1
|
Wu LH, Hu CX, Liu TX. Metagenomic profiling of gut microbiota in Fall Armyworm (Spodoptera frugiperda) larvae fed on different host plants. BMC Microbiol 2024; 24:337. [PMID: 39256682 PMCID: PMC11389342 DOI: 10.1186/s12866-024-03481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The fall armyworm (FAW, Spodoptera frugiperda) is a polyphagous pest known for causing significant crop damage. The gut microbiota plays a pivotal role in influencing the biology, physiology and adaptation of the host. However, understanding of the taxonomic composition and functional characteristics of the gut microbiota in FAW larvae fed on different host plants remains limited. METHODS This study utilized metagenomic sequencing to explore the structure, function and antibiotic resistance genes (ARGs) of the gut microbiota in FAW larvae transferred from an artificial diet to four distinct host plants: maize, sorghum, tomato and pepper. RESULTS The results demonstrated significant variations in gut microbiota structure among FAW larvae fed on different host plants. Firmicutes emerged as the dominant phylum, with Enterococcaceae as the dominant family and Enterococcus as the prominent genus. Notably, Enterococcus casseliflavus was frequently observed in the gut microbiota of FAW larvae across host plants. Metabolism pathways, particularly those related to carbohydrate and amino acid metabolism, played a crucial role in the adaptation of the FAW gut microbiota to different host plants. KEGG orthologs associated with the regulation of the peptide/nickel transport system permease protein in sorghum-fed larvae and the 6-phospho-β-glucosidase gene linked to glycolysis/gluconeogenesis as well as starch and sucrose metabolism in pepper-fed larvae were identified. Moreover, the study identified the top 20 ARGs in the gut microbiota of FAW larvae fed on different host plants, with the maize-fed group exhibiting the highest abundance of vanRC. CONCLUSIONS Our metagenomic sequencing study reveals significant variations in the gut microbiota composition and function of FAW larvae across diverse host plants. These findings underscore the intricate co-evolutionary relationship between hosts and their gut microbiota, suggesting that host transfer profoundly influences the gut microbiota and, consequently, the adaptability and pest management strategies for FAW.
Collapse
Affiliation(s)
- Li-Hong Wu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, 550025, China
| | - Chao-Xing Hu
- Institute of Entomology, Guizhou University, Guiyang, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China.
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, 550025, China.
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China.
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Chen Y, Chen Y, Zhang Y, Sun Z, Li Y, Ding J, Zhang G, Du E, Zi X, Tian C, Zhao W, Gui F. Role of Enterococcus mundtii in gut of the tomato leaf miner (Tuta absoluta) to detoxification of Chlorantraniliprole. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106060. [PMID: 39277378 DOI: 10.1016/j.pestbp.2024.106060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 09/17/2024]
Abstract
Chlorantraniliprole (CAP) is applied worldwide for the control of caterpillars (Lepidoptera). However, with the overuse of CAP, the resistance problem in pest control is becoming increasingly serious. Recent studies have indicated a central role of the gut symbiont in insect pest resistance to pesticides and these may apply to the tomato leaf miner Tuta absoluta, is one of the most destructive insects worldwide. Here, we successfully isolated seven strains of tolerant CAP bacterium from the CAP-resistant T. absoluta gut, of which Enterococcus mundtii E14 showed the highest CAP tolerance, with a minimum inhibitory concentration (MIC) of 1.6 g/L and CAP degradation rate of 42.4%. Through transcriptomics and metabolism analysis, we studied the detoxification process of CAP by the E. mundtii E14, and found that CAP can be degraded by E. mundtii E14 into non-toxic compounds, such as 3,4-dihydroxy-2-(5-hydroxy-3,7-dimethylocta-2,6-dien-1-yl) benzoic acid and 2-pyridylacetic acid. Additionally, 2-pyridylacetic acid was detected both intracellular and extracellular in E. mundtii E14 treated with CAP. Meanwhile, we identified 52 up-regulated genes, including those associated with CAP degradation, such as RS11670 and RS19130. Transcriptome results annotated using KEGG indicated significant enrichment in up-regulated genes related to the glyoxylate cycle, nitrogen metabolism, and biosynthesis of secondary metabolites. Additionally, we observed that reinfection with E. mundtii E14 may effectively enhance resistance of T. absoluta to CAP. The LC50 values of the antibiotic treatment population of T. absoluta reinfection with E. mundtii E14 is 0.6122 mg/L, which was 18.27 folds higher than before reinfection. These findings offer new insights into T. absoluta resistance to CAP and contribute to a better understanding of the relationship between insecticide resistance and gut symbionts of T. absoluta, which may play a pivotal role in pest management.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yaping Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
| | - Yibo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhongxiang Sun
