. The literature is focused on how classical immune pathways (Toll, IMD, and JAK/Stat) are elicited throughout the course of vector infection. Still, they are not the sole determinants of host permissiveness. The dramatic changes that are the hallmark of the insect physiology after a blood meal intake are the landscape where a successful infection takes place. Dominant processes that occur in response to a blood meal are not canonical immunological traits yet are critical in establishing vector competence. These include hormonal circuitries and reproductive physiology, midgut permeability barriers, midgut homeostasis, energy metabolism, and proteolytic activity. On the other hand, the parasites themselves have a role in the outcome of these blood triggered physiological events, consistently using them in their favor. Here, to enlighten the knowledge on vector-pathogen interaction beyond the immune pathways, we will explore different aspects of the vector physiology, discussing how they give support to these long-dated host-parasite relationships.
Collapse
Affiliation(s)
- Octavio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Chen C, Chen H, Huang S, Jiang T, Wang C, Tao Z, He C, Tang Q, Li P. Volatile DMNT directly protects plants against Plutella xylostella by disrupting the peritrophic matrix barrier in insect midgut. eLife 2021; 10:63938. [PMID: 33599614 PMCID: PMC7924945 DOI: 10.7554/elife.63938] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Insect pests negatively affect crop quality and yield; identifying new methods to protect crops against insects therefore has important agricultural applications. Our analysis of transgenic Arabidopsis thaliana plants showed that overexpression of pentacyclic triterpene synthase 1, encoding the key biosynthetic enzyme for the natural plant product (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), led to a significant resistance against a major insect pest, Plutella xylostella. DMNT treatment severely damaged the peritrophic matrix (PM), a physical barrier isolating food and pathogens from the midgut wall cells. DMNT repressed the expression of PxMucin in midgut cells, and knocking down PxMucin resulted in PM rupture and P. xylostella death. A 16S RNA survey revealed that DMNT significantly disrupted midgut microbiota populations and that midgut microbes were essential for DMNT-induced killing. Therefore, we propose that the midgut microbiota assists DMNT in killing P. xylostella. These findings may provide a novel approach for plant protection against P. xylostella.
Collapse
Affiliation(s)
- Chen Chen
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Hongyi Chen
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shijie Huang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Taoshan Jiang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chuanhong Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhen Tao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chen He
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qingfeng Tang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, the School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Peijin Li
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
14
|
Gallichotte EN, Dobos KM, Ebel GD, Hagedorn M, Rasgon JL, Richardson JH, Stedman TT, Barfield JP. Towards a method for cryopreservation of mosquito vectors of human pathogens. Cryobiology 2021; 99:1-10. [PMID: 33556359 DOI: 10.1016/j.cryobiol.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Mosquito-borne diseases are responsible for millions of human deaths every year, posing a massive burden on global public health. Mosquitoes transmit a variety of bacteria, parasites and viruses. Mosquito control efforts such as insecticide spraying can reduce mosquito populations, but they must be sustained in order to have long term impacts, can result in the evolution of insecticide resistance, are costly, and can have adverse human and environmental effects. Technological advances have allowed genetic manipulation of mosquitoes, including generation of those that are still susceptible to insecticides, which has greatly increased the number of mosquito strains and lines available to the scientific research community. This generates an associated challenge, because rearing and maintaining unique mosquito lines requires time, money and facilities, and long-term maintenance can lead to adaptation to specific laboratory conditions, resulting in mosquito lines that are distinct from their wild-type counterparts. Additionally, continuous rearing of transgenic lines can lead to loss of genetic markers, genes and/or phenotypes. Cryopreservation of valuable mosquito lines could help circumvent these limitations and allow researchers to reduce the cost of rearing multiple lines simultaneously, maintain low passage number transgenic mosquitoes, and bank lines not currently being used. Additionally, mosquito cryopreservation could allow researchers to access the same mosquito lines, limiting the impact of unique laboratory or field conditions. Successful cryopreservation of mosquitoes would expand the field of mosquito research and could ultimately lead to advances that would reduce the burden of mosquito-borne diseases, possibly through rear-and-release strategies to overcome mosquito insecticide resistance. Cryopreservation techniques have been developed for some insect groups, including but not limited to fruit flies, silkworms and other moth species, and honeybees. Recent advances within the cryopreservation field, along with success with other insects suggest that cryopreservation of mosquitoes may be a feasible method for preserving valuable scientific and public health resources. In this review, we will provide an overview of basic mosquito biology, the current state of and advances within insect cryopreservation, and a proposed approach toward cryopreservation of Anopheles stephensi mosquitoes.
Collapse
Affiliation(s)
- Emily N Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mary Hagedorn
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, VA, USA; Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | | | - Jennifer P Barfield
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
15
|
Plasmodium's journey through the Anopheles mosquito: A comprehensive review. Biochimie 2020; 181:176-190. [PMID: 33346039 DOI: 10.1016/j.biochi.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
The malaria parasite has an extraordinary ability to evade the immune system due to which the development of a malaria vaccine is a challenging task. Extensive research on malarial infection in the human host particularly during the liver stage has resulted in the discovery of potential candidate vaccines including RTS,S/AS01 and R21. However, complete elimination of malaria would require a holistic multi-component approach. In line with this, under the World Health Organization's PATH Malaria Vaccine Initiative (MVI), the research focus has shifted towards the sexual stages of malaria in the mosquito host. Last two decades of scientific research obtained seminal information regarding the sexual/mosquito stages of the malaria. This updated and comprehensive review would provide the basis for consolidated understanding of cellular, biochemical, molecular and immunological aspects of parasite transmission right from the sexual stage commitment in the human host to the sporozoite delivery back into subsequent vertebrate host by the female Anopheles mosquito.
Collapse
|
16
|
Bascuñán P, Gabrieli P, Mameli E, Catteruccia F. Mating-regulated atrial proteases control reinsemination rates in Anopheles gambiae females. Sci Rep 2020; 10:21974. [PMID: 33319823 PMCID: PMC7738481 DOI: 10.1038/s41598-020-78967-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 11/20/2022] Open
Abstract
Anopheles gambiae mosquitoes are the most important vectors of human malaria. The reproductive success of these mosquitoes relies on a single copulation event after which the majority of females become permanently refractory to further mating. This refractory behavior is at least partially mediated by the male-synthetized steroid hormone 20-hydroxyecdysone (20E), which is packaged together with other seminal secretions into a gelatinous mating plug and transferred to the female atrium during mating. In this study, we show that two 20E-regulated chymotrypsin-like serine proteases specifically expressed in the reproductive tract of An. gambiae females play an important role in modulating the female susceptibility to mating. Silencing these proteases by RNA interference impairs correct plug processing and slows down the release of the steroid hormone 20E from the mating plug. In turn, depleting one of these proteases, the Mating Regulated Atrial Protease 1 (MatRAP1), reduces female refractoriness to further copulation, so that a significant proportion of females mate again. Microscopy analysis reveals that MatRAP1 is localized on a previously undetected peritrophic matrix-like structure surrounding the mating plug. These data provide novel insight into the molecular mechanisms shaping the post-mating biology of these important malaria vectors.
