1
|
Ahmed J, Walker AA, Perdomo HD, Guo S, Nixon SA, Vetter I, Okoh HI, Shehu DM, Shuaibu MN, Ndams IS, King GF, Herzig V. Two Novel Mosquitocidal Peptides Isolated from the Venom of the Bahia Scarlet Tarantula ( Lasiodora klugi). Toxins (Basel) 2023; 15:418. [PMID: 37505687 PMCID: PMC10467143 DOI: 10.3390/toxins15070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore employed a panel of 41 spider and 9 scorpion venoms to screen for mosquitocidal toxins. Using an assay-guided fractionation approach, we isolated two peptides from the venom of the tarantula Lasiodora klugi with activity against adult A. aegypti. The isolated peptides were named U-TRTX-Lk1a and U-TRTX-Lk2a and comprised 41 and 49 residues with monoisotopic masses of 4687.02 Da and 5718.88 Da, respectively. U-TRTX-Lk1a exhibited an LD50 of 38.3 pmol/g when injected into A. aegypti and its modeled structure conformed to the inhibitor cystine knot motif. U-TRTX-Lk2a has an LD50 of 45.4 pmol/g against adult A. aegypti and its predicted structure conforms to the disulfide-directed β-hairpin motif. These spider-venom peptides represent potential leads for the development of novel control agents for A. aegypti.
Collapse
Affiliation(s)
- Jamila Ahmed
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew A. Walker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Hugo D. Perdomo
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Samantha A. Nixon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Hilary I. Okoh
- Department of Animal and Environmental Biology, Federal University Oye-Ekiti, Oye 371104, Nigeria
| | - Dalhatu M. Shehu
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
| | - Mohammed N. Shuaibu
- Department of Biochemistry, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
- Centre for Biotechnology Research and Training, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
| | - Iliya S. Ndams
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| |
Collapse
|
2
|
Sharker MR, Hossen S, Nou IS, Kho KH. Characterization of Insulin-Like Growth Factor Binding Protein 7 (Igfbp7) and Its Potential Involvement in Shell Formation and Metamorphosis of Pacific Abalone, Haliotis discus hannai. Int J Mol Sci 2020; 21:ijms21186529. [PMID: 32906674 PMCID: PMC7555818 DOI: 10.3390/ijms21186529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) are secreted proteins that play an important role in IGF regulation of growth and development of vertebrate and invertebrates. In this study, the IGFBP7 gene was cloned and characterized from mantle tissues of H. discus hannai, and designated as Hdh IGFBP7. The full-length cDNA sequence transcribed from the Hdh IGFBP7 gene was 1519-bp long with an open reading frame of 720-bp corresponding to a putative polypeptide of 239 amino acids. The molecular mass of its mature protein was approximately 23.44 KDa with an estimated isoelectric point (pI) of 5.35, and it shared significant homology with IGFBP7 gene of H. madaka. Hdh IGFBP7 has a characteristic IGFBP N-terminal domain (22–89 aa), a kazal-type serine proteinase inhibitor domain (77–128), and an immunoglobulin-like C2 domain (144–223). Furthermore, twelve cysteine residues and a signature motif of IGFBPs (XCGCCXXC) were found in its N-terminal domain. Phylogenetic analysis revealed that Hdh IGFBP7 was aligned with IGFBP7 of H. madaka. Tissue distribution analysis showed that the mRNA of Hdh IGFBP7 was expressed in all examined tissues, with the highest expression level observed in the mantle and gill tissues. The expression level of Hdh IGFBP7 mRNA was relatively higher at the juvenile stage during its metamorphosis period. In situ hybridization showed that Hdh IGFBP7 transcript was expressed in epithelial cells of the dorsal mantle pallial and mucus cells of the branchial epithelium in gill. These results provide basic information for future studies on the role of IGFBP7 in IGF regulation of shell growth, development and metamorphosis of abalone.