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
| | - Yahong Li
- Yunnan Plant Protection and Quarantine Station, Kunming 650034, China
| | - Jiasheng Ding
- Plant Protection and Quarantine Station, Dehong Prefecture, Mangshi 678400, Yunnan Province, China
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ewei Du
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyan Zi
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Chaoxin Tian
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Wenyuan Zhao
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Furong Gui
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
3
|
Yu M, Li Y, Ji J, Lei Y, Sun Y. Gut yeast diversity of Helicoverpa armigera (Lepidoptera: Noctuidae) under different dietary conditions. Front Microbiol 2024; 15:1287083. [PMID: 38756734 PMCID: PMC11098133 DOI: 10.3389/fmicb.2024.1287083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Yeast is one of the important symbiotic flora in the insect gut. However, little is known about the gut yeast in Helicoverpa armigera (Lepidoptera: Noctuidae) under various dietary conditions. The composition and function of the intestinal yeast community also remain unclear. In this research, we explored the composition of yeast microorganisms in H. armigera larvae under different feeding environments, including apple, pear, tomato, artificial diet (laboratory feeding), Urtica fissa, Helianthus annuus, and Zinnia elegans (wild environment) using high-throughput sequencing. Results showed that a total of 43 yeast OTU readings were obtained, comprising 33 yeast genera and 42 yeast species. The yeast genera with a total content of more than 5% were Hanseniaspora (36.27%), Moesziomyces (21.47%), Trichosporon (16.20%), Wickerhamomyces (12.96%) and Pichia (6.38%). Hanseniaspora was predominant when fed indoors with fruits, whereas Moesziomyces was only detected in the wild group (Urtica fissa, Helianthus annuus, Zinnia elegans) and the artificial diet group. After transferring the larvae from artificial diet to apple, pear and tomato, the composition of intestinal yeast community changed, mainly reflected in the increased relative abundance of Hanseniaspora and the decreased abundance of Trichosporon. Simultaneously, the results of α diversity index indicated that the intestinal yeast microbial diversity of H. armigera fed on wild plants was higher than that of indoor artificial feeding. PCoA and PERMANOVA analysis concluded that there were significant differences in the gut yeast composition of H. armigera larvae on different diets. Our results confirmed that gut yeast communities of H. armigera can be influenced by host diets and may play an important role in host adaptation.
Collapse
Affiliation(s)
- Man Yu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Yang Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Jingyuan Ji
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University, Xi’an, Shaanxi, China
| | - Yonghui Lei
- Department of Plant Protection, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yanfei Sun
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
4
|
Gomes AFF, de Almeida LG, Cônsoli FL. Comparative Genomics of Pesticide-Degrading Enterococcus Symbionts of Spodoptera frugiperda (Lepidoptera: Noctuidae) Leads to the Identification of Two New Species and the Reappraisal of Insect-Associated Enterococcus Species. MICROBIAL ECOLOGY 2023; 86:2583-2605. [PMID: 37433981 DOI: 10.1007/s00248-023-02264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Enterococcus species have been described as core members of the microbial community of Spodoptera frugiperda (Lepidoptera: Noctuidae) and have been previously reported as insecticide degrading agents. This study aimed to investigate the molecular composition of these microbial symbionts of S. frugiperda to better understand their association with the host and their potential for insecticide metabolization. Through phenotypic assays and comparative genomic analyses of several pesticide-degrading Enterococcus isolated from the gut of S. frugiperda larvae, we identified two new species: Enterococcus entomosocium n. sp. and Enterococcus spodopteracolus n. sp. Their identities as new species were confirmed by whole genome alignment, utilizing cut-offs of 95-96% for the average nucleotide identity (ANI) and 70% for the digital DNA: DNA hybridization (dDDH) values. The systematic positioning of these new species within the genus Enterococcus was resolved using genome-based analysis, revealing Enterococcus casseliflavus as a sister group of E. entomosocium n. sp., and Enterococcus mundtii as a sister group of E. spodopteracolus n. sp. Comparative genomic analyses of several isolates of E. entomosocium n. sp. and E. spodopteracolus n. sp. provided a better assessment of the interactions established in the symbiotic association with S. frugiperda and led to the discovery of misidentified new species of Enterococcus associated with insects. Our analyses indicated that the potential of E. entomosocium n. sp. and E. spodopteracolus n. sp. to metabolize different pesticides arises from molecular mechanisms that result in rapid evolution of new phenotypes in response to environmental stressors, in this case, the pesticides their host insect is exposed to.