Collapse
Affiliation(s)
- Priscila Bascuñán
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Dipartimento di Medicina Sperimentale, Università degli studi di Perugia, Perugia, Italy
- Centers for Disease Control and Prevention, Entomology Branch, Atlanta, GA, USA
| | - Paolo Gabrieli
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Dipartimento di Medicina Sperimentale, Università degli studi di Perugia, Perugia, Italy
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Enzo Mameli
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Dipartimento di Medicina Sperimentale, Università degli studi di Perugia, Perugia, Italy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Dipartimento di Medicina Sperimentale, Università degli studi di Perugia, Perugia, Italy.
| |
Collapse
|
17
|
Serratia marcescens secretes proteases and chitinases with larvicidal activity against Anopheles dirus. Acta Trop 2020; 212:105686. [PMID: 32866458 DOI: 10.1016/j.actatropica.2020.105686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023]
Abstract
Vector control, the most efficient tool to reduce mosquito-borne disease transmission, has been compromised by the rise of insecticide resistance. Recent studies suggest the potential of mosquito-associated microbiota as a source for new biocontrol agents or new insecticidal chemotypes. In this study, we identified a strain of Serratia marcescens that has larvicidal activity against Anopheles dirus, an important malaria vector in Southeast Asia. This bacterium secretes heat-labile larvicidal macromolecules when cultured under static condition at 25°C but not 37°C. Two major protein bands of approximately 55 kDa and 110 kDa were present in spent medium cultured at 25°C but not at 37°C. The Liquid Chromatography-Mass Spectrometry (LC-MS) analyses of these two protein bands identified several proteases and chitinases that were previously reported for insecticidal properties against agricultural insect pests. The treatment with protease and chitinase inhibitors led to a reduction in larvicidal activity, confirming that these two groups of enzymes are responsible for the macromolecule's toxicity. Taken together, our results suggest a potential use of these enzymes in the development of larvicidal agents against Anopheles mosquitoes.
Collapse
|
18
|
Bitencourt RDOB, Salcedo-Porras N, Umaña-Diaz C, da Costa Angelo I, Lowenberger C. Antifungal immune responses in mosquitoes (Diptera: Culicidae): A review. J Invertebr Pathol 2020; 178:107505. [PMID: 33238166 DOI: 10.1016/j.jip.2020.107505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
Mosquitoes transmit many parasites and pathogens to humans that cause significant morbidity and mortality. As such, we are constantly looking for new methods to reduce mosquito populations, including the use of effective biological controls. Entomopathogenic fungi are excellent candidate biocontrol agents to control mosquitoes. Understanding the complex ecological, environmental, and molecular interactions between hosts and pathogens are essential to create novel, effective and safe biocontrol agents. Understanding how mosquitoes recognize and eliminate pathogens such as entomopathogenic fungi may allow us to create insect-order specific biocontrol agents to reduce pest populations. Here we summarize the current knowledge of fungal infection, colonization, development, and replication within mosquitoes and the innate immune responses of the mosquitoes towards the fungal pathogens, emphasizing those features required for an effective mosquito biocontrol agent.
Collapse
Affiliation(s)
- Ricardo de Oliveira Barbosa Bitencourt
- Program in Veterinary Science, Institute of Veterinary Science, Rural Federal University of Rio de Janeiro, Seropédica, RJ, Brazil; Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby BC V5A 1S6, British Columbia, Canada.
| | - Nicolas Salcedo-Porras
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby BC V5A 1S6, British Columbia, Canada
| | - Claudia Umaña-Diaz
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby BC V5A 1S6, British Columbia, Canada
| | - Isabele da Costa Angelo
- Department of Epidemiology and Public Health, Veterinary Institute, Rural Federal University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby BC V5A 1S6, British Columbia, Canada.
| |
Collapse
|
19
|
Han F, Xu C, Qi C, Lin Z, Li E, Wang C, Wang X, Qin JG, Chen L. Sodium butyrate can improve intestinal integrity and immunity in juvenile Chinese mitten crab (Eriocheir sinensis) fed glycinin. FISH & SHELLFISH IMMUNOLOGY 2020; 102:400-411. [PMID: 32371256 DOI: 10.1016/j.fsi.2020.04.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Butyrate is a fermentation byproduct of gut microbiota and is susceptible to chronic oxidative stress. This study investigates the mitigative effects of sodium butyrate (SBT) on growth inhibition and intestinal damage induced by glycinin in juvenile Chinese mitten crab (Eriocheir sinensis). All four experimental diets containing 80 g/kg glycinin were formulated with 0, 10, 20 and 40 g/kg SBT respectively. There was no glycinin or SBT in the control diet. Juvenile crabs (0.33 ± 0.01g) were respectively fed with these five diets for eight weeks. The diets with 10 and 20 g/kg SBT significantly improved the survival and weight gain of the crabs compared with those in the 0 g/kg SBT group, and showed no difference with the control group. The crabs fed diets containing glycinin without SBT had lower glutathione and glutathione peroxidase activities but higher malondialdehyde in the intestine than those in the control group. Moreover, dietary glycinin decreased the lysozyme and phenoloxidase activities and improved the level of histamine in the intestine compared with the control group, while the supplementation of SBT counteracted these negative effects. The addition of SBT could also restore the impaired immunity and morphological structure of the intestine. Dietary SBT could increase the mRNA expression of antimicrobial peptides genes (anti-lipopolysaccharide factor 1 and 2) and decrease the content of pro-inflammatory factor TNF-α. The SBT could restore the intestinal microbial community disorganized by glycinin. The abundance of pathogenic bacteria (Aeromonas, Vibrio and Pseudomonas) decreased significantly and the potential probiotic bacteria (Bacillus, Lactobacillus, Chitinibacter and Dysgonomonas) increased significantly in the 10 g/kg SBT group. This study suggests that sodium butyrate supplementation can mitigate the negative effects induced by glycinin such as growth inhibition, intestinal inflammation and reduction of beneficial flora in the gut.
Collapse
Affiliation(s)
- Fenglu Han
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Chang Xu
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Changle Qi
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Zhideng Lin
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Erchao Li
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Chunling Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| |
Collapse
|
20
|
Fan S, Zheng Z, Hao R, Du X, Jiao Y, Huang R. PmCBP, a novel poly (chitin-binding domain) gene, participates in nacreous layer formation of Pinctada fucata martensii. Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110374. [PMID: 31733296 DOI: 10.1016/j.cbpb.2019.110374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/22/2019] [Accepted: 10/25/2019] [Indexed: 11/29/2022]
Abstract
Chitin participates in shell formation as the main component of an organic framework. Chitin-binding protein contains domains that can bind to chitin specifically. In this study, a novel chitin-binding protein from Pinctada fucata martensii (PmCBP) with poly (chitin-binding domain) was cloned, which contains a 5'-untranslated region (UTR) of 114 bp and 3'UTR of 116 bp, and encodes a putative protein of 2044 amino acids. The predicted PmCBP protein was structurally typical of the CBP family with 20 ChtBD2 domains. Phylogenetic and linear relation analyses showed that the ChtBD2 domain has a highly conserved structure among the three species of P. f. martensii, Crassostrea gigas, and Mizuhopecten yessoensis. qRT-PCR and in-situ hybridization analysis revealed that PmCBP was most abundant in the mantle pallium whose expression level was significantly correlated with the growth traits. After RNAi, PmCBP expression was significantly inhibited in the mantle pallium (P < 0.05) and the microstructure of nacreous layers showed a disordered growth in the experiment group. These results indicated that PmCBP may be involved in nacreous layer formation through participation in the process of binding chitin in pearl oyster P. f. martensii.
Collapse
Affiliation(s)
- Shanshan Fan
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China.
| | - Ruijuan Hao
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China.
