1
|
Quicke DLJ, Butcher BA. Review of Venoms of Non-Polydnavirus Carrying Ichneumonoid Wasps. BIOLOGY 2021; 10:50. [PMID: 33445639 PMCID: PMC7828074 DOI: 10.3390/biology10010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022]
Abstract
Parasitoids are predominantly insects that develop as larvae on or inside their host, also usually another insect, ultimately killing it after various periods of parasitism when both parasitoid larva and host are alive. The very large wasp superfamily Ichneumonoidea is composed of parasitoids of other insects and comprises a minimum of 100,000 species. The superfamily is dominated by two similarly sized families, Braconidae and Ichneumonidae, which are collectively divided into approximately 80 subfamilies. Of these, six have been shown to release DNA-containing virus-like particles, encoded within the wasp genome, classified in the virus family Polydnaviridae. Polydnaviruses infect and have profound effects on host physiology in conjunction with various venom and ovarial secretions, and have attracted an immense amount of research interest. Physiological interactions between the remaining ichneumonoids and their hosts result from adult venom gland secretions and in some cases, ovarian or larval secretions. Here we review the literature on the relatively few studies on the effects and chemistry of these ichneumonoid venoms and make suggestions for interesting future research areas. In particular, we highlight relatively or potentially easily culturable systems with features largely lacking in currently studied systems and whose study may lead to new insights into the roles of venom chemistry in host-parasitoid relationships as well as their evolution.
Collapse
Affiliation(s)
- Donald L. J. Quicke
- Integrative Ecology Laboratory, Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand;
- Center of Excellence in Entomology, Bee Biology, Diversity of Insects and Mites, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand
| | - Buntika A. Butcher
- Integrative Ecology Laboratory, Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand;
- Center of Excellence in Entomology, Bee Biology, Diversity of Insects and Mites, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand
| |
Collapse
|
2
|
Mathé-Hubert H, Kremmer L, Colinet D, Gatti JL, Van Baaren J, Delava É, Poirié M. Variation in the Venom of Parasitic Wasps, Drift, or Selection? Insights From a Multivariate QST Analysis. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Huerta-Rey M, Anselme C, Cherqui A, Decocq G. Exploration Through the Venoms from Hymenoptera as Potential Therapeutic Agents in Cancer Therapy. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.507.515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Coulette Q, Lemauf S, Colinet D, Prévost G, Anselme C, Poirié M, Gatti JL. Biochemical characterization and comparison of aspartylglucosaminidases secreted in venom of the parasitoid wasps Asobara tabida and Leptopilina heterotoma. PLoS One 2017; 12:e0181940. [PMID: 28742131 PMCID: PMC5524358 DOI: 10.1371/journal.pone.0181940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/10/2017] [Indexed: 11/18/2022] Open
Abstract
Aspartylglucosaminidase (AGA) is a low-abundance intracellular enzyme that plays a key role in the last stage of glycoproteins degradation, and whose deficiency leads to human aspartylglucosaminuria, a lysosomal storage disease. Surprisingly, high amounts of AGA-like proteins are secreted in the venom of two phylogenetically distant hymenopteran parasitoid wasp species, Asobara tabida (Braconidae) and Leptopilina heterotoma (Cynipidae). These venom AGAs have a similar domain organization as mammalian AGAs. They share with them key residues for autocatalysis and activity, and the mature α- and β-subunits also form an (αβ)2 structure in solution. Interestingly, only one of these AGAs subunits (α for AtAGA and β for LhAGA) is glycosylated instead of the two subunits for lysosomal human AGA (hAGA), and these glycosylations are partially resistant to PGNase F treatment. The two venom AGAs are secreted as fully activated enzymes, they have a similar aspartylglucosaminidase activity and are both also efficient asparaginases. Once AGAs are injected into the larvae of the Drosophila melanogaster host, the asparaginase activity may play a role in modulating their physiology. Altogether, our data provide new elements for a better understanding of the secretion and the role of venom AGAs as virulence factors in the parasitoid wasps' success.