Collapse
Affiliation(s)
- Md. Rajib Sharker
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu, Jeonnam 59626, Korea; (M.R.S.); (S.H.)
| | - Shaharior Hossen
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu, Jeonnam 59626, Korea; (M.R.S.); (S.H.)
| | - Ill-Sup Nou
- Department of Horticulture, College of Life Science and Natural Resources, Sunchon National University, 255, Jungang-ro, Suncheon-Si, Jeollanam-do 57922, Korea;
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu, Jeonnam 59626, Korea; (M.R.S.); (S.H.)
- Correspondence: ; Tel.: +82-616-597-168; Fax: +82-616-597-169
| |
Collapse
|
3
|
Lüddecke T, von Reumont BM, Förster F, Billion A, Timm T, Lochnit G, Vilcinskas A, Lemke S. An Economic Dilemma Between Molecular Weapon Systems May Explain an Arachno-atypical Venom in Wasp Spiders ( Argiope bruennichi). Biomolecules 2020; 10:E978. [PMID: 32630016 PMCID: PMC7407881 DOI: 10.3390/biom10070978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Spiders use venom to subdue their prey, but little is known about the diversity of venoms in different spider families. Given the limited data available for orb-weaver spiders (Araneidae), we selected the wasp spider Argiope bruennichi for detailed analysis. Our strategy combined a transcriptomics pipeline based on multiple assemblies with a dual proteomics workflow involving parallel mass spectrometry techniques and electrophoretic profiling. We found that the remarkably simple venom of A. bruennichi has an atypical composition compared to other spider venoms, prominently featuring members of the cysteine-rich secretory protein, antigen 5 and pathogenesis-related protein 1 (CAP) superfamily and other, mostly high-molecular-weight proteins. We also detected a subset of potentially novel toxins similar to neuropeptides. We discuss the potential function of these proteins in the context of the unique hunting behavior of wasp spiders, which rely mostly on silk to trap their prey. We propose that the simplicity of the venom evolved to solve an economic dilemma between two competing yet metabolically expensive weapon systems. This study emphasizes the importance of cutting-edge methods to encompass the lineages of smaller venomous species that have yet to be characterized in detail, allowing us to understand the biology of their venom systems and to mine this prolific resource for translational research.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany; (A.B.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; (B.M.v.R.); (S.L.)
| | - Björn M. von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; (B.M.v.R.); (S.L.)
- Institute for Insect Biotechnology, Justus-Liebig-University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Frank Förster
- Institute for Bioinformatics and Systems Biology, Justus-Liebig-University of Gießen, Heinrich-Buff-Ring 58, 35392 Gießen, Germany;
| | - André Billion
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany; (A.B.); (A.V.)
| | - Thomas Timm
- Institute of Biochemistry, Justus-Liebig-University of Gießen, Friedrichstr. 24, 35392 Gießen, Germany; (T.T.); (G.L.)
| | - Günter Lochnit
- Institute of Biochemistry, Justus-Liebig-University of Gießen, Friedrichstr. 24, 35392 Gießen, Germany; (T.T.); (G.L.)
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany; (A.B.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; (B.M.v.R.); (S.L.)
- Institute for Insect Biotechnology, Justus-Liebig-University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Sarah Lemke
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; (B.M.v.R.); (S.L.)
- Institute for Insect Biotechnology, Justus-Liebig-University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| |
Collapse
|
4
|
Crustacean neuroparsins-a mini-review. Gene 2020; 732:144361. [PMID: 31935515 DOI: 10.1016/j.gene.2020.144361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/21/2022]
Abstract
Crustacean neuroparsins are poly-cysteine rich neuropeptides that share some similarities with the ovary ecdysteroidogenesis hormone (OEH) of mosquitoes, the N-terminal end of the growth factor binding protein region of the vertebrate and mollusk insulin-like growth factor binding protein and single insulin binding domain protein. Neuroparsins can promote reproduction and neurite outgrowth in various insects. Though many studies have been made in insects, the amount of work reported in crustaceans is still limited. This review emphasizes the neuroparsins found in decapod crustaceans with references to the neuroparsin first discovered in insects. To be more complete in identifying all the neuroparsin members and to understand the structure/function relationship within a single species, we have collected all neuroparsins from the GenBank and our transcriptome datasets. Then, we employed a comparative approach to study the sequence homology, tissue expression patterns, making predictions of their function and the evolutionary relationship particularly in decapod crustaceans. Results from alignment and phylogenetic studies indicated that crustacean neuroparsins consist of unique feature that can be used as criteria for their classification. These features include the presence of 12 cysteine residues in the mature peptide, the strict spacing between these cysteine residues and the size of the mature peptide. Because of the limited data on the expression information, the functions of most neuroparsin are unknown. The review will focus on the site of synthesis, expression, functions, the sequence homology and the evolutionary relationship of this group of neurohormones.