Collapse
Affiliation(s)
- Ana Flávia Freitas Gomes
- Luiz de Queiroz College of Agriculture, Department of Entomology and Acarology, Insect Interactions Laboratory, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Luís Gustavo de Almeida
- Luiz de Queiroz College of Agriculture, Department of Entomology and Acarology, Insect Interactions Laboratory, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Fernando Luis Cônsoli
- Luiz de Queiroz College of Agriculture, Department of Entomology and Acarology, Insect Interactions Laboratory, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
5
|
Han S, Zhou Y, Wang D, Qin Q, Song P, He Y. Effect of Different Host Plants on the Diversity of Gut Bacterial Communities of Spodoptera frugiperda (J. E. Smith, 1797). INSECTS 2023; 14:264. [PMID: 36975949 PMCID: PMC10053068 DOI: 10.3390/insects14030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Intestinal symbiotic bacteria have formed an interdependent symbiotic relationship with many insect species after long-term coevolution, which plays a critical role in host growth and adaptation. Spodoptera frugiperda (J. E. Smith) is a worldwide significant migratory invasive pest. As a polyphagous pest, S. frugiperda can harm more than 350 plants and poses a severe threat to food security and agricultural production. In this study, 16S rRNA high-throughput sequencing technology was used to analyze the diversity and structure of the gut bacteria of this pest feeding on six diets (maize, wheat, rice, honeysuckle flowers, honeysuckle leaves, and Chinese yam). The results showed that the S. frugiperda fed on rice had the highest bacterial richness and diversity, whereas the larvae fed on honeysuckle flowers had the lowest abundance and diversity of gut bacterial communities. Firmicutes, Actinobacteriota, and Proteobacteria were the most dominant bacterial phyla. PICRUSt2 analysis indicated that most of the functional prediction categories were concentrated in metabolic bacteria. Our results confirmed that the gut bacterial diversity and community composition of S. frugiperda were affected significantly by host diets. This study provided a theoretical basis for clarifying the host adaptation mechanism of S. frugiperda, which also provided a new direction to improve polyphagous pest management strategies.
Collapse
|
6
|
Bai J, Xu Z, Li L, Zhang Y, Diao J, Cao J, Xu L, Ma L. Gut bacterial microbiota of Lymantria dispar asiatica and its involvement in Beauveria bassiana infection. J Invertebr Pathol 2023; 197:107897. [PMID: 36806463 DOI: 10.1016/j.jip.2023.107897] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
The gut bacterial microbiota of insects has been shown to play essential roles in processes related to physiology, metabolism, and innate immunity. In this study, we firstly performed a broad analysis of the gut bacteria in Lymantria dispar asiatica, one of the most devastating forestry defoliators. We analyzed the bacterial composition among different individuals from lab-reared or wild-collected using 16 s rRNA-sequencing, revealing that the gut bacteria of wild-collected larvae were highly diverse, while lab-reared larvae were only associated with a few genera. We found Lactobacillus sp. present in all the gut samples, which indicates that it is part of the core microbiome in the caterpillar. Further Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h. Moreover, we isolated several bacteria from the hemolymph of the non-axenic larvae infected by B. bassiana, which may be caused by the translocation of gut bacteria from the gut to the hemocoel. Reintroduction of Enterococcus sp., Pseudomonas sp., Enterobacter sp., and Microbacterium sp. into axenic larvae recurred the larval mortality in their non-axenic counterpart. Taken together, our study demonstrates that the gut bacteria of L. dispar asiatica are highly volatile, and different bacteria taxa can promote host infection by entomopathogenic fungus, providing a new strategy for the pest management.
Collapse
Affiliation(s)
- Jianyang Bai
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhe Xu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lu Li
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yue Zhang
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jian Diao
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jingyu Cao
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| | - Ling Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; Forest Protection Technology Innovation Center, Harbin, China.
| |
Collapse
|
7
|
Yang Y, Liu X, Guo J, Xu H, Liu Y, Lu Z. Gut bacterial communities and their assembly processing in Cnaphalocrocis medinalis from different geographic sources. Front Microbiol 2022; 13:1035644. [PMID: 36590437 PMCID: PMC9797858 DOI: 10.3389/fmicb.2022.1035644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The insect gut harbors numerous microorganisms that may have functions in development and reproduction, digestion, immunity and protection, and detoxification. Recently, the influence factors on gut microbiota were evaluated in the rice leaffolder Cnaphalocrocis medinalis, a widespread insect pest in paddy fields. However, the relationship between gut microbiota composition and geography is poorly understood in C. medinalis. Methods To reveal the patterns of C. medinalis gut bacterial communities across geographic sources and the ecological processes driving the patterns, C. medinalis were sampled from six geographic sources in China, Thailand, and Vietnam in 2016, followed by gut bacterial 16S ribosomal RNA gene sequencing. Results A total of 22 bacterial phyla, 56 classes, 84 orders, 138 families, 228 genera, and 299 species were generated in C. medinalis from six geographic sources. All alpha diversity indices differed among the