Collapse
Affiliation(s)
- Quentin Coulette
- Unité “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, FRE 3498 CNRS-UPJV), Université de Picardie Jules Verne, Amiens, France
| | - Séverine Lemauf
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | | | - Geneviève Prévost
- Unité “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, FRE 3498 CNRS-UPJV), Université de Picardie Jules Verne, Amiens, France
| | - Caroline Anselme
- Unité “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, FRE 3498 CNRS-UPJV), Université de Picardie Jules Verne, Amiens, France
| | - Marylène Poirié
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| |
Collapse
|
5
|
Tsujita N, Kuwahara H, Koyama H, Yanaka N, Arakawa K, Kuniyoshi H. Molecular characterization of aspartylglucosaminidase, a lysosomal hydrolase upregulated during strobilation in the moon jellyfish, Aurelia aurita. Biosci Biotechnol Biochem 2017; 81:938-950. [PMID: 28388360 DOI: 10.1080/09168451.2017.1285686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The life cycle of the moon jellyfish, Aurelia aurita, alternates between a benthic asexual polyp stage and a planktonic sexual medusa (jellyfish) stage. Transition from polyp to medusa is called strobilation. To investigate the molecular mechanisms of strobilation, we screened for genes that are upregulated during strobilation using the differential display method and we identified aspartylglucosaminidase (AGA), which encodes a lysosomal hydrolase. Similar to AGAs from other species, Aurelia AGA possessed an N-terminal signal peptide and potential N-glycosylation sites. The genomic region of Aurelia AGA was approximately 9.8 kb in length and contained 12 exons and 11 introns. Quantitative RT-PCR analysis revealed that AGA expression increased during strobilation, and was then decreased in medusae. To inhibit AGA function, we administered the lysosomal acidification inhibitors, chloroquine or bafilomycin A1, to animals during strobilation. Both inhibitors disturbed medusa morphogenesis at the oral end, suggesting involvement of lysosomal hydrolases in strobilation.
Collapse
Affiliation(s)
- Natsumi Tsujita
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | - Hiroyuki Kuwahara
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | - Hiroki Koyama
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | - Noriyuki Yanaka
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | - Kenji Arakawa
- b Graduate School of Advanced Sciences of Matter , Hiroshima University , Higashi-Hiroshima , Japan
| | - Hisato Kuniyoshi
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
6
|
Paulson AR, Le CH, Dickson JC, Ehlting J, von Aderkas P, Perlman SJ. Transcriptome analysis provides insight into venom evolution in a seed-parasitic wasp, Megastigmus spermotrophus. INSECT MOLECULAR BIOLOGY 2016; 25:604-16. [PMID: 27286234 DOI: 10.1111/imb.12247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
One of the most striking host range transitions is the evolution of plant parasitism from animal parasitism. Parasitoid wasps that have secondarily evolved to attack plants (ie gall wasps and seed-feeders) demonstrate intimate associations with their hosts, yet the mechanism of plant-host manipulation is currently not known. There is, however, emerging evidence suggesting that ovipositional secretions play a role in plant manipulation. To investigate whether parasites have modified pre-existing adaptations to facilitate dramatic host shifts we aimed to characterize the expression of venom proteins in a plant parasite using a collection of parasitoid venom sequences as a guide. The transcriptome of a seed-feeding wasp, Megastigmus spermotrophus, was assembled de novo and three putative venoms were found to be highly expressed in adult females. One of these putative venoms, aspartylglucosaminidase, has been previously identified as a major venom component in two distantly related parasitoid wasps (Asobara tabida and Leptopilina heterotoma) and may have originated via gene duplication within the Hymenoptera. Our study shows that M. spermotrophus, a specialized plant parasite, expresses putative venom transcripts that share homology to venoms identified in Nasonia vitripennis (both superfamily Chalcidoidea), which suggests that M. spermotrophus may have co-opted pre-existing machinery to develop as a plant parasite.