Collapse
|
5
|
The Dual Prey-Inactivation Strategy of Spiders-In-Depth Venomic Analysis of Cupiennius salei. Toxins (Basel) 2019; 11:toxins11030167. [PMID: 30893800 PMCID: PMC6468893 DOI: 10.3390/toxins11030167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Most knowledge of spider venom concerns neurotoxins acting on ion channels, whereas proteins and their significance for the envenomation process are neglected. The here presented comprehensive analysis of the venom gland transcriptome and proteome of Cupiennius salei focusses on proteins and cysteine-containing peptides and offers new insight into the structure and function of spider venom, here described as the dual prey-inactivation strategy. After venom injection, many enzymes and proteins, dominated by α-amylase, angiotensin-converting enzyme, and cysteine-rich secretory proteins, interact with main metabolic pathways, leading to a major disturbance of the cellular homeostasis. Hyaluronidase and cytolytic peptides destroy tissue and membranes, thus supporting the spread of other venom compounds. We detected 81 transcripts of neurotoxins from 13 peptide families, whereof two families comprise 93.7% of all cysteine-containing peptides. This raises the question of the importance of the other low-expressed peptide families. The identification of a venom gland-specific defensin-like peptide and an aga-toxin-like peptide in the hemocytes offers an important clue on the recruitment and neofunctionalization of body proteins and peptides as the origin of toxins.
Collapse
|
6
|
Paiva ALB, Mudadu MA, Pereira EHT, Marri CA, Guerra-Duarte C, Diniz MRV. Transcriptome analysis of the spider Phoneutria pertyi venom glands reveals novel venom components for the genus Phoneutria. Toxicon 2019; 163:59-69. [PMID: 30902682 DOI: 10.1016/j.toxicon.2019.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/24/2022]
Abstract
Phoneutria nigriventer spider venom has been studied for more than 40 years and several components with pharmacological potential have been described in it. However, studies on venoms from other species of the Phoneutria genus are scarce. In this work, a conventional cDNA library from the species Phoneutria pertyi venom glands was constructed, aiming to identify novel putative cysteine-rich peptide toxins for the genus Phoneutria. 296 unique sequences were identified and 51 sequences corresponded to putative cysteine-rich peptide toxins. Besides cysteine-rich peptide toxins, other putative venom components such as protease inhibitors, defensins and serine proteinases were identified. Furthermore, by manual curation of the sequences with no match at UniProt, we were able to identify glycine-rich proteins (GRP), a class of venom component never described in Phoneutria genus. This work describes the first complete sequences of toxins from the venom of P. pertyi and reveals that, despite most of the retrieved toxins show a high identity to toxins identified in Phoneutria genus, novel putative toxins remains to be described.
Collapse
Affiliation(s)
- Ana L B Paiva
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil.