samples from different geographic sources. Analysis of similarity (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA) both revealed significant differences in the gut microbiota of C. medinalis from six geographic sources. A total of 94 different taxa were screened as indicators for the gut microbiota of C. medinalis from six geographic sources by linear discriminant analysis effect size (LEfSe). The gene ontology (GO) pathways of the gut microbiota in C. medinalis differed among geographic sources. In total, the bacterial communities within geographic sources were mainly determined by stochastic processes, and those between geographic sources were mainly determined by deterministic processes. Discussion This study elucidates that geography plays a crucial role in shaping the gut microbiota of C. medinalis. Thus, it enriches our knowledge of gut bacteria in C. medinalis and sheds light on the mechanisms underlying C. medinalis gut microbial shifts across geography.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaogai Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,College of Plant Protection, Southwest University, Chongqing, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yinghong Liu
- College of Plant Protection, Southwest University, Chongqing, China,*Correspondence: Yinghong Liu,
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Zhongxian Lu,
| |
Collapse
|
8
|
Xu X, De Mandal S, Wu H, Zhu S, Kong J, Lin S, Jin F. Effect of Diet on the Midgut Microbial Composition and Host Immunity of the Fall Armyworm, Spodoptera frugiperda. BIOLOGY 2022; 11:1602. [PMID: 36358303 PMCID: PMC9687563 DOI: 10.3390/biology11111602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 09/08/2024]
Abstract
The fall armyworm (Spodoptera frugiperda, J.E. Smith) is one of the most important agricultural pests in the world and causes serious damage to many significant crops. Insect gut microbiota plays a vital role in host immunity, digestion, and development, helping the higher organism colonize in a new environment. However, the effects of different diets on midgut microbial composition and host immunity in S. frugiperda remain unclear. So far, no reports have compared the gut microbiota of fall armyworm reared using an artificial diet compared to corn leaf in Guangzhou, China. High-throughput 16S rRNA sequencing technology was applied to gain insight into the composition of the gut microbiota of S. frugiperda feeding on corn leaf (field diet) and on a starch-rich artificial diet (lab diet). The fall armyworm gut microbiota was dominated by the bacterial phyla Firmicutes and Proteobacteria. Despite the difference in diet, the core bacterial community was represented by the genus Enterococcus. However, the bacterial community is dominated by a few phylotypes, namely operational taxonomical units 1 (OTU1) (Enterococcus casseliflavus), OTU3 (Enterobacteriaceae), OTU2 (Weissella), and OTU4 (Clostridium), accounting for 97.43% of the total OTUs in the complete dataset. A significant difference was identified in the bacterial communities between the "lab diet" and the "field diet" groups. OTU1 and OTU2 were significantly higher in the "field diet" group, whereas OTU3 and OTU4 were higher in the "lab diet" group. A phylogenetic investigation of the communities by reconstruction of unobserved states (PICRUSt) predicted functional analysis indicates the presence of several genes associated with plant biomass degradation. Importantly, antibiotic-mediated perturbation of the midgut microbial community significantly impacts the expression profile of the important immune genes of the host. Furthermore, the oral reintroduction of gut bacterial isolates (E. mundtii and E. gallinarum) significantly enhances host resistance to AcMNPV infection. Taken together, our results indicate that diet composition is an important driver in shaping insect gut microbiome and immune gene expression, ultimately playing an important role in the pest defense system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cruciferous vegetables. Sci Rep 2022; 12:13063. [PMID: 35906471 PMCID: PMC9338029 DOI: 10.1038/s41598-022-17278-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Spodoptera frugiperda is a highly polyphagous pest worldwide with a wide host range that causes serious losses to many economically important crops. Recently, insect-microbe associations have become a hot spot in current entomology research, and the midgut microbiome of S. frugiperda has been investigated, while the effects of cruciferous vegetables remain unknown. In this study, the growth of S. frugiperda larvae fed on an artificial diet, Brassica campestris and Brassica oleracea for 7 days was analyzed. Besides, the microbial community and functional prediction analyses of the larval midguts of S. frugiperda fed with different diets were performed by high-throughput sequencing. Our results showed that B. oleracea inhibited the growth of S. frugiperda larvae. The larval midgut microbial community composition and structure were significantly affected by different diets. Linear discriminant analysis effect size (LEfSe) suggested 20 bacterial genera and 2 fungal genera contributed to different gut microbial community structures. The functional classification of the midgut microbiome analyzed by PICRUSt and FUNGuild showed that the most COG function categories of midgut bacterial function were changed by B. oleracea, while the guilds of fungal function were altered by B. campestris significantly. These results showed that the diversity and structure of the S. frugiperda midgut microbial community were affected by cruciferous vegetable feeding. Our study provided a preliminary understanding of the role of midgut microbes in S. frugiperda larvae in response to cruciferous vegetables.