Collapse
Affiliation(s)
- A R Paulson
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada.
| | - C H Le
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - J C Dickson
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - J Ehlting
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - P von Aderkas
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - S J Perlman
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Poirié M, Colinet D, Gatti JL. Insights into function and evolution of parasitoid wasp venoms. CURRENT OPINION IN INSECT SCIENCE 2014; 6:52-60. [PMID: 32846678 DOI: 10.1016/j.cois.2014.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 06/11/2023]
Abstract
Most species in the order Hymenoptera are parasitoids that lay eggs and develop in or on the body of arthropod hosts. Several factors contribute to successful parasitism including venoms that wasps inject into hosts when ovipositing. Here, we review the composition, function and diversity of parasitoid venoms with emphasis on studies of wasps that parasitize hosts in the genus Drosophila. The comparative literature indicates that some closely related species parasitizing the same host do not share any abundant venom protein while unrelated species sometimes have the same major venom component. Within species, studies also identify intraspecific variation that suggests parasitoid venoms may rapidly evolve. Overall, however, our picture of venom function remains largely unclear and will require additional comparative data on the composition of venoms from a greater diversity of species than exists currently. Further advances will come mainly from experimental data using functional tools, such as RNA interference.
Collapse
Affiliation(s)
- Marylène Poirié
- Institut National de la Recherche Agronomique (INRA), Evolution and Specificity of Multitrophic Interactions (ESIM), UMR 1355 Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France; Centre National de la Recherche Scientifique (CNRS), UMR 7254, Sophia Antipolis, France; Université Nice Sophia Antipolis, UFR Sciences, Sophia Antipolis, France.
| | - Dominique Colinet
- Institut National de la Recherche Agronomique (INRA), Evolution and Specificity of Multitrophic Interactions (ESIM), UMR 1355 Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France; Centre National de la Recherche Scientifique (CNRS), UMR 7254, Sophia Antipolis, France; Université Nice Sophia Antipolis, UFR Sciences, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Institut National de la Recherche Agronomique (INRA), Evolution and Specificity of Multitrophic Interactions (ESIM), UMR 1355 Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France; Centre National de la Recherche Scientifique (CNRS), UMR 7254, Sophia Antipolis, France; Université Nice Sophia Antipolis, UFR Sciences, Sophia Antipolis, France
| |
Collapse
|
8
|
Colinet D, Deleury E, Anselme C, Cazes D, Poulain J, Azema-Dossat C, Belghazi M, Gatti JL, Poirié M. Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:601-611. [PMID: 23557852 DOI: 10.1016/j.ibmb.2013.03.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
The arms race between immune suppressive parasites that produce virulence factors and hosts that evolve resistance to these factors is suggested to be a key driver for the diversification of both partners. However, little is known regarding the diversity of virulence factors in closely related parasites or the mechanisms underlying the variation of virulence. One of the best-described model to address this issue is the interaction between Leptopilina parasitic wasps and their Drosophila hosts, in which variation of virulence is well documented. Thanks to a combined transcriptomic and proteomic approach, we have identified the main secreted proteins in the venom of Leptopilina heterotoma (Gotheron strain, 66 proteins) and of two well-characterized strains of Leptopilina boulardi, ISm and ISy (65 and 49 proteins, respectively). Results revealed significant quantitative differences in venom components between the L. boulardi strains, in agreement with their different virulence properties. Strikingly, the two related Leptopilina species did not share any abundant venom protein. The main identified proteins in L. boulardi were RhoGAPs and serpins while an aspartylglucosaminidase (AGA) was found abundant in L. heterotoma. The extensive quantitative variation observed between these species may be related with their use of different virulence strategies and/or to differences in their host range (specialist versus generalist). Altogether, our data suggests that parasitoid venom can quickly evolve, mainly through rapid changes in regulation of gene expression. It also evidences venom evolutionary processes largely described in other venomous animals i.e. the convergent recruitment of venom proteins between phylogenetically unrelated organisms, and the role of duplications in the emergence of multigenic families of virulence factors.
