1
|
Campli G, Volovych O, Kim K, Veldsman WP, Drage HB, Sheizaf I, Lynch S, Chipman AD, Daley AC, Robinson-Rechavi M, Waterhouse RM. The moulting arthropod: a complete genetic toolkit review. Biol Rev Camb Philos Soc 2024; 99:2338-2375. [PMID: 39039636 DOI: 10.1111/brv.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.
Collapse
Affiliation(s)
- Giulia Campli
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Olga Volovych
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Kenneth Kim
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Werner P Veldsman
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Harriet B Drage
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Idan Sheizaf
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sinéad Lynch
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ariel D Chipman
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Allison C Daley
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| |
Collapse
|
2
|
Zhang YK, Zhang HX, An HM, Wang K, Zhu F, Liu W, Wang XP. Key roles of insulin receptor InR1 in initiating reproductive diapause in males of the cabbage beetle Colaphellus bowringi (Coleoptera: Chrysomelidae). PEST MANAGEMENT SCIENCE 2024; 80:3852-3860. [PMID: 38511626 DOI: 10.1002/ps.8088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Reproductive diapause serves as a valuable strategy enabling insects to survive unfavorable seasonal conditions. However, forcing insects into diapause when the environment is conducive to their well-being can cause them to miss out on seasonal opportunities for reproduction. This outcome not only reduces insect populations but also minimizes crop losses caused by insect feeding. Therefore, altering the timing of diapause initiation presents a potential strategy for managing pests. In this study, we examined the possible role of the Insulin Receptor 1 (InR1) in controlling reproductive diapause entry in the male cabbage beetle, Colaphellus bowringi. RESULTS Compared to short-day (SD) conditions, long-day (LD) conditions led to reproductive diapause of C. bowringi males, characterized by arrested gonad development, increased Triglyceride (TG) accumulation, and upregulated expression of diapause protein 1 and genes associated with lipogenesis and stress tolerance. Upon employing RNA interference to knock down InR1 under SD conditions, males destined for reproduction were compelled into diapause, evidenced by arrested gonadal development, accumulation of TG, and elevated expression of diapause-related genes. Intriguingly, despite the common association of the absence of juvenile hormone (JH) with reproductive diapause in females, the knockdown of InR1 in males did not significant affect the expression of JH biosynthesis and JH response gene. CONCLUSION The study highlight InR1 is a key factor involved in regulating male reproductive diapause in C. bowringi. Consequently, targeting insulin signaling could be a viable approach to perturb diapause timing, offering a promising strategy for managing pests with reproductive diapause capabilities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Ke Zhang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Han-Xue Zhang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao-Min An
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kou Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fen Zhu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Leyria J. Endocrine factors modulating vitellogenesis and oogenesis in insects: An update. Mol Cell Endocrinol 2024; 587:112211. [PMID: 38494046 DOI: 10.1016/j.mce.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The endocrine system plays a pivotal role in shaping the mechanisms that ensure successful reproduction. With over a million known insect species, understanding the endocrine control of reproduction has become increasingly complex. Some of the key players include the classic insect lipid hormones juvenile hormone (JH) and ecdysteroids, and neuropeptides such as insulin-like peptides (ILPs). Individual endocrine factors not only modulate their own target tissue but also play crucial roles in crosstalk among themselves, ensuring successful vitellogenesis and oogenesis. Recent advances in omics, gene silencing, and genome editing approaches have accelerated research, offering both fundamental insights and practical applications for studying in-depth endocrine signaling pathways. This review provides an updated and integrated view of endocrine factors modulating vitellogenesis and oogenesis in insect females.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
4
|
Kahveci K, Düzgün MB, Atis AE, Yılmaz A, Shahraki A, Coskun B, Durdagi S, Birgul Iyison N. Discovering allatostatin type-C receptor specific agonists. Nat Commun 2024; 15:3965. [PMID: 38730017 PMCID: PMC11087482 DOI: 10.1038/s41467-024-48156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Currently, there is no pesticide available for the selective control of the pine processionary moth (Thaumetopoea pityocampa-specific), and conventional methods typically rely on mechanical techniques such as pheromone traps or broad-spectrum larvicidal chemicals. As climate change increases the range and dispersion capacity of crop and forest pests, outbreaks of the pine processionary occur with greater frequency and significantly impact forestry and public health. Our study is carried out to provide a T. pityocampa-specific pesticide targeting the Allatostatin Type-C Receptor (AlstR-C). We use a combination of computational biology methods, a cell-based screening assay, and in vivo toxicity and side effect assays to identify, for the first time, a series of AlstR-C ligands suitable for use as T. pityocampa-specific insecticides. We further demonstrate that the novel AlstR-C targeted agonists are specific to lepidopteran larvae, with no harmful effects on coleopteran larvae or adults. Overall, our study represents an important initial advance toward an insect GPCR-targeted next-generation pesticide design. Our approach may apply to other invertebrate GPCRs involved in vital metabolic pathways.