| | - Mauricio A Mudadu
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine H T Pereira
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Camila A Marri
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo R V Diniz
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Huang X, Bae SH, Bachvaroff TR, Schott EJ, Ye H, Chung JS. Does a blue crab putative insulin-like peptide binding protein (ILPBP) play a role in a virus infection? FISH & SHELLFISH IMMUNOLOGY 2016; 58:340-348. [PMID: 27664575 DOI: 10.1016/j.fsi.2016.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Insulin-like peptides (ILPs) have regulatory roles in reproduction, development and metabolism in invertebrates. The mode of ILP actions has not been well studied in invertebrates in regard to the role of binding partners, i.e., ILP binding protein (ILPBP). In this study, the full-length cDNA of Callinectes sapidus ILPBP (Cas-ILPBP, 960 bp) has been isolated using RACE cloning, having short 5' and 3' UTRs of 30 and 162 bp, respectively. The predicted precursor of Cas-ILPBP (255 aa) contains, in order a signal peptide (23 aa), an insulin-like growth factor (IGF) binding (IB) domain (79 aa), a kazal-type serine protease inhibitor (KI) domain (36 aa) and an immunoglobulin (Ig) domain (101 aa). Phylogenetic analysis shows that Cas-ILPBP is grouped with the ILPBPs of other crustacean species, and it shares the closest relationship with the ILPBP from another crab species, Scylla paramamosain. Transcripts of Cas-ILPBP are found in all examined tissues, with the highest levels in the nervous tissues (eyestalk ganglia, brain and thoracic ganglia complex) and followed by midgut, the pericardial organ, abdominal muscle and the heart. As Cas-ILPBP contains a putative Ig domain, it is hypothesized that this protein may be involved in immunity, particularly in the adult females infected with a reo-like virus (CsRV1). The expression levels of Cas-ILPBP are examined in several tissues (hemocytes, midgut, eyestalk ganglia) from the animals carrying varying levels of CsRV1 at 17 and 23 °C water temperatures. Cas-ILPBP levels in the midgut are most significantly affected by high levels of CsRV1 infection. Reduction in Cas-ILPBP levels in the midguts is noted from the animals infected with high levels of CsRV1 that show reduced or stop feeding activity, indicating that it may play an important role in midgut functions such as digestion and nutrient absorption.
Collapse
Affiliation(s)
- Xiaoshuai Huang
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA; College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Sun-Hye Bae
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Eric J Schott
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - J Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
8
|
Huang X, Ye H, Huang H, Liu A, Feng B. Implication for the regulation of catabolism drawn from the single insulin-like growth factor binding domain protein (SIBD) gene in the mud crab, Scylla paramamosain. Gen Comp Endocrinol 2015; 216:24-32. [PMID: 25921474 DOI: 10.1016/j.ygcen.2015.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/14/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
Insulin-like growth factor (IGF) signaling system holds a central position in regulating growth and metabolism in vertebrates. As critical components of this system, the IGF-binding proteins (IGFBPs) play important roles in regulating the biological activities of IGFs. Recently, the single IGF-binding domain protein (SIBD) was identified in invertebrates and its sequence was highly homologous with the N-terminal domain of IGFBP. In view of the possible role as counterparts of vertebrate IGFBPs, SIBDs have attracted the ever-increasing attention. This study reports the identification of a 1284bp SIBD gene (Sp-SIBD) from a member of commercially important family of Portunidae. The tissue distribution analysis showed that Sp-SIBD was mainly expressed in the nervous tissues and hepatopancreas. RNA in situ hybridization analysis showed that the positive signals were predominantly distributed in the secretory cells of the hepatopancreas. Subsequently, we examined the effects of various stresses, including hyperosmotic stress, hyperthermia, activated stress and fasting, on glucose levels in the hemolymph and Sp-SIBD expressions in the hepatopancreas. Interestingly, we found that Sp-SIBD expression was strongly up-regulated in response to these catabolic circumstances. Given the previous findings of insulin-like peptides (ILPs) in invertebrates, we speculate that invertebrate ILPs and SIBDs promise to serve as a pair of counterparts of IGFs and IGFBPs from vertebrate species respectively. In this context, the combined results suggested, by analogy with IGFBP 1 from vertebrates, for the first time that SIBD might play a key physiological role by sequestering ILPs to inhibit energy-expensive growth until conditions are more favorable.
Collapse
Affiliation(s)
- Xiaoshuai Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Collaborative Innovation Center for Development and Utilization of Marine Biological Resources, Xiamen 361102, China.
