1
|
Zhang B, Ayra-Pardo C, Liu X, Song M, Li D, Kan Y. siRNA-Mediated BmAurora B Depletion Impedes the Formation of Holocentric Square Spindles in Silkworm Metaphase BmN4 Cells. INSECTS 2024; 15:72. [PMID: 38276821 PMCID: PMC10817069 DOI: 10.3390/insects15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Silkworm ovary-derived BmN4 cells rely on chromatin-induced spindle assembly to form microtubule-based square mitotic spindles that ensure accurate segregation of holocentric chromosomes during cell division. The chromosome passenger protein Aurora B regulates chromosomal condensation and segregation, spindle assembly checkpoint activation, and cytokinesis; however, its role in holocentric organisms needs further clarification. This study examined the architecture and dynamics of spindle microtubules during prophase and metaphase in BmN4 cells and those with siRNA-mediated BmAurora B knockdown using immunofluorescence labeling. Anti-α-tubulin and anti-γ-tubulin antibodies revealed faint γ-tubulin signals colocalized with α-tubulin in early prophase during nuclear membrane rupture, which intensified as prophase progressed. At this stage, bright regions of α-tubulin around and on the nuclear membrane surrounding the chromatin suggested the start of microtubules assembling in the microtubule-organizing centers (MTOCs). In metaphase, fewer but larger γ-tubulin foci were detected on both sides of the chromosomes. This resulted in a distinctive multipolar square spindle with holocentric chromosomes aligned at the metaphase plate. siRNA-mediated BmAurora B knockdown significantly reduced the γ-tubulin foci during prophase, impacting microtubule nucleation and spindle structure in metaphase. Spatiotemporal BmAurora B expression analysis provided new insights into the regulation of this mitotic kinase in silkworm larval gonads during gametogenesis. Our results suggest that BmAurora B is crucial for the formation of multipolar square spindles in holocentric insects, possibly through the activation of γ-tubulin ring complexes in multiple centrosome-like MTOCs.
Collapse
Affiliation(s)
- Bing Zhang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
| | - Camilo Ayra-Pardo
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, Avda. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal;
| | - Xiaoning Liu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
| | - Meiting Song
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
| | - Dandan Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
- School of Life Science and Technology, Henan Institute of Science and Technology, 90 East of Hualan Avenue, Xinxiang 453003, China
| |
Collapse
|
2
|
Mon H, Sato M, Lee JM, Kusakabe T. Construction of gene co-expression networks in cultured silkworm cells and identification of previously uncharacterized lepidopteran-specific genes required for chromosome dynamics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103875. [PMID: 36410580 DOI: 10.1016/j.ibmb.2022.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Advances in sequencing technology and bioinformatics have accelerated gene discovery and homology-based functional annotation in many species, and numerous targeted gene studies have greatly expanded the understanding of gene functions. Nevertheless, there are still many genes that lack homology with genes in other evolutionary lineages and are left as genes with unknown functions. We constructed a gene co-expression network from the Bombyx mori ovary-derived cell line, BmN4, and attempted to infer the biological roles of uncharacterized genes based on the correlation between the function-known and unknown genes. Within this network, we focused on the co-expression modules involved in chromosome architecture, dynamics, and integrity, and selected the uncharacterized genes for subsequent RNAi-based phenotypic screening. This approach enabled the identification of 5 genes whose knockdown led to abnormalities in chromosome dynamics and spindle morphology in mitosis. One of them was a recently characterized gene, BmCenp-T, which plays a central role in building the kinetochore protein complex on the silkworm holocentric chromosomes. In this study, we suggest a method for constructing the gene co-expression network and selecting candidate genes for small-scale RNAi screening. This approach is complementary to homology-based annotation and may be useful for the analysis of lineage-specific uncharacterized genes such as orphan genes.