Collapse
|
10
|
Li C, Han G, Sun J, Huang L, Lu Y, Xia Y, Liu Q, Xu J. The Gut Microbiota Composition of Cnaphalocrocis medinalis and Their Predicted Contribution to Larval Nutrition. Front Microbiol 2022; 13:909863. [PMID: 35668757 PMCID: PMC9166232 DOI: 10.3389/fmicb.2022.909863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Intestinal bacterial flora plays an important role in the nutrition, physiology, and behavior of herbivorous insects. The composition of gut microbiota may also be affected by the food consumed. Cnaphalocrocis medinalis is an oligophagous pest, feeds on rice leaves almost exclusively and causes serious damage to rice in Asian countries. Using antibiotic treatment and metagenome sequencing, we investigated the influence of the food sources (rice and maize seedlings) on the structure and functions of intestinal bacteria of C. medinalis. Firstly, food utilization indices, relative growth rate (RGR), relative consumption rate (RCR), efficiency of conversion of ingested food (ECI), and efficiency of conversion of digested food (ECD), were all significantly adversely affected in the antibiotic treatment eliminating gut bacteria, showing that the microbiota loading in the gut were essential for the larva growth and development of C. medinalis. Further, metagenome sequencing revealed that different diets caused a variation in gut microbiota composition of C. medinalis, indicating that the gut microbiota were in part driven by the diet provided. However, the larvae of C. medinalis hosted a core microbial community in the gut, which was independent from the diets changing. The dominant bacteria in the two feeding groups were highly consistent in the gut of C. medinalis larvae, with the gut bacterial community dominated by Firmicutes at the phylum level, Enterococcus at the genus level, Enterococcus sp. FDAARGOS-375, E. casseliflavus, E. gallinarum, and E. sp. CR-Ec1 accounted for more than 96% of the gut microbiota. Functional prediction analysis demonstrated that gut bacteria encoded a series of metabolism-related enzymes involved in carbohydrate metabolism and amino acid synthesis. Carbohydrate metabolism was the most enriched function in both groups and was more abundant in rice feeding group than in maize feeding group. The core dominant Enterococcus species possessed complete pathways of 14 carbohydrates metabolism, 11 amino acids biosynthesis, and two vitamins synthesize, implied to contribute an essential role to the nutrition intake and development of C. medinalis. Finally, the study may provide an in-depth analysis of the symbiont-host co-adaptation and new insights into the management of C. medinalis.
Collapse
Affiliation(s)
- Chuanming Li
- Department of Applied Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China.,National Experimental Station of Yangzhou for Agricultural Microbiology, Yangzhou, China
| | - Guangjie Han
- Department of Applied Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China.,National Experimental Station of Yangzhou for Agricultural Microbiology, Yangzhou, China
| | - Jun Sun
- Yangzhou Luyuan Bio-Chemical Co., Ltd., Yangzhou, China
| | - Lixin Huang
- Department of Applied Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China.,National Experimental Station of Yangzhou for Agricultural Microbiology, Yangzhou, China
| | - Yurong Lu
- Department of Applied Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China.,National Experimental Station of Yangzhou for Agricultural Microbiology, Yangzhou, China
| | - Yang Xia
- Department of Applied Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China.,National Experimental Station of Yangzhou for Agricultural Microbiology, Yangzhou, China
| | - Qin Liu
- Department of Applied Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China.,National Experimental Station of Yangzhou for Agricultural Microbiology, Yangzhou, China.,Yangzhou Luyuan Bio-Chemical Co., Ltd., Yangzhou, China
| | - Jian Xu
- Department of Applied Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China.,National Experimental Station of Yangzhou for Agricultural Microbiology, Yangzhou, China
| |
Collapse
|
11
|
Yang Y, Liu X, Xu H, Liu Y, Lu Z. Effects of Host Plant and Insect Generation on Shaping of the Gut Microbiota in the Rice Leaffolder, Cnaphalocrocis medinalis. Front Microbiol 2022; 13:824224. [PMID: 35479615 PMCID: PMC9037797 DOI: 10.3389/fmicb.2022.824224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbes in insects may play an important role in the digestion, immunity and protection, detoxification of toxins, development, and reproduction. The rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae) is a notorious insect pest that can damage rice, maize, and other gramineous plants. To determine the effects of host plants and generations on the gut microbiota of C. medinalis, we deciphered the bacterial configuration of this insect pest fed rice or maize for three generations by Illumina MiSeq technology. A total of 16 bacterial phyla, 34 classes, 50 orders, 101 families, 158 genera, and 44 species were identified in C. medinalis fed rice or maize for three generations. Host plants, insect generation, and their interaction did not influence the alpha diversity indices of the gut microbiota of C. medinalis. The dominant bacterial taxa were Proteobacteria and Firmicutes at the phylum level and Enterococcus and unclassified Enterobacteriaceae at the genus level. A number of twenty genera coexisted in the guts of C. medinalis fed rice or maize for three generations, and their relative abundances occupied more than 90% of the gut microbiota of C. medinalis. A number of two genera were stably found in the gut of rice-feeding C. medinalis but unstably found in the gut microbiota of maize-feeding C. medinalis, and seven genera were stably found in the gut of maize-feeding C. medinalis but unstably found in the gut of rice-feeding C. medinalis. In addition, many kinds of microbes were found in some but not all samples of the gut of C. medinalis fed on a particular host plant. PerMANOVA indicated that the gut bacteria of C. medinalis could be significantly affected by the host plant and host plant × generation. We identified 47 taxa as the biomarkers for the gut microbiota of C. medinalis fed different host plants by LEfSe. Functional prediction suggested that the most dominant role of the gut microbiota in C. medinalis is metabolism, followed by environmental information processing, cellular processes, and genetic information processing. Our findings will enrich the understanding of gut bacteria in C. medinalis and reveal the differences in gut microbiota in C. medinalis fed on different host plants for three generations.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaogai Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Southwest University, Chongqing, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yinghong Liu