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China
| | - Ronglian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
21
|
Hegedus DD, Toprak U, Erlandson M. Peritrophic matrix formation. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103898. [PMID: 31211963 DOI: 10.1016/j.jinsphys.2019.103898] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Dwayne D Hegedus
- Molecular Genetics Section, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada; Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Umut Toprak
- Molecular Genetics Section, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada; Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Molecular Entomology Laboratory, College of Agriculture, Ankara University, Ankara, Turkey
| | - Martin Erlandson
- Molecular Genetics Section, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada; Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
22
|
Imrie L, Le Bihan T, O'Toole Á, Hickner PV, Dunn WA, Weise B, Rund SSC. Genome annotation improvements from cross-phyla proteogenomics and time-of-day differences in malaria mosquito proteins using untargeted quantitative proteomics. PLoS One 2019; 14:e0220225. [PMID: 31356616 PMCID: PMC6663012 DOI: 10.1371/journal.pone.0220225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
The malaria mosquito, Anopheles stephensi, and other mosquitoes modulate their biology to match the time-of-day. In the present work, we used a non-hypothesis driven approach (untargeted proteomics) to identify proteins in mosquito tissue, and then quantified the relative abundance of the identified proteins from An. stephensi bodies. Using these quantified protein levels, we then analyzed the data for proteins that were only detectable at certain times-of-the day, highlighting the need to consider time-of-day in experimental design. Further, we extended our time-of-day analysis to look for proteins which cycle in a rhythmic 24-hour ("circadian") manner, identifying 31 rhythmic proteins. Finally, to maximize the utility of our data, we performed a proteogenomic analysis to improve the genome annotation of An. stephensi. We compare peptides that were detected using mass spectrometry but are 'missing' from the An. stephensi predicted proteome, to reference proteomes from 38 other primarily human disease vector species. We found 239 such peptide matches and reveal that genome annotation can be improved using proteogenomic analysis from taxonomically diverse reference proteomes. Examination of 'missing' peptides revealed reading frame errors, errors in gene-calling, overlapping gene models, and suspected gaps in the genome assembly.
Collapse
Affiliation(s)
- Lisa Imrie
- SynthSys–Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thierry Le Bihan
- SynthSys–Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Rapid Novor, Kitchener, Ontario, Canada
| | - Áine O'Toole
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul V. Hickner
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - W. Augustine Dunn
- Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Benjamin Weise
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Samuel S. C. Rund
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
23
|
Muthukrishnan S, Merzendorfer H, Arakane Y, Yang Q. Chitin Organizing and Modifying Enzymes and Proteins Involved In Remodeling of the Insect Cuticle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:83-114. [DOI: 10.1007/978-981-13-7318-3_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Chain FJJ, Finlayson S, Crease T, Cristescu M. Variation in transcriptional responses to copper exposure across Daphnia pulex lineages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:85-97. [PMID: 30836324 DOI: 10.1016/j.aquatox.2019.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Copper pollution is pervasive in aquatic habitats and is particularly harmful to invertebrates sensitive to environmental changes such as Daphnia pulex. Mechanisms of toxicity and tolerance to copper are not well understood. We used RNA-sequencing to investigate these mechanisms in three genetically distinct D. pulex clonal lineages with different histories of copper exposure. Upregulated genes after copper exposure were enriched with Gene Ontology (GO) categories involved in digestion, molting and growth, whereas downregulated genes after copper exposure were enriched in the metal-regulatory system, immune response and epigenetic modifications. The three D. pulex clones in our study show largely similar transcriptional patterns in response to copper, with only a total of twenty genes differentially expressed in a single clonal lineages. We also detected lower relative expression of some genes known to be important for copper tolerance, metallothionein and glutathione-S-transferase, in a sensitive lineage sampled from an uncontaminated habitat. Daphnia-specific genes (without orthologs outside the genus) and Daphnia-specific duplications (genes duplicated in the Daphnia lineage) were overrepresented in differentially expressed genes, highlighting an important role for newly emerged genes in tolerating environmental stressors. The results indicate that the D. pulex lineages tested in this study generally respond to copper stress using the same major pathways, but that the more resistant clone with previous copper exposure might be better able to regulate key genes. This finding highlights the important nuances in gene expression among clones, shaped by historical exposure and influencing copper tolerance.
Collapse
Affiliation(s)
- Frédéric J J Chain
- Department of Biology, McGill University, QC, H3A 1B1, Canada; Department of Biological Sciences, University of Massachusetts Lowell, MA, 01854, USA
| | - Sarah Finlayson
- Department of Biology, McGill University, QC, H3A 1B1, Canada
| | - Teresa Crease
- Department of Integrative Biology, University of Guelph, ON, N1G 2W1, Canada
| | | |
Collapse
|
25
|
Holtof M, Lenaerts C, Cullen D, Vanden Broeck J. Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res 2019; 377:397-414. [DOI: 10.1007/s00441-019-03031-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
|
26
|
Baia-da-Silva DC, Orfanó AS, Nacif-Pimenta R, de Melo FF, Simões S, Cabral I, Lacerda MVG, Guerra MDGB, Monteiro WM, Secundino NFC, Pimenta PFP. The Midgut Muscle Network of Anopheles aquasalis (Culicidae, Anophelinae): Microanatomy and Structural Modification After Blood Meal and Plasmodium vivax (Haemosporida, Plasmodiidae) Infection. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:421-431. [PMID: 30508123 DOI: 10.1093/jme/tjy199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 06/09/2023]
Abstract
The mosquito midgut is divided into two regions named anterior midgut (AMG) and posterior midgut (PMG). The midgut expands intensely after the blood ingestion to accommodate a large amount of ingested food. To efficiently support the bloodmeal-induced changes, the organization of the visceral muscle fibers has significant adjustments. This study describes the spatial organization of the Anopheles aquasalis (Culicidae, Anophelinae) midgut muscle network and morphological changes after bloodmeal ingestion and infection with Plasmodium vivax (Haemosporida, Plasmodiidae). The midgut muscle network is composed of two types of fibers: longitudinal and circular. The two types of muscle fibers are composed of thick and thin filaments, similar to myosin and actin, respectively. Invagination of sarcoplasm membrane forms the T-system tubules. Sarcoplasmic reticulum cisternae have been observed in association with these invaginations. At different times after the bloodmeal, the fibers in the AMG are not modified. A remarkable dilation characterizes the transitional area between the AMG and the PMG. In the PMG surface, after the completion of bloodmeal ingestion, the stretched muscle fibers became discontinued. At 72 h after bloodmeal digestion, it is possible to observe the presence of disorganized muscle fibers in the midgut regions. The Plasmodium oocyst development along the basal layer of the midgut does not have a significant role in the visceral musculature distribution. This study provides features of the visceral musculature at different blood feeding times of An. aquasalis and shows important changes in midgut topography including when the mosquitoes are infected with P. vivax.
Collapse
Affiliation(s)
- Djane C Baia-da-Silva
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
| | - Alessandra S Orfanó
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Barro Preto, Belo Horizonte, MG, Brazil
| | - Rafael Nacif-Pimenta
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Barro Preto, Belo Horizonte, MG, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - Suzan Simões
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
| | - Iria Cabral
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
| | - Marcus Vinicíus Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz - Manaus, Manaus, AM, Brazil
| | - Maria das Graças Barbosa Guerra
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
| | - Nagila F C Secundino
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Barro Preto, Belo Horizonte, MG, Brazil
| | - Paulo F P Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Barro Preto, Belo Horizonte, MG, Brazil
| |
Collapse
|
27
|
Kengne-Ouafo JA, Sutherland CJ, Binka FN, Awandare GA, Urban BC, Dinko B. Immune Responses to the Sexual Stages of Plasmodium falciparum Parasites. Front Immunol 2019; 10:136. [PMID: 30804940 PMCID: PMC6378314 DOI: 10.3389/fimmu.2019.00136] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/16/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria infections remain a serious global health problem in the world, particularly among children and pregnant women in Sub-Saharan Africa. Moreover, malaria control and elimination is hampered by rapid development of resistance by the parasite and the vector to commonly used antimalarial drugs and insecticides, respectively. Therefore, vaccine-based strategies are sorely needed, including those designed to interrupt disease transmission. However, a prerequisite for such a vaccine strategy is the understanding of both the human and vector immune responses to parasite developmental stages involved in parasite transmission in both man and mosquito. Here, we review the naturally acquired humoral and cellular responses to sexual stages of the parasite while in the human host and the Anopheles vector. In addition, updates on current anti-gametocyte, anti-gamete, and anti-mosquito transmission blocking vaccines are given. We conclude with our views on some important future directions of research into P. falciparum sexual stage immunity relevant to the search for the most appropriate transmission-blocking vaccine.