Collapse
Affiliation(s)
- Dominique Colinet
- INRA, Evolution and Specificity of Multitrophic Interactions-ESIM, UMR 1355 "Sophia Agrobiotech Institute"-ISA, Institut National de la Recherche Agronomique, INRA PACA, 400 route des Chappes, Sophia Antipolis 06903, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Colinet D, Cazes D, Belghazi M, Gatti JL, Poirié M. Extracellular superoxide dismutase in insects: characterization, function, and interspecific variation in parasitoid wasp venom. J Biol Chem 2011; 286:40110-21. [PMID: 21937434 DOI: 10.1074/jbc.m111.288845] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoparasitoid wasps inject venom proteins with their eggs to protect them from the host immune response and ensure successful parasitism. Here we report identification of Cu,Zn superoxide dismutase (SOD) transcripts for both intracellular SOD1 and extracellular SOD3 in the venom apparatus of two Leptopilina species, parasitoids of Drosophila. Leptopilina SODs show sequence and structure similarity to human SODs, but phylogenetic analyses indicate that the extracellular SODs are more related to cytoplasmic vertebrate SODs than to extracellular SODs, a feature shared by predicted insect extracellular SODs. We demonstrate that L. boulardi SOD3 is indeed secreted and active as monomeric glycosylated forms in venom. Our results also evidence quantitative variation in SOD3 venom contents between closely related parasitoid species, as sod3 is 100-fold less expressed in Leptopilina heterotoma venom apparatus and no protein and SOD activity are detected in its venom. Leptopilina recombinant SOD3s as well as a mammalian SOD in vitro inhibit the Drosophila phenoloxidase activity in a dose-dependent manner, demonstrating that SODs may interfere with the Drosophila melanization process and, therefore, with production of cytotoxic compounds. Although the recombinant L. boulardi SOD3 quantity needed to observe this effect precludes a systemic effect of the wasp venom SOD3, it is still consistent with a local action at oviposition. This work provides the first demonstration that insect extracellular SODs are indeed secreted and active in an insect fluid and can be used as virulence factors to counteract the host immune response, a strategy largely used by bacterial and fungal pathogens but also protozoan parasites during infection.
Collapse
Affiliation(s)
- Dominique Colinet
- Evolution and Specificity of Multitrophic Interactions, UMR 1301 Biotic Interactions and Plant Health, Institut National de la Recherche Agronomique, INRA PACA, Sophia Antipolis 06903, France.
| | | | | | | | | |
Collapse
|
10
|
Colinet D, Schmitz A, Cazes D, Gatti JL, Poirié M. The origin of intraspecific variation of virulence in an eukaryotic immune suppressive parasite. PLoS Pathog 2010; 6:e1001206. [PMID: 21124871 PMCID: PMC2991256 DOI: 10.1371/journal.ppat.1001206] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 10/22/2010] [Indexed: 12/02/2022] Open
Abstract
Occurrence of intraspecific variation in parasite virulence, a prerequisite for coevolution of hosts and parasites, has largely been reported. However, surprisingly little is known of the molecular bases of this variation in eukaryotic parasites, with the exception of the antigenic variation used by immune-evading parasites of mammals. The present work aims to address this question in immune suppressive eukaryotic parasites. In Leptopilina boulardi, a parasitic wasp of Drosophila melanogaster, well-defined virulent and avirulent strains have been characterized. The success of virulent females is due to a major immune suppressive factor, LbGAP, a RacGAP protein present in the venom and injected into the host at oviposition. Here, we show that an homologous protein, named LbGAPy, is present in the venom of the avirulent strain. We then question whether the difference in virulence between strains originates from qualitative or quantitative differences in LbGAP and LbGAPy proteins. Results show that the recombinant LbGAPy protein has an in vitro GAP activity equivalent to that of recombinant LbGAP and similarly targets Drosophila Rac1 and Rac2 GTPases. In contrast, a much higher level of both mRNA and protein is found in venom-producing tissues of virulent parasitoids. The F1 offspring between virulent and avirulent strains show an intermediate level of LbGAP in their venom but a full success of parasitism. Interestingly, they express almost exclusively the virulent LbGAP allele in venom-producing tissues. Altogether, our results demonstrate that the major virulence factor in the wasp L. boulardi differs only quantitatively between virulent and avirulent strains, and suggest the existence of a threshold effect of this molecule on parasitoid virulence. We propose that regulation of gene expression might be a major mechanism at the origin of intraspecific variation of virulence in immune suppressive eukaryotic parasites. Understanding this variation would improve our knowledge of the mechanisms of transcriptional evolution currently under active investigation.
Collapse
Affiliation(s)
- Dominique Colinet
- Institut National de la Recherche Agronomique, Sophia Antipolis, France.
| | | | | | | | | |
Collapse
|