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - An Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Biyun Feng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
9
|
Chandler JC, Aizen J, Elizur A, Hollander-Cohen L, Battaglene SC, Ventura T. Discovery of a novel insulin-like peptide and insulin binding proteins in the Eastern rock lobster Sagmariasus verreauxi. Gen Comp Endocrinol 2015; 215:76-87. [PMID: 25218129 DOI: 10.1016/j.ygcen.2014.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/06/2023]
Abstract
This study reports, for the first time in any of the commercially important decapod species, the identification of an insulin-like peptide (ILP), distinct from the androgenic gland hormone. Bioinformatics analysis of the de novo assembled spiny lobster, (Sagmariasus verreauxi) transcriptome, allowed identification of Sv-ILP1 as well as eight binding proteins. Binding proteins were termed as Sv-IGFBP, due to homology with the vertebrate insulin-like growth-factor binding protein and Sv-SIBD1-7, single insulin-binding domain protein (SIBD), similar to those identified in other invertebrate species. Sv-ILP1 was found to be expressed in the eyestalk, gonads and antennal gland of both sexes and to a lesser extent in male muscle, androgenic gland and hepatopancreas. The expression profiles of each binding protein were found to vary across tissues, with Sv-SIBD5, 6 and 7 showing higher expression in the gonad, demonstrated by PCR and digital gene expression. Further spatial investigations, using in-situ hybridisation, found Sv-ILP1 to be expressed in the neurosecretory cells of the thoracic ganglia, in keeping with the tissue expression of Drosophila ILP7 (DILP7). This correlative tissue expression, considered with the phylogenetic clustering of Sv-ILP1 and DILP7, suggests Sv-ILP1 to be a DILP7 orthologue. The broad expression of Sv-ILP1 strongly suggests that ILPs have a role beyond that of masculinisation in decapods. The function of these novel peptides may have application in enhancing aquaculture practices in the commercially important decapod species.
Collapse
Affiliation(s)
- Jennifer C Chandler
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia
| | - Joseph Aizen
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia
| | - Abigail Elizur
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia
| | - Lian Hollander-Cohen
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Stephen C Battaglene
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Tomer Ventura
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia.
| |
Collapse
|
10
|
Characterization of the shrimp neuroparsin (MeNPLP): RNAi silencing resulted in inhibition of vitellogenesis. FEBS Open Bio 2014; 4:976-86. [PMID: 25431753 PMCID: PMC4244560 DOI: 10.1016/j.fob.2014.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/21/2014] [Accepted: 09/19/2014] [Indexed: 11/21/2022] Open
Abstract
The full-length Metapenaeus ensis neuroparsin (MeNPLP) cDNA was cloned which encodes a shrimp protein homologous to the insect neuroparsin and vertebrate insulin-like growth factor binding protein (IGFBP). MeNPLP cDNA is 1389 bp in length and the longest open reading frame is 303 bp in length. The first 27 aa are predicted to be the signal peptide and aa 28-101 is the mature peptide with an estimated molecular weight of 7.83 kDa and pI of 5. It shows high amino acid sequence similarity (42-68%) to the neuroparsin of insects and N-terminal end of the IGFBP of vertebrates. The cysteine residues in MeNPLP responsible for disulfide bond formation are conserved as in other neuroparsin-like proteins. The expression level of MeNPLP is the highest in the hepatopancreas, followed by the nerve cord, brain, heart, ovary, and muscle. However, it was not expressed in the testis. Using an insect neuroparsin antibody, MeNPLP could only be detected in the hepatopancreatic tubules, suggesting that MeNPLP may be a secretary product. Although MeNPLP expression was stimulated in the ovary, it was inhibited in the hepatopancreas after treatment with neurotransmitter serotonin (5-HT). In vivo gene silencing of MeNPLP could cause a significant decrease of vitellogenin transcript level in the hepatopancreas and ovary. As a result, a corresponding decrease in vitellogenin protein level was observed in the hemolymph and ovary. In conclusion, this study has provided the first evidence that MeNPLP is involved in the initial stage of ovary maturation in shrimp.