Collapse
Affiliation(s)
- Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masanao Sato
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Vanpoperinghe L, Carlier-Grynkorn F, Cornilleau G, Kusakabe T, Drinnenberg IA, Tran PT. Live-cell imaging reveals square shape spindles and long mitosis duration in the silkworm holocentric cells. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34514356 PMCID: PMC8411215 DOI: 10.17912/micropub.biology.000441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 01/17/2023]
Abstract
Proper chromosome segregation during mitosis requires both the assembly of a microtubule (MT)-based spindle and the assembly of DNA-centromere-based kinetochore structure. Kinetochore-to-MT attachment enables chromosome separation. Monocentric cells, such as found in human, have one unique kinetochore per chromosome. Holocentric cells, such as found in the silkworm, in contrast, have multiple kinetochore structures per chromosome. Interestingly, some human cancer chromosomes contain more than one kinetochore, a condition called di- and tricentric. Thus, comparing how wild-type mono- and holocentric cells perform mitosis may provide novel insights into cancer di- and tricentric cell mitosis. We present here live-cell imaging of human RPE1 and silkworm BmN4 cells, revealing striking differences in spindle architecture and dynamics, and highlighting differential kinesin function between mono- and holocentric cells.
Collapse
Affiliation(s)
- Lucien Vanpoperinghe
- Institut Curie, PSL Université, Sorbonne Université, CNRS, Paris, France.,Médicine Sorbonne Université, École Normale Supérieure, Paris, France
| | | | - Gaetan Cornilleau
- Institut Curie, PSL Université, Sorbonne Université, CNRS, Paris, France
| | - Takahiro Kusakabe
- Kyushu University, Department of Bioresource Sciences, Laboratory of Insect Genome Science, Fukuoka, Japan
| | - Ines A Drinnenberg
- Institut Curie, PSL Université, Sorbonne Université, CNRS, Paris, France
| | - Phong T Tran
- Institut Curie, PSL Université, Sorbonne Université, CNRS, Paris, France.,University of Pennsylvania, Department of Cell and Developmental Biology, Philadephia, PA, United States
| |
Collapse
|
4
|
Rosin LF, Gil J, Drinnenberg IA, Lei EP. Oligopaint DNA FISH reveals telomere-based meiotic pairing dynamics in the silkworm, Bombyx mori. PLoS Genet 2021; 17:e1009700. [PMID: 34319984 PMCID: PMC8351950 DOI: 10.1371/journal.pgen.1009700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/09/2021] [Accepted: 07/07/2021] [Indexed: 12/04/2022] Open
Abstract
Accurate chromosome segregation during meiosis is essential for reproductive success. Yet, many fundamental aspects of meiosis remain unclear, including the mechanisms regulating homolog pairing across species. This gap is partially due to our inability to visualize individual chromosomes during meiosis. Here, we employ Oligopaint FISH to investigate homolog pairing and compaction of meiotic chromosomes and resurrect a classical model system, the silkworm Bombyx mori. Our Oligopaint design combines multiplexed barcoding with secondary oligo labeling for high flexibility and low cost. These studies illustrate that Oligopaints are highly specific in whole-mount gonads and on meiotic squashes. We show that meiotic pairing is robust in both males and females and that pairing can occur through numerous partially paired intermediate structures. We also show that pairing in male meiosis occurs asynchronously and seemingly in a transcription-biased manner. Further, we reveal that meiotic bivalent formation in B. mori males is highly similar to bivalent formation in C. elegans, with both of these pathways ultimately resulting in the pairing of chromosome ends with non-paired ends facing the spindle pole. Additionally, microtubule recruitment in both C. elegans and B. mori is likely dependent on kinetochore proteins but independent of the centromere-specifying histone CENP-A. Finally, using super-resolution microscopy in the female germline, we show that homologous chromosomes remain associated at telomere domains in the absence of chiasma and after breakdown and modification to the synaptonemal complex in pachytene. These studies reveal novel insights into mechanisms of meiotic homolog pairing both with or without recombination.