Collapse
Affiliation(s)
- Kübra Kahveci
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Türkiye
| | | | - Abdullah Emre Atis
- Plant Protection Product and Toxicology Department, Plant Protection Central Research Institute, Ankara, Türkiye
| | - Abdullah Yılmaz
- Plant Protection Product and Toxicology Department, Plant Protection Central Research Institute, Ankara, Türkiye
| | - Aida Shahraki
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Türkiye
- Kolb Lab, Department of Pharmacy, The Philipp University of Marburg, Marburg, Germany
| | - Basak Coskun
- Plant Protection Product and Toxicology Department, Plant Protection Central Research Institute, Ankara, Türkiye
| | - Serdar Durdagi
- Molecular Therapy Lab, Department of Pharmaceutical Chemistry, School of Pharmacy, Bahçeşehir University, İstanbul, Türkiye.
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, İstanbul, Türkiye.
- Lab for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, İstanbul, Türkiye.
| | - Necla Birgul Iyison
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Türkiye.
| |
Collapse
|
5
|
Li Z, Song J, Jiang G, Shang Y, Jiang Y, Zhang J, Xiao L, Chen M, Tang D, Tong X, Dai F. Juvenile hormone suppresses the FoxO-takeout axis to shorten longevity in male silkworm. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105388. [PMID: 37105617 DOI: 10.1016/j.pestbp.2023.105388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Juvenile hormone (JH) plays a crucial endocrine regulatory role in insect metamorphosis, reproduction, and longevity in multiple organisms, such as flies, honeybees, and migratory monarch butterflies. However, the molecular mechanism of JH affecting longevity remains largely unknown. In this study, we showed that JH III and its analog methoprene shortened the survival days significantly in the adulthood of male silkworm. At the same time, the allatostatin, a neuropeptide that inhibits the secretion of JH by the corpora allata, could extend the survival days dramatically after adult eclosion in male silkmoth. Interestingly, a central pro-longevity FoxO transcription factor was reduced upon JH stimulation in silkworm individuals and BmN-SWU1 cells. Furthermore, the analysis of the upstream sequence of the FoxO gene identified a JH response element which suggested that FoxO might be regulated as a target of JH. Surprisingly, we identified a Bmtakeout (BmTO) gene that encodes a JH-binding protein and contains a FoxO response element. As expected, FoxO overexpression and knockdown up- and down-regulated the expression of BmTO respectively, indicating that BmTO functions as a FoxO target. BmTO overexpression could release the inhibitory effect of JH on the BmFoxO gene by reducing JH bioavailability to block its signal transduction. Collectively, these results may provide insights into the mechanism of the JH-FoxO-TO axis in aging research and pest control.
Collapse
Affiliation(s)
- Zhiquan Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiangbo Song
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Guihua Jiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yunzhu Shang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yu Jiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jianfei Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Li Xiao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Min Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Dongmei Tang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Crosstalk between Nutrition, Insulin, Juvenile Hormone, and Ecdysteroid Signaling in the Classical Insect Model, Rhodnius prolixus. Int J Mol Sci 2022; 24:ijms24010007. [PMID: 36613451 PMCID: PMC9819625 DOI: 10.3390/ijms24010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel aspects of insect metabolism and physiology. Our recent work has shown that nutrition, insulin signaling, and two main types of insect lipophilic hormones, juvenile hormone (JH) and ecdysteroids, are essential for successful reproduction in R. prolixus; however, the interplay behind these endocrine signals has not been established. We used a combination of hormone treatments, gene expression analyses, hormone measurements, and ex vivo experiments using the corpus allatum or the ovary, to investigate how the interaction of these endocrine signals might define the hormone environment for egg production. The results show that after a blood meal, circulating JH levels increase, a process mainly driven through insulin and allatoregulatory neuropeptides. In turn, JH feeds back to provide some control over its own biosynthesis by regulating the expression of critical biosynthetic enzymes in the corpus allatum. Interestingly, insulin also stimulates the synthesis and release of ecdysteroids from the ovary. This study highlights the complex network of endocrine signals that, together, coordinate a successful reproductive cycle.