Collapse
|
11
|
Kuhn-Nentwig L, Kopp LS, Nentwig W, Haenni B, Streitberger K, Schürch S, Schaller J. Functional differentiation of spider hemocytes by light and transmission electron microscopy, and MALDI-MS-imaging. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:59-67. [PMID: 24183821 DOI: 10.1016/j.dci.2013.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/15/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
The most abundant cell types in the hemolymph of Cupiennius salei are plasmatocytes (70-80%) and granulocytes (20-30%). Both cells differ in shape, cytochemical and transmission electron microscopy staining of their cytoplasma and granules. According to MALDI-IMS (matrix-assisted laser desorption ionisation-mass spectrometry imaging), granulocytes exhibit ctenidin 1 (9510 Da) and ctenidin 3 (9568 Da), SIBD-1 (8675 Da), and unknown peptides with masses of 2207 and 6239 Da. Plasmatocytes exhibit mainly a mass of 6908 Da. Unknown peptides with masses of 1546 and 1960 Da were detected in plasmatocytes and granulocytes. Transmission electron microscopy confirms the presence of two compounds in one granule and cytochemical staining (light microscopy) tends to support this view. Two further hemocyte types (cyanocytes containing hemocyanin and prehemocytes as stem cells) are only rarely detected in the hemolymph. These four hemocyte types constitute the cellular part of the spider immune system and this is discussed in view of arachnid hemocyte evolution.
Collapse
Affiliation(s)
- Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland.
| | - Lukas S Kopp
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | - Wolfgang Nentwig
- Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
| | - Beat Haenni
- Institute of Anatomy, University of Bern, CH-3012 Bern, Switzerland
| | - Kathrin Streitberger
- Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
| | - Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | - Johann Schaller
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
12
|
Li N, Zhang Z, Zhang L, Wang S, Zou Z, Wang G, Wang Y. Insulin-like growth factor binding protein 7, a member of insulin-like growth factor signal pathway, involved in immune response of small abalone Haliotis diversicolor. FISH & SHELLFISH IMMUNOLOGY 2012; 33:229-242. [PMID: 22584203 DOI: 10.1016/j.fsi.2012.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/28/2012] [Accepted: 04/30/2012] [Indexed: 05/31/2023]
Abstract
Insulin-like growth factor binding protein 7 (IGFBP7), the only member of the IGFBP superfamily that binds strongly to insulin, may have different functions from other IGFBPs. Unlike other IGFBPs, there is no knowledge available on aquatic invertebrate IGFBP7. In this study, a molluscan IGFBP7 gene, saIGFBP7, was cloned for the first time from the small abalone Haliotis diversicolor. Its full-length cDNA sequence is 1812 bp, with a 720 bp open reading frame encoding a protein of 239 aa. The molecular mass of the deduced protein is approximately 25.37 kDa with an estimated pI of 5.00, and it shares highest 41% identity to IGFBP7 of Amblyomma americanum. Analysis of conserved domains revealed the presence of an IGFBP N-terminal domain (IB), a kazal-type serine proteinase inhibitor domain (KI), and an immunoglobulin-like C2 domain (IgC2) in saIGFBP7. Furthermore, the 12 cysteine residues and the signature amino acid motif 'xCGCCxxC' which are characterized by the amino terminus region of the IGFBP superfamily are all presented in saIGFBP7. Quantitative real-time PCR and western blot were employed to investigate the tissue distribution of saIGFBP7, and its expression under bacterial challenge. The saIGFBP7 mRNA and protein could be detected in all examined tissues, with the highest expression level in hemocytes, higher expression level in gills, and was up-regulated in hemocytes and gills after bacterial injection. In addition, saIGFBP7 mRNA transcripts were observed in a subset of the branchial epithelium and the nucleus of hemocytes using the in situ hybridization method. Interestingly, saIGFBP7 was detected mainly in the goblet-like cell of the branchial epithelium by immunohistochemistry. These results suggested that saIGFBP7 was likely to be involved in a function associated with pathogenic infection and may play an important role in the adult abalone immune system.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Jimei, Xiamen, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Trachsel C, Widmer C, Kämpfer U, Bühr C, Baumann T, Kuhn-Nentwig L, Schürch S, Schaller J, Baumann U. Structural and biochemical characterization of native and recombinant single insulin-like growth factor-binding domain protein (SIBD-1) from the Central American Hunting Spider Cupiennius salei (Ctenidae). Proteins 2012; 80:2323-9. [DOI: 10.1002/prot.24119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/09/2012] [Accepted: 05/12/2012] [Indexed: 11/12/2022]
|