Collapse
Affiliation(s)
- Leah F. Rosin
- Nuclear Organization and Gene Expression Section; Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jose Gil
- Institut Curie, PSL Research University, CNRS, Paris, France; Sorbonne Université, Institut Curie, CNRS, Paris, France
| | - Ines A. Drinnenberg
- Institut Curie, PSL Research University, CNRS, Paris, France; Sorbonne Université, Institut Curie, CNRS, Paris, France
| | - Elissa P. Lei
- Nuclear Organization and Gene Expression Section; Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Li B, Li Z, Lu C, Chang L, Zhao D, Shen G, Kusakabe T, Xia Q, Zhao P. Heat Shock Cognate 70 Functions as A Chaperone for the Stability of Kinetochore Protein CENP-N in Holocentric Insect Silkworms. Int J Mol Sci 2019; 20:ijms20235823. [PMID: 31756960 PMCID: PMC6929194 DOI: 10.3390/ijms20235823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
The centromere, in which kinetochore proteins are assembled, plays an important role in the accurate congression and segregation of chromosomes during cell mitosis. Although the function of the centromere and kinetochore is conserved from monocentric to holocentric, the DNA sequences of the centromere and components of the kinetochore are varied among different species. Given the lack of core centromere protein A (CENP-A) and CENP-C in the lepidopteran silkworm Bombyx mori, which possesses holocentric chromosomes, here we investigated the role of CENP-N, another important member of the centromere protein family essential for kinetochore assembly. For the first time, cellular localization and RNA interference against CENP-N have confirmed its kinetochore function in silkworms. To gain further insights into the regulation of CENP-N in the centromere, we analyzed the affinity-purified complex of CENP-N by mass spectrometry and identified 142 interacting proteins. Among these factors, we found that the chaperone protein heat shock cognate 70 (HSC70) is able to regulate the stability of CENP-N by prohibiting ubiquitin-proteasome pathway, indicating that HSC70 could control cell cycle-regulated degradation of CENP-N at centromeres. Altogether, the present work will provide a novel clue to understand the regulatory mechanism for the kinetochore activity of CENP-N during the cell cycle.
Collapse
Affiliation(s)
- Bingqian Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhiqing Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
- Correspondence:
| | - Chenchen Lu
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Li Chang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka 819-0395, Japan;
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Mon H, Lee JM, Sato M, Kusakabe T. Identification and functional analysis of outer kinetochore genes in the holocentric insect Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 86:1-8. [PMID: 28473197 DOI: 10.1016/j.ibmb.2017.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/05/2017] [Accepted: 04/29/2017] [Indexed: 05/24/2023]
Abstract
The kinetochore creates chromosomal attachment sites for microtubules. The kinetochore-microtubule interface plays an important role in ensuring accurate transmission of genetic information to daughter cells. Bombyx mori is known to possess holocentric chromosomes, where spindle microtubules attach along the entire length of the chromosome. Recent evidence suggests that CENP-A and CENP-C, which are essential for centromere structure and function in other species, have lost in holocentric insects, implying that B. mori is able to build its kinetochore regardless of the lack of CENP-A and CENP-C. Here we report the identification of three outer kinetochore genes in the silkworm B. mori by using bioinformatics and RNA interference-based screening. While the homologs of Ndc80 and Mis12 have strong similarity with those of other organisms, the five encoded proteins (BmNuf2, BmSpc24, BmSpc25, BmDsn1 and BmNnf1) are highly diverged from their counterparts in other species. Microscopic studies show that the outer kinetochore protein is distributed along the entire length of the chromosomes, which is a key feature of holocentric chromosomes. We also demonstrate that BmDsn1 forms a heterotrimeric complex with BmMis12 and BmNnf1, which acts as a receptor of the Ndc80 complex. In addition, our study suggests that a small-scale RNAi-based candidate screening is a useful approach to identify genes which may be highly divergent among different species.