- College of Plant Protection, Southwest University, Chongqing, China
- *Correspondence: Yinghong Liu,
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhongxian Lu,
| |
Collapse
|
12
|
Yuan X, Zhang X, Liu X, Dong Y, Yan Z, Lv D, Wang P, Li Y. Comparison of Gut Bacterial Communities of Grapholita molesta (Lepidoptera: Tortricidae) Reared on Different Host Plants. Int J Mol Sci 2021; 22:ijms22136843. [PMID: 34202141 PMCID: PMC8268091 DOI: 10.3390/ijms22136843] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/06/2023] Open
Abstract
Intestinal symbiotic bacteria have played an important role in the digestion, immunity detoxification, mating, and reproduction of insects during long-term coevolution. The oriental fruit moth, Grapholita molesta, is an important fruit tree pest worldwide. However, the composition of the G. molesta microbial community, especially of the gut microbiome, remains unclear. To explore the differences of gut microbiota of G. molesta when reared on different host plants, we determined the gut bacterial structure when G. molesta was transferred from an artificial diet to different host plants (apples, peaches, nectarines, crisp pears, plums, peach shoots) by amplicon sequencing technology. The results showed that Proteobacteria and Firmicutes are dominant in the gut microbiota of G. molesta. Plum-feeding G. molesta had the highest richness and diversity of gut microbiota, while apple-feeding G. molesta had the lowest. PCoA and PERMANOVA analysis revealed that there were significant differences in the gut microbiota structure of G. molesta on different diets. PICRUSt2 analysis indicated that most of the functional prediction pathways were concentrated in metabolic and cellular processes. Our results confirmed that gut bacterial communities of G. molesta can be influenced by host diets and may play an important role in host adaptation.
Collapse
Affiliation(s)
- Xiangqun Yuan
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Xuan Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Xueying Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Yanlu Dong
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Zizheng Yan
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Dongbiao Lv
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Ping Wang
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA
| | - Yiping Li
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
13
|
Martínez-Solís M, Collado MC, Herrero S. Influence of Diet, Sex, and Viral Infections on the Gut Microbiota Composition of Spodoptera exigua Caterpillars. Front Microbiol 2020; 11:753. [PMID: 32435237 PMCID: PMC7218101 DOI: 10.3389/fmicb.2020.00753] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022] Open
Abstract
The gut microbiota plays essential roles in processes related with metabolism, physiology, and immunity in all organisms, including insects. In the present work, we performed a broad analysis of the Spodoptera exigua gut microbiota, a major agricultural pest. We analyzed the influence of multiple parameters such as diet, geographic location, sex, or viral infections on S. exigua caterpillar gut microbiota composition. Our study revealed a high variability in bacterial composition among individuals, and a major influence of environmental bacteria (including those acquired through diet) on the gut microbiota composition, supporting previous studies that claim resident microbiota are lacking in caterpillars. Previous studies with laboratory-reared insects showed that changes in caterpillar gut bacterial composition affect the insecticidal properties of entomopathogenic viruses and bacteria. Our study revealed different microbiota composition in field insects carrying a natural viral infection with Spodoptera exigua nucleopolyhedrovirus (SeMNPV) and/or Spodoptera exigua iflavirus 1 (SeIV1). Few taxa can be specifically associated with the infection, suggesting microbiota influence the infective process of these natural pathogens, and providing new strategies for insect pest management.
Collapse
Affiliation(s)
- María Martínez-Solís
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Departamento de Genética, Universitat de València, Valencia, Spain
| | - María Carmen Collado
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Salvador Herrero
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Departamento de Genética, Universitat de València, Valencia, Spain
| |
Collapse
|
14
|
Scopel W, Cônsoli FL. Culturable symbionts associated with the reproductive and digestive tissues of the Neotropical brown stinkbug Euschistus heros. Antonie van Leeuwenhoek 2018; 111:2413-2424. [PMID: 30019154 DOI: 10.1007/s10482-018-1130-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/10/2018] [Indexed: 11/26/2022]
Abstract
Symbionts are widely distributed in eukaryotes, and potentially affect the physiology, ecology and evolution of their host. Most insects harbour free-living bacteria in their haemocoel and gut lumen, intracellular-living bacteria in a range of tissues or bacteria in host-derived specialized cells. Stinkbugs, as do many arthropods, harbour extracellular bacteria in the gut that may affect the fitness of their host. This study identified the culturable symbionts associated with the ovaries, spermatheca, seminal vesicle and posterior midgut region (V4) of males and females of Euschistus heros (F.) (Hemiptera: Pentatomidae). Several culture media were used to isolate the bacteria associated with these structures. The selected colonies (morphotypes) were cultured in liquid medium, subjected to genomic DNA extraction, 16S rRNA gene amplification, and restriction fragment length polymorphism (RFLP) analyses. Morphotypes with distinct RFLP patterns were purified and sequenced, and the sequences obtained were used for putative identification and phylogenetic analysis. Comparison of the sequences with those available in the EzTaxon-e database and the use of a matrix of paired distances grouped the isolates in phylotypes belonging to the Phylum Proteobacteria. Proteobacteria was represented by γ-Proteobacteria phylotypes belonging to Enterobacteriaceae, while Firmicutes had Bacilli phylotypes distributed in Enterococcaceae and Staphylococcaceae. Some of the phylotypes identified were associated exclusively with single structures, such as ovaries, spermatheca and the V4 midgut region of males and females. All culturable bacteria associated with the seminal vesicle were also associated with other tissues.