Collapse
Affiliation(s)
- Jonas A Kengne-Ouafo
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Colin J Sutherland
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fred N Binka
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Britta C Urban
- Faculty of Biological Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
28
|
Han F, Wang X, Guo J, Qi C, Xu C, Luo Y, Li E, Qin JG, Chen L. Effects of glycinin and β-conglycinin on growth performance and intestinal health in juvenile Chinese mitten crabs (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2019; 84:269-279. [PMID: 30300740 DOI: 10.1016/j.fsi.2018.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
This study investigates the effects of two soybean antigens (glycinin and β-conglycinin) as an antinutritional substance in the diet on the growth, digestive ability, intestinal health and microbiota of juvenile Chinese mitten crabs (Eriocheir sinensis). The isonitrogenous and isolipidic diets contained two soybean antigens at two levels each (70 and 140 g/kg β-conglycinin, 80 and 160 g/kg glycinin) and a control diet without β-conglycinin or glycinin supplementation, and were used respectively to feed juvenile E. sinensis for seven weeks. Dietary inclusion of either glycinin or β-conglycinin significantly reduced crab survival and weight gain. The crabs fed diets containing soybean antigens had higher malondialdehyde concentrations and lower catalase activities in the intestine than those in the control. The activities of trypsin and amylase in the intestine were suppressed by dietary β-conglycinin and glycinin. Dietary glycinin or β-conglycinin impaired the immunity and morphological structure of intestine, especially the peritrophic membrane. The mRNA expression of constitutive and inducible immune responsive genes (lipopolysaccharide-induced TNF-α factor and interleukin-2 enhancer-binding factor 2) increased while the mRNA expression of the main genes related to the structural integrity peritrophic membrane (peritrophin-like gene and peritrophic 2) significantly decreased in the groups with soybean antigen addition. Soybean antigen could also change the intestinal microbial community. The abundance of pathogenic bacteria (Ochrobactrum, Burkholderia and Pseudomonas) increased significantly in both soybean antigen groups. Although pathogenic bacteria Vibrio were up-regulated in the glycinin group, the abundance of Dysgonomonas that degraded lignocellulose and ameliorated the gut environment decreased in the glycinin group. This study indicates that existence of soybean antigens (glycinin or β-conglycinin) could induce gut inflammation, reshape the community of gut microbiota, and cause digestive dysfunction, ultimately leading to impaired growth in crabs.
Collapse
Affiliation(s)
- Fenglu Han
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Jianlin Guo
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Changle Qi
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Chang Xu
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Erchao Li
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| |
Collapse
|
29
|
Paraquat-Mediated Oxidative Stress in Anopheles gambiae Mosquitoes Is Regulated by An Endoplasmic Reticulum (ER) Stress Response. Proteomes 2018; 6:proteomes6040047. [PMID: 30424486 PMCID: PMC6313908 DOI: 10.3390/proteomes6040047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
Paraquat is a potent superoxide (O2−)-inducing agent that is capable of inducing an oxidative imbalance in the mosquito midgut. This oxidative imbalance can super-stress the malaria parasite, leading to arrested development in the mosquito midgut and reduced transmission. While several studies have explored the effect of paraquat on malaria parasites, a fundamental understanding of the mosquito response to this compound remains unknown. Here, we quantified the mosquito midgut proteomic response to a paraquat-laced sugar meal, and found that An. gambiae midguts were enriched in proteins that are indicative of cells under endoplasmic reticulum (ER) stress. We also carried out qRT-PCR analyses for nine prominent thioredoxin (Trx) and glutathione (GSH)-dependent genes in mosquito midguts post P. falciparum blood meal ingestion to evaluate the concordance between transcripts and proteins under different oxidative stress conditions. Our data revealed an absence of significant upregulation in the Trx and GSH-dependent genes following infected blood meal ingestion. These data suggest that the intrinsic tolerance of the mosquito midgut to paraquat-mediated oxidative stress is through an ER stress response. These data indicate that mosquitoes have at least two divergent pathways of managing the oxidative stress that is induced by exogenous compounds, and outline the potential application of paraquat-like drugs to act selectively against malaria parasite development in mosquito midguts, thereby blocking mosquito-to-human transmission.
Collapse
|
30
|
Hugo RLE, Birrell GW. Proteomics of Anopheles Vectors of Malaria. Trends Parasitol 2018; 34:961-981. [DOI: 10.1016/j.pt.2018.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
|
31
|
Kristan M, Abeku TA, Lines J. Effect of environmental variables and kdr resistance genotype on survival probability and infection rates in Anopheles gambiae (s.s.). Parasit Vectors 2018; 11:560. [PMID: 30367663 PMCID: PMC6204000 DOI: 10.1186/s13071-018-3150-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/14/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Environmental factors, especially ambient temperature and relative humidity affect both mosquitoes and malaria parasites. The early part of sporogony is most sensitive and is affected by high temperatures and temperature fluctuation immediately following ingestion of an infectious blood meal. The aim of this study was to explore whether environmental variables such as temperature, together with the presence of the kdr insecticide resistance mutations, have an impact on survival probability and infection rates in wild Anopheles gambiae (s.s.) exposed and unexposed to a pyrethroid insecticide. METHODS Anopheles gambiae (s.s.) were collected as larvae, reared to adults, and fed on blood samples from 42 Plasmodium falciparum-infected local patients at a health facility in mid-western Uganda, then exposed either to nets treated with sub-lethal doses of deltamethrin or to untreated nets. After seven days, surviving mosquitoes were dissected and their midguts examined for oocysts. Prevalence (proportion infected) and intensity of infection (number of oocysts per infected mosquito) were recorded for each group. Mosquito mortality was recorded daily. Temperature and humidity were recorded every 30 minutes throughout the experiments. RESULTS Our findings indicate that apart from the effect of deltamethrin exposure, mean daily temperature during the incubation period, temperature range during the first 24 hours and on day 4 post-infectious feed had a highly significant effect on the risk of infection. Deltamethrin exposure still significantly impaired survival of kdr homozygous mosquitoes, while mean daily temperature and relative humidity during the incubation period independently affected mosquito mortality. Significant differences in survival of resistant genotypes were detected, with the lowest survival recorded in mosquitoes with heterozygote L1014S/L1014F genotype. CONCLUSIONS This study confirmed that the early part of sporogony is most affected by temperature fluctuations, while environmental factors affect mosquito survival. The impact of insecticide resistance on malaria infection and vector survival needs to be assessed separately for mosquitoes with different resistance mechanisms to fully understand its implications for currently available vector control tools and malaria transmission.
Collapse
Affiliation(s)
- Mojca Kristan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK.
| | | | - Jo Lines
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
32
|
Deligianni E, Silmon de Monerri NC, McMillan PJ, Bertuccini L, Superti F, Manola M, Spanos L, Louis C, Blackman MJ, Tilley L, Siden-Kiamos I. Essential role of Plasmodium perforin-like protein 4 in ookinete midgut passage. PLoS One 2018; 13:e0201651. [PMID: 30102727 PMCID: PMC6089593 DOI: 10.1371/journal.pone.0201651] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/19/2018] [Indexed: 01/22/2023] Open
Abstract
Pore forming proteins such as those belonging to the membrane attack/perforin (MACPF) family have important functions in many organisms. Of the five MACPF proteins found in Plasmodium parasites, three have functions in cell passage and one in host cell egress. Here we report an analysis of the perforin-like protein 4, PPLP4, in the rodent parasite Plasmodium berghei. We found that the protein is expressed only in the ookinete, the invasive stage of the parasite formed in the mosquito midgut. Transcriptional analysis revealed that expression of the pplp4 gene commences during ookinete development. The protein was detected in retorts and mature ookinetes. Using two antibodies, the protein was found localized in a dotted pattern, and 3-D SIM super-resolution microcopy revealed the protein in the periphery of the cell. Analysis of a C-terminal mCherry fusion of the protein however showed mainly cytoplasmic label. A pplp4 null mutant formed motile ookinetes, but these were unable to invade and traverse the midgut epithelium resulting in severely impaired oocyst formation and no transmission to naïve mice. However, when in vitro cultured ookinetes were injected into the thorax of the mosquito, thus by-passing midgut passage, sporozoites were formed and the mutant parasites were able to infect naïve mice. Taken together, our data show that PPLP4 is required only for ookinete invasion of the mosquito midgut. Thus PPLP4 has a similar role to the previously studied PPLP3 and PPLP5, raising the question why three proteins with MACPF domains are needed for invasion by the ookinete of the mosquito midgut epithelium.