Collapse
Affiliation(s)
- Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Japan
| | - Masanao Sato
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Japan.
| |
Collapse
|
7
|
Gang X, Qian W, Zhang T, Yang X, Xia Q, Cheng D. Aurora B kinase is required for cell cycle progression in silkworm. Gene 2016; 599:60-67. [PMID: 27836666 DOI: 10.1016/j.gene.2016.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/20/2016] [Accepted: 11/07/2016] [Indexed: 11/30/2022]
Abstract
Aurora B kinase, a member of serine/threonine kinase family, is the catalytic subunit of the chromosomal passenger complex and is essential for chromosome alignment, chromosome segregation, and cytokinesis during mitosis. Here, we cloned the full-length cDNA sequence of silkworm Aurora B (BmAurB) gene and predicted that BmAurB protein contains a conserved S_TKc domain. Phylogenetic analysis between BmAurB and other Aurora kinases indicates that Aurora kinases may have evolved after separation between mammalian and insect, and prior to radiation of either mammalian or insects. RT-PCR examination revealed that the expression of the BmAurB gene was high in mitotic cycling gonads, moderate in mitotic cycling brain, and undetectable in endocycling silk gland during silkworm larval development. RNAi or inhibitor-mediated inhibition of the BmAurB gene in silkworm ovary-derived BmN4-SID1 cells disrupted cell cycle progression during mitosis and induced an accumulation of polyploid cells, cell cycle arrest at G2/M phase, chromosome misalignment, chromosome bridge, and bi-nucleation. Taken together, our results suggest that the BmAurB gene is required for cell cycle progression in silkworm.
Collapse
Affiliation(s)
- Xiaoxu Gang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Tianlei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xinxin Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Sugahara R, Jouraku A, Nakakura T, Kusakabe T, Yamamoto T, Shinohara Y, Miyoshi H, Shiotsuki T. Two adenine nucleotide translocase paralogues involved in cell proliferation and spermatogenesis in the silkworm Bombyx mori. PLoS One 2015; 10:e0119429. [PMID: 25742135 PMCID: PMC4351007 DOI: 10.1371/journal.pone.0119429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/13/2015] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial adenine nucleotide translocase (ANT) specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4) and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4) is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for meiotic progression in the spermatocytes. Here, we report that silkworms harbor two ANT paralogues, the homeostatic paralogue (BmANTI1) and the testis-specific paralogue (BmANTI2). The BmANTI2 protein has an N-terminal extension in which the positions of lysine residues in the amino acid sequence are distributed as in human ANT4. An expression analysis showed that BmANTI2 transcripts were restricted to the testis, suggesting the protein has a role in the progression of spermatogenesis. By contrast, BmANTI1 was expressed in all tissues tested, suggesting it has an important role in homeostasis. We also observed that cultured silkworm cells required BmANTI1 for proliferation. The ANTI1 protein of the lepidopteran Plutella xylostella (PxANTI1), but not those of other insect species (or PxANTI2), restored cell proliferation in BmANTI1-knockdown cells suggesting that ANTI1 has similar energy metabolism functions across the Lepidoptera. Our results suggest that BmANTI2 is evolutionarily divergent from BmANTI1 and has developed a specific role in spermatogenesis similar to that of mammalian ANT4.