Collapse
Affiliation(s)
- Wanessa Scopel
- Insect Interactions Laboratory, Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, 13418-900, Brazil
| | - Fernando Luis Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
15
|
Mereghetti V, Chouaia B, Montagna M. New Insights into the Microbiota of Moth Pests. Int J Mol Sci 2017; 18:ijms18112450. [PMID: 29156569 PMCID: PMC5713417 DOI: 10.3390/ijms18112450] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023] Open
Abstract
In recent years, next generation sequencing (NGS) technologies have helped to improve our understanding of the bacterial communities associated with insects, shedding light on their wide taxonomic and functional diversity. To date, little is known about the microbiota of lepidopterans, which includes some of the most damaging agricultural and forest pests worldwide. Studying their microbiota could help us better understand their ecology and offer insights into developing new pest control strategies. In this paper, we review the literature pertaining to the microbiota of lepidopterans with a focus on pests, and highlight potential recurrent patterns regarding microbiota structure and composition.
Collapse
Affiliation(s)
- Valeria Mereghetti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Bessem Chouaia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
16
|
Whitten M, Dyson P. Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference. Bioessays 2017; 39. [DOI: 10.1002/bies.201600247] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Miranda Whitten
- Institute of Life Science; Swansea University Medical School; Singleton Park Swansea UK
| | - Paul Dyson
- Institute of Life Science; Swansea University Medical School; Singleton Park Swansea UK
| |
Collapse
|
17
|
Vilanova C, Baixeras J, Latorre A, Porcar M. The Generalist Inside the Specialist: Gut Bacterial Communities of Two Insect Species Feeding on Toxic Plants Are Dominated by Enterococcus sp. Front Microbiol 2016; 7:1005. [PMID: 27446044 PMCID: PMC4923067 DOI: 10.3389/fmicb.2016.01005] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
Some specialist insects feed on plants rich in secondary compounds, which pose a major selective pressure on both the phytophagous and the gut microbiota. However, microbial communities of toxic plant feeders are still poorly characterized. Here, we show the bacterial communities of the gut of two specialized Lepidoptera, Hyles euphorbiae and Brithys crini, which exclusively feed on latex-rich Euphorbia sp. and alkaloid-rich Pancratium maritimum, respectively. A metagenomic analysis based on high-throughput sequencing of the 16S rRNA gene revealed that the gut microbiota of both insects is dominated by the phylum Firmicutes, and especially by the common gut inhabitant Enterococcus sp. Staphylococcus sp. are also found in H. euphorbiae though to a lesser extent. By scanning electron microscopy, we found a dense ring-shaped bacterial biofilm in the hindgut of H. euphorbiae, and identified the most prominent bacterium in the biofilm as Enterococcus casseliflavus through molecular techniques. Interestingly, this species has previously been reported to contribute to the immobilization of latex-like molecules in the larvae of Spodoptera litura, a highly polyphagous lepidopteran. The E. casseliflavus strain was isolated from the gut and its ability to tolerate natural latex was tested under laboratory conditions. This fact, along with the identification of less frequent bacterial species able to degrade alkaloids and/or latex, suggest a putative role of bacterial communities in the tolerance of specialized insects to their toxic diet.