Collapse
Affiliation(s)
- Elena Deligianni
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, Heraklion, Greece
- * E-mail:
| | | | - Paul J. McMillan
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence for Coherent X-ray Science, The University of Melbourne, Melbourne, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- Biological Optical Microcopy Platform, The University of Melbourne, Melbourne, VIC, Australia
| | - Lucia Bertuccini
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Rome, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Rome, Italy
| | - Maria Manola
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, Heraklion, Greece
| | - Lefteris Spanos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, Heraklion, Greece
| | - Christos Louis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, Heraklion, Greece
| | - Michael J. Blackman
- The Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence for Coherent X-ray Science, The University of Melbourne, Melbourne, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, Heraklion, Greece
| |
Collapse
|
33
|
Whiten SR, Ray WK, Helm RF, Adelman ZN. Characterization of the adult Aedes aegypti early midgut peritrophic matrix proteome using LC-MS. PLoS One 2018; 13:e0194734. [PMID: 29570734 PMCID: PMC5865745 DOI: 10.1371/journal.pone.0194734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/08/2018] [Indexed: 02/01/2023] Open
Abstract
The Aedes aegypti mosquito is the principal vector of arboviruses such as dengue, chikungunya, yellow fever, and Zika virus. These arboviruses are transmitted during adult female mosquito bloodfeeding. While these viruses must transverse the midgut to replicate, the blood meal must also reach the midgut to be digested, absorbed, or excreted, as aggregation of blood meal metabolites can be toxic to the female mosquito midgut. The midgut peritrophic matrix (PM), a semipermeable extracellular layer comprised of chitin fibrils, glycoproteins, and proteoglycans, is one such mechanism of protection for the mosquito midgut. However, this structure has not been characterized for adult female Ae. aegypti. We conducted a mass spectrometry based proteomic analysis to identify proteins that comprise or are associated with the adult female Ae. aegypti early midgut PM. Altogether, 474 unique proteins were identified, with 115 predicted as secreted. GO-term enrichment analysis revealed an abundance of serine-type proteases and several known and novel intestinal mucins. In addition, approximately 10% of the peptides identified corresponded to known salivary proteins, indicating Ae. aegypti mosquitoes extensively swallow their own salivary secretions. However, the physiological relevance of this remains unclear, and further studies are needed to determine PM proteins integral for midgut protection from blood meal derived toxicity and pathogen protection. Finally, we describe substantial discordance between previously described transcriptionally changes observed in the midgut in response to a bloodmeal and the presence of the corresponding protein in the PM. Data are available via ProteomeXchange with identifier PXD007627.
Collapse
Affiliation(s)
- Shavonn R. Whiten
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - W. Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Richard F. Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
34
|
Baia-da-Silva DC, Alvarez LCS, Lizcano OV, Costa FTM, Lopes SCP, Orfanó AS, Pascoal DO, Nacif-Pimenta R, Rodriguez IC, Guerra MDGVB, Lacerda MVG, Secundino NFC, Monteiro WM, Pimenta PFP. The role of the peritrophic matrix and red blood cell concentration in Plasmodium vivax infection of Anopheles aquasalis. Parasit Vectors 2018; 11:148. [PMID: 29510729 PMCID: PMC5840820 DOI: 10.1186/s13071-018-2752-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/26/2018] [Indexed: 12/31/2022] Open
Abstract
Background Plasmodium vivax is predominant in the Amazon region, and enhanced knowledge of its development inside a natural vector, Anopheles aquasalis, is critical for future strategies aimed at blocking parasite development. The peritrophic matrix (PM), a chitinous layer produced by the mosquito midgut in response to blood ingestion, is a protective barrier against pathogens. Plasmodium can only complete its life-cycle, and consequently be transmitted to a new host, after successfully passing this barrier. Interestingly, fully engorged mosquitoes that had a complete blood meal form a thicker, well-developed PM than ones that feed in small amounts. The amount of red blood cells (RBC) in the blood meal directly influences the production of digestive enzymes and can protect parasites from being killed during the meal digestion. A specific study interrupting the development of the PM associated with the proteolytic activity inhibition, and distinct RBC concentrations, during the P. vivax infection of the New World malaria vector An. aquasalis is expected to clarify whether these factors affect the parasite development. Results Absence of PM in the vector caused a significant reduction in P. vivax infection. However, the association of chitinase with trypsin inhibitor restored infection rates to those of mosquitoes with a structured PM. Also, only the ingestion of trypsin inhibitor by non-chitinase treated mosquitoes increased the infection intensity. Moreover, the RBC concentration in the infected P. vivax blood meal directly influenced the infection rate and its intensity. A straight correlation was observed between RBC concentrations and infection intensity. Conclusions This study established that there is a balance between the PM role, RBC concentration and digestive enzyme activity influencing the establishment and development of P. vivax infection inside An. aquasalis. Our results indicate that the absence of PM in the midgut facilitates digestive enzyme dispersion throughout the blood meal, causing direct damage to P. vivax. On the other hand, high RBC concentrations support a better and thick, well-developed PM and protect P. vivax from being killed. Further studies of this complex system may provide insights into other details of the malaria vector response to P. vivax infection.
Collapse
Affiliation(s)
- Djane Clarys Baia-da-Silva
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Luis Carlos Salazar Alvarez
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Omaira Vera Lizcano
- Grupo de Investigación QUIBIO, Departamento de Biología, Universidad Santiago de Cali, Valle del Cauca, Colombia
| | - Fabio Trindade Maranhão Costa
- Department of Genetics, Evolution and Bioagents, Institute of Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Stefanie Costa Pinto Lopes
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brazil.,Instituto Leônidas & Maria Deane, Fiocruz, Manaus, AM, Brazil
| | - Alessandra Silva Orfanó
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Belo Horizonte, MG, Brazil
| | - Denner Oliveira Pascoal
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Rafael Nacif-Pimenta
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Belo Horizonte, MG, Brazil
| | - Iria Cabral Rodriguez
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Maria das Graças Vale Barbosa Guerra
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Marcus Vinicius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brazil.,Instituto Leônidas & Maria Deane, Fiocruz, Manaus, AM, Brazil
| | | | - Wuelton Marcelo Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil. .,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brazil. .,Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
35
|
Song X, Wang M, Dong L, Zhu H, Wang J. PGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synthesis. PLoS Pathog 2018; 14:e1006899. [PMID: 29489896 PMCID: PMC5831637 DOI: 10.1371/journal.ppat.1006899] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/23/2018] [Indexed: 12/02/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) and commensal microbes mediate pathogen infection outcomes in insect disease vectors. Although PGRP-LD is retained in multiple vectors, its role in host defense remains elusive. Here we report that Anopheles stephensi PGRP-LD protects the vector from malaria parasite infection by regulating gut homeostasis. Specifically, knock down of PGRP-LD (dsLD) increased susceptibility to Plasmodium berghei infection, decreased the abundance of gut microbiota and changed their spatial distribution. This outcome resulted from a change in the structural integrity of the peritrophic matrix (PM), which is a chitinous and proteinaceous barrier that lines the midgut lumen. Reduction of microbiota in dsLD mosquitoes due to the upregulation of immune effectors led to dysregulation of PM genes and PM fragmentation. Elimination of gut microbiota in antibiotic treated mosquitoes (Abx) led to PM loss and increased vectorial competence. Recolonization of Abx mosquitoes with indigenous Enterobacter sp. restored PM integrity and decreased mosquito vectorial capacity. Silencing PGRP-LD in mosquitoes without PM didn’t influence their vector competence. Our results indicate that PGPR-LD protects the gut microbiota by preventing hyper-immunity, which in turn promotes PM structurally integrity. The intact PM plays a key role in limiting P. berghei infection. Malaria parasites must overcome several obstacles to complete their development in mosquito. Understanding the interactions between parasites and mosquitoes will provide potential targets to control malaria transmission. PGRP-LD is a peptidoglycan recognition protein, of which limit information is available in insects. Here we show that A. stephensi PGRP-LD mediates malaria parasite infection outcomes by influencing homeostasis of the gut microbiota. Reduction of the gut microbiota density, resulting from upregulation of immune activities in PGRP-LD knock down mosquitoes, changes expression of PM genes and causes PM fragmentation. The compromised PM leads to increasing susceptibility to parasite infection. We also discovered that the PM is lost in mosquitoes in which the gut microbiota is removed by antibiotic treatment. Knock down of PGRP-LD in these mosquitoes doesn’t increase their vector competence. Altogether, these results indicate that capacity of Anopheles mosquito to transmit parasites is determined by a finely tuned balance between host immunity, gut microbiota and peritrophic matrix. PGRP-LD is a key mediator in regulating this balance. Our results expand knowledge on interactions between immune system, gut microbiota and Plasmodium, and will shed light on equivalent processes in other disease transmitting vectors.