Collapse
Affiliation(s)
- Ryohei Sugahara
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Akiya Jouraku
- Insect Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Takayo Nakakura
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Takahiro Kusakabe
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Takenori Yamamoto
- Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takahiro Shiotsuki
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
9
|
Drinnenberg IA, deYoung D, Henikoff S, Malik HS. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife 2014; 3. [PMID: 25247700 DOI: 10.7554/elife.03676.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/25/2014] [Indexed: 05/24/2023] Open
Abstract
Faithful chromosome segregation in all eukaryotes relies on centromeres, the chromosomal sites that recruit kinetochore proteins and mediate spindle attachment during cell division. The centromeric histone H3 variant, CenH3, is the defining chromatin component of centromeres in most eukaryotes, including animals, fungi, plants, and protists. In this study, using detailed genomic and transcriptome analyses, we show that CenH3 was lost independently in at least four lineages of insects. Each of these lineages represents an independent transition from monocentricity (centromeric determinants localized to a single chromosomal region) to holocentricity (centromeric determinants extended over the entire chromosomal length) as ancient as 300 million years ago. Holocentric insects therefore contain a CenH3-independent centromere, different from almost all the other eukaryotes. We propose that ancient transitions to holocentricity in insects obviated the need to maintain CenH3, which is otherwise essential in most eukaryotes, including other holocentrics.
Collapse
Affiliation(s)
- Ines A Drinnenberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Dakota deYoung
- Department of Biology, University of Washington, Seattle, United States
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Harmit Singh Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
10
|
Drinnenberg IA, deYoung D, Henikoff S, Malik HS. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife 2014; 3:e03676. [PMID: 25247700 PMCID: PMC4359364 DOI: 10.7554/elife.03676] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/25/2014] [Indexed: 01/15/2023] Open
Abstract
Faithful chromosome segregation in all eukaryotes relies on centromeres, the chromosomal sites that recruit kinetochore proteins and mediate spindle attachment during cell division. The centromeric histone H3 variant, CenH3, is the defining chromatin component of centromeres in most eukaryotes, including animals, fungi, plants, and protists. In this study, using detailed genomic and transcriptome analyses, we show that CenH3 was lost independently in at least four lineages of insects. Each of these lineages represents an independent transition from monocentricity (centromeric determinants localized to a single chromosomal region) to holocentricity (centromeric determinants extended over the entire chromosomal length) as ancient as 300 million years ago. Holocentric insects therefore contain a CenH3-independent centromere, different from almost all the other eukaryotes. We propose that ancient transitions to holocentricity in insects obviated the need to maintain CenH3, which is otherwise essential in most eukaryotes, including other holocentrics.
Collapse
Affiliation(s)
- Ines A Drinnenberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Dakota deYoung
- Department of Biology, University of Washington, Seattle, United States
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Harmit Singh Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
11
|
Li Z, Mon H, Xu J, Zhu L, Lee JM, Kusakabe T. A conserved SUMOylation signaling for cell cycle control in a holocentric species Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 51:71-79. [PMID: 24880118 DOI: 10.1016/j.ibmb.2014.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
SUMOylation is an essential post-translational modification that regulates a variety of cellular processes including cell cycle progression. Although the SUMOylation pathway has been identified and investigated in many eukaryotes, the mechanisms of SUMOylation in regulating the functions of various substrates are still poorly understood. Here, we utilized a model species, the silkworm Bombyx mori that possesses holocentric chromosomes, to exploit the role of the SUMOylation system in cell cycle regulation. We identified all the components that are involved in the SUMOylation pathway in the silkworm genome. Our data revealed a cell cycle-dependent transcription of the SUMOylation genes, localization of the SUMOylation proteins, and abundance of the SUMOylation substrates in cultured silkworm cells. Importantly, the proliferation of the silkworm cells was strikingly inhibited by interference with SUMOylation genes expression, possibly due to an arrest of the SUMOylation-deficient cells at the G2/M phase. Furthermore, disruption of the SUMOylation genes induced the defects of holocentric chromosome congression and segregation during mitosis, which was consistent with high expressions of the SUMOylation genes and high enrichments of global SUMOylation at this stage, suggesting that the SUMOylation system in silkworm is essential for cell cycle regulation, with one particular role in mitosis.
Collapse
Affiliation(s)
- Zhiqing Li
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Hiroaki Mon
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Jian Xu
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Li Zhu
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Jae Man Lee
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Takahiro Kusakabe
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan.
| |
Collapse
|