Collapse
Affiliation(s)
- Cristina Vilanova
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de ValènciaValencia, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSICValencia, Spain
| | - Joaquín Baixeras
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València Valencia, Spain
| | - Amparo Latorre
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de ValènciaValencia, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSICValencia, Spain; Unidad Mixta de Investigación en Genómica y Salud, Centro Superior de Investigación en Salud PúblicaValencia, Spain
| | - Manuel Porcar
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de ValènciaValencia, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSICValencia, Spain
| |
Collapse
|
18
|
In vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. PLoS One 2014; 9:e85948. [PMID: 24475063 PMCID: PMC3903505 DOI: 10.1371/journal.pone.0085948] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/04/2013] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is of crucial importance for the host with considerable metabolic activity. Although great efforts have been made toward characterizing microbial diversity, measuring components' metabolic activity surprisingly hasn't kept pace. Here we combined pyrosequencing of amplified 16S rRNA genes with in vivo stable isotope probing (Pyro-SIP) to unmask metabolically active bacteria in the gut of cotton leafworm (Spodoptera littoralis), a polyphagous insect herbivore that consumes large amounts of plant material in a short time, liberating abundant glucose in the alimentary canal as a most important carbon and energy source for both host and active gut bacteria. With (13)C glucose as the trophic link, Pyro-SIP revealed that a relatively simple but distinctive gut microbiota co-developed with the host, both metabolic activity and composition shifting throughout larval stages. Pantoea, Citrobacter and Clostridium were particularly active in early-instar, likely the core functional populations linked to nutritional upgrading. Enterococcus was the single predominant genus in the community, and it was essentially stable and metabolically active in the larval lifespan. Based on that Enterococci formed biofilm-like layers on the gut epithelium and that the isolated strains showed antimicrobial properties, Enterococcus may be able to establish a colonization resistance effect in the gut against potentially harmful microbes from outside. Not only does this establish the first in-depth inventory of the gut microbiota of a model organism from the mostly phytophagous Lepidoptera, but this pilot study shows that Pyro-SIP can rapidly gain insight into the gut microbiota's metabolic activity with high resolution and high precision.
Collapse
|
19
|
Occhipinti A, Maffei ME. Chlorophyll and its degradation products in the two-spotted spider mite, Tetranychus urticae: observations using epifluorescence and confocal laser scanning microscopy. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 61:213-9. [PMID: 23504340 DOI: 10.1007/s10493-013-9686-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 02/28/2013] [Indexed: 05/09/2023]
Abstract
Chlorophyll and chlorophyll degradation products were observed in the two-spotted spider mite (Tetranychus urticae) using epifluorescence microscopy (EFM) and confocal laser scanning microscopy (CLSM). A clear red fluorescence (EFM) and a fluorescence induced by a laser wavelength of 650 nm (CLSM) were observed. In the lateral caeca, in the ventriculus and in the excretory organ, a bright light blue fluorescence was observed in close association with chlorophyll by using EFM. The same material can be localized with CLSM by using a laser with a wavelength of 488 nm. By comparison with synthetic guanine, this bright fluorescence is supposed to be guanine. The presence of guanine fluorescence in the mite pellets confirms this hypothesis. A possible mechanism for guanine formation is discussed.
Collapse
Affiliation(s)
- Andrea Occhipinti
- Department of Life Sciences and Systems Biology, University of Turin, Innovation Centre, Via Quarello 15/A, 10135 Turin, Italy
| | | |
Collapse
|
20
|
Tang X, Freitak D, Vogel H, Ping L, Shao Y, Cordero EA, Andersen G, Westermann M, Heckel DG, Boland W. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS One 2012; 7:e36978. [PMID: 22815679 PMCID: PMC3398904 DOI: 10.1371/journal.pone.0036978] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/10/2012] [Indexed: 01/14/2023] Open
Abstract
Background The gut of most insects harbours nonpathogenic microorganisms. Recent work suggests that gut microbiota not only provide nutrients, but also involve in the development and maintenance of the host immune system. However, the complexity, dynamics and types of interactions between the insect hosts and their gut microbiota are far from being well understood. Methods/Principal Findings To determine the composition of the gut microbiota of two lepidopteran pests, Spodoptera littoralis and Helicoverpa armigera, we applied cultivation-independent techniques based on 16S rRNA gene sequencing and microarray. The two insect species were very similar regarding high abundant bacterial families. Different bacteria colonize different niches within the gut. A core community, consisting of Enterococci, Lactobacilli, Clostridia, etc. was revealed in the insect larvae. These bacteria are constantly present in the digestion tract at relatively high frequency despite that developmental stage and diet had a great impact on shaping the bacterial communities. Some low-abundant species might become dominant upon loading external disturbances; the core community, however, did not change significantly. Clearly the insect gut selects for particular bacterial phylotypes. Conclusions Because of their importance as agricultural pests, phytophagous Lepidopterans are widely used as experimental models in ecological and physiological studies. Our results demonstrated that a core microbial community exists in the insect gut, which may contribute to the host physiology. Host physiology and food, nevertheless, significantly influence some fringe bacterial species in the gut. The gut microbiota might also serve as a reservoir of microorganisms for ever-changing environments. Understanding these interactions might pave the way for developing novel pest control strategies.
Collapse
Affiliation(s)
- Xiaoshu Tang
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dalial Freitak
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail: (HV); (LP); (WB)
| | - Liyan Ping
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail: (HV); (LP); (WB)
| | - Yongqi Shao
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erika Arias Cordero
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Gary Andersen
- Center for Environmental Biology and Molecular Microbial Ecology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Martin Westermann
- Centre of Electron Microscopy, The University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail: (HV); (LP); (WB)
| |
Collapse
|