Collapse
Affiliation(s)
- Xiumei Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Mengfei Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Li Dong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Huaimin Zhu
- The 2nd Military Medical University, Shanghai, P. R. China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
36
|
Whiten SR, Eggleston H, Adelman ZN. Ironing out the Details: Exploring the Role of Iron and Heme in Blood-Sucking Arthropods. Front Physiol 2018; 8:1134. [PMID: 29387018 PMCID: PMC5776124 DOI: 10.3389/fphys.2017.01134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
Heme and iron are essential molecules for many physiological processes and yet have the ability to cause oxidative damage such as lipid peroxidation, protein degradation, and ultimately cell death if not controlled. Blood-sucking arthropods have evolved diverse methods to protect themselves against iron/heme-related damage, as the act of bloodfeeding itself is high risk, high reward process. Protective mechanisms in medically important arthropods include the midgut peritrophic matrix in mosquitoes, heme aggregation into the crystalline structure hemozoin in kissing bugs and hemosomes in ticks. Once heme and iron pass these protective mechanisms they are presumed to enter the midgut epithelial cells via membrane-bound transporters, though relatively few iron or heme transporters have been identified in bloodsucking arthropods. Upon iron entry into midgut epithelial cells, ferritin serves as the universal storage protein and transport for dietary iron in many organisms including arthropods. In addition to its role as a nutrient, heme is also an important signaling molecule in the midgut epithelial cells for many physiological processes including vitellogenesis. This review article will summarize recent advancements in heme/iron uptake, detoxification and exportation in bloodfeeding arthropods. While initial strides have been made at ironing out the role of dietary iron and heme in arthropods, much still remains to be discovered as these molecules may serve as novel targets for the control of many arthropod pests.
Collapse
Affiliation(s)
- Shavonn R Whiten
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Heather Eggleston
- Genetics Graduate Program, Texas A&M University, College Station, TX, United States
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
37
|
Zhang Q, Hua G, Adang MJ. Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae. INSECT SCIENCE 2017; 24:714-729. [PMID: 27628909 DOI: 10.1111/1744-7917.12401] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Bacillus thuringiensis is a Gram-positive aerobic bacterium that produces insecticidal crystalline inclusions during sporulation phases of the mother cell. The virulence factor, known as parasporal crystals, is composed of Cry and Cyt toxins. Most Cry toxins display a common 3-domain topology. Cry toxins exert intoxication through toxin activation, receptor binding and pore formation in a suitable larval gut environment. The mosquitocidal toxins of Bt subsp. israelensis (Bti) were found to be highly active against mosquito larvae and are widely used for vector control. Bt subsp. jegathesan is another strain which possesses high potency against broad range of mosquito larvae. The present review summarizes characterized receptors for Cry toxins in mosquito larvae, and will also discuss the diversity and effects of 3-D mosquitocidal Cry toxin and the ongoing research for Cry toxin mechanisms generated from investigations of lepidopteran and dipteran larvae.
Collapse
Affiliation(s)
- Qi Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Gang Hua
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Michael J Adang
- Department of Entomology, University of Georgia, Athens, GA, USA
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
38
|
Papa F, Windbichler N, Waterhouse RM, Cagnetti A, D'Amato R, Persampieri T, Lawniczak MKN, Nolan T, Papathanos PA. Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes. Genome Res 2017; 27:1536-1548. [PMID: 28747381 PMCID: PMC5580713 DOI: 10.1101/gr.217216.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/18/2017] [Indexed: 01/09/2023]
Abstract
Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues.
Collapse
Affiliation(s)
- Francesco Papa
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Robert M Waterhouse
- University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
- Massachusetts Institute of Technology and the Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Alessia Cagnetti
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
- Polo d'Innovazione di Genomica, Genetica e Biologia, 06132 Perugia, Italy
| | - Rocco D'Amato
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Tania Persampieri
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
- Polo d'Innovazione di Genomica, Genetica e Biologia, 06132 Perugia, Italy
| | | | - Tony Nolan
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Philippos Aris Papathanos
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
39
|
He X, Cao X, He Y, Bhattarai K, Rogers J, Hartson S, Jiang H. Hemolymph proteins of Anopheles gambiae larvae infected by Escherichia coli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:110-124. [PMID: 28431895 PMCID: PMC5531190 DOI: 10.1016/j.dci.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Anopheles gambiae is a major vector of human malaria and its immune system in part determines the fate of ingested parasites. Proteins, hemocytes and fat body in hemolymph are critical components of this system, mediating both humoral and cellular defenses. Here we assessed differences in the hemolymph proteomes of water- and E. coli-pricked mosquito larvae by a gel-LC-MS approach. Among the 1756 proteins identified, 603 contained a signal peptide but accounted for two-third of the total protein amount on the quantitative basis. The sequence homology search indicated that 233 of the 1756 may be related to defense. In general, we did not detect substantial differences between the control and induced plasma samples in terms of protein numbers or levels. Protein distributions in the gel slices suggested post-translational modifications (e.g. proteolysis) and formation of serpin-protease complexes and high Mr immune complexes. Based on the twenty-five most abundant proteins, we further suggest that major functions of the larval hemolymph are storage, transport, and immunity. In summary, this study provided first data on constitution, levels, and possible functions of hemolymph proteins in the mosquito larvae, reflecting complex changes occurring in the fight against E. coli infection.
Collapse
Affiliation(s)
- Xuesong He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Krishna Bhattarai
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Steve Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
40
|
Kuleš J, Horvatić A, Guillemin N, Galan A, Mrljak V, Bhide M. New approaches and omics tools for mining of vaccine candidates against vector-borne diseases. MOLECULAR BIOSYSTEMS 2017; 12:2680-94. [PMID: 27384976 DOI: 10.1039/c6mb00268d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vector-borne diseases (VBDs) present a major threat to human and animal health, as well as place a substantial burden on livestock production. As a way of sustainable VBD control, focus is set on vaccine development. Advances in genomics and other "omics" over the past two decades have given rise to a "third generation" of vaccines based on technologies such as reverse vaccinology, functional genomics, immunomics, structural vaccinology and the systems biology approach. The application of omics approaches is shortening the time required to develop the vaccines and increasing the probability of discovery of potential vaccine candidates. Herein, we review the development of new generation vaccines for VBDs, and discuss technological advancement and overall challenges in the vaccine development pipeline. Special emphasis is placed on the development of anti-tick vaccines that can quell both vectors and pathogens.
Collapse
Affiliation(s)
- Josipa Kuleš
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Anita Horvatić
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Nicolas Guillemin
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Asier Galan
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Vladimir Mrljak
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Mangesh Bhide
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia. and Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia and Institute of Neuroimmunology, Slovakia Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
41
|
Oliveira DS, Brito NF, Nogueira FCS, Moreira MF, Leal WS, Soares MR, Melo ACA. Proteomic analysis of the kissing bug Rhodnius prolixus antenna. JOURNAL OF INSECT PHYSIOLOGY 2017; 100:108-118. [PMID: 28606853 DOI: 10.1016/j.jinsphys.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Reception of odorants is essential in insects' life since the chemical signals in the environment (=semiochemicals) convey information about availability of hosts for a blood meal, mates for reproduction, sites for oviposition and other relevant information for fitness in the environment. Once they reach the antennae, these semiochemicals bind to odorant-binding proteins and are transported through the sensillar lymph until reach the odorant receptors. Such perireceptor events, particularly the interactions with transport proteins, are the liaison between the external environment and the entire neuroethological system and, therefore, a potential target to disrupt insect chemical communication. In this study, a proteomic profile of female and male antennae of Rhodnius prolixus, a vector of Chagas disease, was obtained in an attempt to unravel the entire repertoire of olfactory proteins involved in perireceptor events. Using shotgun proteomics and two-dimensional gel electrophoresis approaches followed by nano liquid chromatography coupled with tandem LTQ Velos Orbitrap mass spectrometry, we have identified 581 unique proteins. Putative olfactory proteins, including 17 odorant binding proteins, 6 chemosensory proteins, 2 odorant receptors, 3 transient receptor channels and 1 gustatory receptor were identified. Proteins involved in general cellular functions such as generation of precursor metabolites, energy generation and catabolism were expressed at high levels. Additionally, proteins that take part in signal transduction, ion binding, and stress response, kinase and oxidoreductase activity were frequent in antennae from both sexes. This proteome strategy unraveled for the first time the complex nature of perireceptor and other olfactory events that occur in R. prolixus antennae, including evidence for phosphorylation of odorant-binding and chemosensory proteins. These findings not only increase our understanding of the olfactory process in triatomine species, but also identify potential molecular targets to be explored for population control of such insect vectors.
Collapse
Affiliation(s)
- Daniele S Oliveira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Nathalia F Brito
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Fabio C S Nogueira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Monica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Walter S Leal
- University of California-Davis, Department of Molecular and Cellular Biology, 95616 Davis, CA, USA
| | - Marcia R Soares
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Ana C A Melo
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
42
|
Rodgers FH, Gendrin M, Wyer CAS, Christophides GK. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes. PLoS Pathog 2017; 13:e1006391. [PMID: 28545061 PMCID: PMC5448818 DOI: 10.1371/journal.ppat.1006391] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/30/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022] Open
Abstract
Manipulation of the mosquito gut microbiota can lay the foundations for novel methods for disease transmission control. Mosquito blood feeding triggers a significant, transient increase of the gut microbiota, but little is known about the mechanisms by which the mosquito controls this bacterial growth whilst limiting inflammation of the gut epithelium. Here, we investigate the gut epithelial response to the changing microbiota load upon blood feeding in the malaria vector Anopheles coluzzii. We show that the synthesis and integrity of the peritrophic matrix, which physically separates the gut epithelium from its luminal contents, is microbiota dependent. We reveal that the peritrophic matrix limits the growth and persistence of Enterobacteriaceae within the gut, whilst preventing seeding of a systemic infection. Our results demonstrate that the peritrophic matrix is a key regulator of mosquito gut homeostasis and establish functional analogies between this and the mucus layers of the mammalian gastrointestinal tract. When a female mosquito takes a blood meal from a human, the bacteria residing within its gut grow significantly. Following a blood meal, female mosquitoes produce a barrier within their gut, known as the peritrophic matrix, which physically separates the blood meal from the cells of the epithelium. Here, we show that the presence of bacteria in the gut is required for the synthesis of the peritrophic matrix. By experimentally disrupting this barrier, we find that this structure plays a role in limiting the extent to which bacteria of one particular family are able to grow and persist in the mosquito gut. We also find that the peritrophic matrix ensures that bacteria remain within the gut, preventing them from invading the mosquito body cavity. These results will be useful in designing disease control strategies that depend on the ability of bacteria to colonize and persist in relevant tissues in the mosquito host.
Collapse
Affiliation(s)
- Faye H. Rodgers
- Vector Immunogenomics and Infection Laboratory, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Mathilde Gendrin
- Vector Immunogenomics and Infection Laboratory, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Claudia A. S. Wyer
- Vector Immunogenomics and Infection Laboratory, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - George K. Christophides
- Vector Immunogenomics and Infection Laboratory, Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Saraiva RG, Kang S, Simões ML, Angleró-Rodríguez YI, Dimopoulos G. Mosquito gut antiparasitic and antiviral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:53-64. [PMID: 26827888 DOI: 10.1016/j.dci.2016.01.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Mosquitoes are responsible for the transmission of diseases with a serious impact on global human health, such as malaria and dengue. All mosquito-transmitted pathogens complete part of their life cycle in the insect gut, where they are exposed to mosquito-encoded barriers and active factors that can limit their development. Here we present the current understanding of mosquito gut immunity against malaria parasites, filarial worms, and viruses such as dengue, Chikungunya, and West Nile. The most recently proposed immune mediators involved in intestinal defenses are discussed, as well as the synergies identified between the recognition of gut microbiota and the mounting of the immune response.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yesseinia I Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
44
|
Toprak U, Erlandson M, Baldwin D, Karcz S, Wan L, Coutu C, Gillott C, Hegedus DD. Identification of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix proteins and enzymes involved in peritrophic matrix chitin metabolism. INSECT SCIENCE 2016; 23:656-674. [PMID: 25846407 DOI: 10.1111/1744-7917.12225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
The peritrophic matrix (PM) is essential for insect digestive system physiology as it protects the midgut epithelium from damage by food particles, pathogens, and toxins. The PM is also an attractive target for development of new pest control strategies due to its per os accessibility. To understand how the PM performs these functions, the molecular architecture of the PM was examined using genomic and proteomic approaches in Mamestra configurata (Lepidoptera: Noctuidae), a major pest of cruciferous oilseed crops in North America. Liquid chromatography-tandem mass spectrometry analyses of the PM identified 82 proteins classified as: (i) peritrophins, including a new class with a CBDIII domain; (ii) enzymes involved in chitin modification (chitin deacetylases), digestion (serine proteases, aminopeptidases, carboxypeptidases, lipases and α-amylase) or other reactions (β-1,3-glucanase, alkaline phosphatase, dsRNase, astacin, pantetheinase); (iii) a heterogenous group consisting of polycalin, REPATs, serpin, C-Type lectin and Lsti99/Lsti201 and 3 novel proteins without known orthologs. The genes encoding PM proteins were expressed predominantly in the midgut. cDNAs encoding chitin synthase-2 (McCHS-2), chitinase (McCHI), and β-N-acetylglucosaminidase (McNAG) enzymes, involved in PM chitin metabolism, were also identified. McCHS-2 expression was specific to the midgut indicating that it is responsible for chitin synthesis in the PM, the only chitinous material in the midgut. In contrast, the genes encoding the chitinolytic enzymes were expressed in multiple tissues. McCHS-2, McCHI, and McNAG were expressed in the midgut of feeding larvae, and NAG activity was present in the PM. This information was used to generate an updated model of the lepidopteran PM architecture.
Collapse
Affiliation(s)
- Umut Toprak
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Plant Protection, Faculty of Agriculture, University of Ankara, Ankara, Turkey
| | - Martin Erlandson
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Doug Baldwin
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Steve Karcz
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Lianglu Wan
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, SK, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Cedric Gillott
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
45
|
Species-specific escape of Plasmodium sporozoites from oocysts of avian, rodent, and human malarial parasites. Malar J 2016; 15:394. [PMID: 27480269 PMCID: PMC4969971 DOI: 10.1186/s12936-016-1451-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/21/2016] [Indexed: 12/24/2022] Open
Abstract
Background Malaria is transmitted when an infected mosquito delivers Plasmodium sporozoites into a vertebrate host. There are many species of Plasmodium and, in general, the infection is host-specific. For example, Plasmodium gallinaceum is an avian parasite, while Plasmodium berghei infects mice. These two parasites have been extensively used as experimental models of malaria transmission. Plasmodium falciparum and Plasmodium vivax are the most important agents of human malaria, a life-threatening disease of global importance. To complete their life cycle, Plasmodium parasites must traverse the mosquito midgut and form an oocyst that will divide continuously. Mature oocysts release thousands of sporozoites into the mosquito haemolymph that must reach the salivary gland to infect a new vertebrate host. The current understanding of the biology of oocyst formation and sporozoite release is mostly based on experimental infections with P.berghei, and the conclusions are generalized to other Plasmodium species that infect humans without further morphological analyses. Results Here, it is described the microanatomy of sporozoite escape from oocysts of four Plasmodium species: the two laboratory models, P. gallinaceum and P. berghei, and the two main species that cause malaria in humans, P.vivax and P. falciparum. It was found that sporozoites have species-specific mechanisms of escape from the oocyst. The two model species of Plasmodium had a common mechanism, in which the oocyst wall breaks down before sporozoites emerge. In contrast, P. vivax and P. falciparum sporozoites show a dynamic escape mechanism from the oocyst via polarized propulsion. Conclusions This study demonstrated that Plasmodium species do not share a common mechanism of sporozoite escape, as previously thought, but show complex and species-specific mechanisms. In addition, the knowledge of this phenomenon in human Plasmodium can facilitate transmission-blocking studies and not those ones only based on the murine and avian models.
Collapse
|
46
|
VSG overcomes an early barrier to survival of African trypanosomes in tsetse flies. Proc Natl Acad Sci U S A 2016; 113:6821-3. [PMID: 27286826 DOI: 10.1073/pnas.1607008113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Proteomics reveals major components of oogenesis in the reproductive tract of sugar-fed Anopheles aquasalis. Parasitol Res 2016; 115:1977-89. [DOI: 10.1007/s00436-016-4940-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022]
|
48
|
Zhu KY, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S. Biosynthesis, Turnover, and Functions of Chitin in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2016; 61:177-96. [PMID: 26982439 DOI: 10.1146/annurev-ento-010715-023933] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chitin is a major component of the exoskeleton and the peritrophic matrix of insects. It forms complex structures in association with different assortments of cuticle and peritrophic matrix proteins to yield biocomposites with a wide range of physicochemical and mechanical properties. The growth and development of insects are intimately coupled with the biosynthesis, turnover, and modification of chitin. The genes encoding numerous enzymes of chitin metabolism and proteins that associate with and organize chitin have been uncovered by bioinformatics analyses. Many of these proteins are encoded by sets of large gene families. There is specialization among members within each family, which function in particular tissues or developmental stages. Chitin-containing matrices are dynamically modified at every developmental stage and are under developmental and/or physiological control. A thorough understanding of the diverse processes associated with the assembly and turnover of these chitinous matrices offers many strategies to achieve selective pest control.
Collapse
Affiliation(s)
| | | | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China;
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506; ,
| |
Collapse
|
49
|
|
50
|
Seaman JA, Alout H, Meyers JI, Stenglein MD, Dabiré RK, Lozano-Fuentes S, Burton TA, Kuklinski WS, Black WC, Foy BD. Age and prior blood feeding of Anopheles gambiae influences their susceptibility and gene expression patterns to ivermectin-containing blood meals. BMC Genomics 2015; 16:797. [PMID: 26471037 PMCID: PMC4608139 DOI: 10.1186/s12864-015-2029-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023] Open
Abstract
Background Ivermectin has been proposed as a novel malaria transmission control tool based on its insecticidal properties and unique route of acquisition through human blood. To maximize ivermectin’s effect and identify potential resistance/tolerance mechanisms, it is important to understand its effect on mosquito physiology and potential to shift mosquito population age-structure. We therefore investigated ivermectin susceptibility and gene expression changes in several age groups of female Anopheles gambiae mosquitoes. Methods The effect of aging on ivermectin susceptibility was analyzed in three age groups (2, 6, and 14-days) of colonized female Anopheles gambiae mosquitoes using standard survivorship assays. Gene expression patterns were then analyzed by transcriptome sequencing on an Illumina HiSeq 2500 platform. RT-qPCR was used to validate transcriptional changes and also to examine expression in a different, colonized strain and in wild mosquitoes, both of which blood fed naturally on an ivermectin-treated person. Results Mosquitoes of different ages and blood meal history died at different frequencies after ingesting ivermectin. Mortality was lowest in 2-day old mosquitoes exposed on their first blood meal and highest in 6-day old mosquitoes exposed on their second blood meal. Twenty-four hours following ivermectin ingestion, 101 and 187 genes were differentially-expressed relative to control blood-fed, in 2 and 6-day groups, respectively. Transcription patterns of select genes were similar in membrane-fed, colonized, and naturally-fed wild vectors. Transcripts from several unexpected functional classes were highly up-regulated, including Niemann-Pick Type C (NPC) genes, peritrophic matrix-associated genes, and immune-response genes, and these exhibited different transcription patterns between age groups, which may explain the observed susceptibility differences. Niemann-Pick Type 2 genes were the most highly up-regulated transcripts after ivermectin ingestion (up to 160 fold) and comparing phylogeny to transcriptional patterns revealed that NPCs have rapidly evolved and separate members respond to either blood meals or to ivermectin. Conclusion We present evidence of increased ivermectin susceptibility in older An. gambiae mosquitoes that had previously bloodfed. Differential expression analysis suggests complex midgut interactions resulting from ivermectin ingestion that likely involve blood meal digestion physiological responses, midgut microflora, and innate immune responses. Thus, the transcription of certain gene families is consistently affected by ivermectin ingestion, and may provide important clues to ivermectin’s broad effects on malaria vectors. These findings contribute to the growing understanding of ivermectin’s potential as a transmission control tool. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2029-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan A Seaman
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University 1692 Campus Delivery, Fort Collins, CO, 80525, USA.
| | - Haoues Alout
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University 1692 Campus Delivery, Fort Collins, CO, 80525, USA.
| | - Jacob I Meyers
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University 1692 Campus Delivery, Fort Collins, CO, 80525, USA.
| | - Mark D Stenglein
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University 1692 Campus Delivery, Fort Collins, CO, 80525, USA.
| | - Roch K Dabiré
- Institute de Recherche en Sciences de la Santé (IRSS)/Centre Muraz, Direction Régionale de l'Ouest, 399 Ave de la Liberté, Bobo Dioulasso, Houet, 10400-000, Burkina Faso.
| | - Saul Lozano-Fuentes
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University 1692 Campus Delivery, Fort Collins, CO, 80525, USA.
| | - Timothy A Burton
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University 1692 Campus Delivery, Fort Collins, CO, 80525, USA.
| | - Wojtek S Kuklinski
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University 1692 Campus Delivery, Fort Collins, CO, 80525, USA.
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University 1692 Campus Delivery, Fort Collins, CO, 80525, USA.
| | - Brian D Foy
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University 1692 Campus Delivery, Fort Collins, CO, 80525, USA.
| |
Collapse
|