Collapse
|
7
|
Anderson CE, Malek MC, Jonas-Closs RA, Cho Y, Peshkin L, Kirschner MW, Yampolsky LY. Inverse Lansing Effect: Maternal Age and Provisioning Affecting Daughters' Longevity and Male Offspring Production. Am Nat 2022; 200:704-721. [PMID: 36260845 DOI: 10.1086/721148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
AbstractMaternal age effects on offspring life history are known in a variety of organisms, with offspring of older mothers typically having lower life expectancy (the Lansing effect). However, there is no consensus on the generality and mechanisms of this pattern. We tested predictions of the Lansing effect in several Daphnia magna clones and observed clone-specific magnitude and direction of the maternal age effect on offspring longevity. We also report ambidirectional, genotype-specific effects of maternal age on the propensity of daughters to produce male offspring. Focusing on two clones with contrasting life histories, we demonstrate that maternal age effects can be explained by lipid provisioning of embryos by mothers of different ages. Individuals from a single-generation maternal age reversal treatment showed intermediate life span and intermediate lipid content at birth. In the clone characterized by the "inverse Lansing effect," neonates produced by older mothers showed higher mitochondrial membrane potential in neural tissues than their counterparts born to younger mothers. We conclude that an inverse Lansing effect is possible and hypothesize that it may be caused by age-specific maternal lipid provisioning creating a calorically restricted environment during embryonic development, which in turn reduces fecundity and increases life span in offspring.
Collapse
|
8
|
Meiselman MR, Alpert MH, Cui X, Shea J, Gregg I, Gallio M, Yapici N. Recovery from cold-induced reproductive dormancy is regulated by temperature-dependent AstC signaling. Curr Biol 2022; 32:1362-1375.e8. [PMID: 35176227 PMCID: PMC8969192 DOI: 10.1016/j.cub.2022.01.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
Animals have evolved a variety of behaviors to cope with adverse environmental conditions. Similar to other insects, the fly, Drosophila melanogaster, responds to sustained cold by reducing its metabolic rate and arresting its reproduction. Here, we show that a subset of dorsal neurons (DN3s) that express the neuropeptide allatostatin C (AstC) facilitates recovery from cold-induced reproductive dormancy. The activity of AstC-expressing DN3s, as well as AstC peptide levels, are suppressed by cold. Cold temperature also impacts AstC levels in other Drosophila species and mosquitoes, Aedes aegypti, and Anopheles stephensi. The stimulatory effect of AstC on egg production is mediated by cholinergic AstC-R2 neurons. Our results demonstrate that DN3s coordinate female reproductive capacity with environmental temperature via AstC signaling. AstC/AstC-R2 is conserved across many insect species and their role in regulating female reproductive capacity makes them an ideal target for controlling the population of agricultural pests and human disease vectors.
Collapse
Affiliation(s)
- Matthew R Meiselman
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Jamien Shea
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Ian Gregg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
Bendena WG, Hui JHL, Chin-Sang I, Tobe SS. Neuropeptide and microRNA regulators of juvenile hormone production. Gen Comp Endocrinol 2020; 295:113507. [PMID: 32413346 DOI: 10.1016/j.ygcen.2020.113507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
The sesquiterpenoid juvenile hormone(s) (JHs) of insects are the primary regulators of growth, metamorphosis, and reproduction in most insect species. As a consequence, it is essential that JH production be precisely regulated so that it is present only during appropriate periods necessary for the control of these processes. The presence of JH at inappropriate times results in disruption to metamorphosis and development and, in some cases, to disturbances in female reproduction. Neuropeptides regulate the timing and production of JH by the corpora allata. Allatostatin and allatotropin were the names coined for neuropeptides that serve as inhibitors or stimulators of JH biosynthesis, respectively. Three different allatostatin neuropeptide families are capable of inhibiting juvenile hormone but only one family is utilized for that purpose dependent on the insect studied. The function of allatotropin also varies in different insects. These neuropeptides are pleiotropic in function acting on diverse physiological processes in different insects such as muscle contraction, sleep and neuromodulation. Genome projects and expression studies have assigned individual neuropeptide families to their respective receptors. An understanding of the localization of these receptors is providing clues as to how numerous peptide families might be integrated in regulating physiological functions. In recent years microRNAs have been identified that down-regulate enzymes and transcription factors that are involved in the biosynthesis and action of juvenile hormone.
Collapse
Affiliation(s)
- William G Bendena
- Department of Biology and Centre for Neuroscience, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Ramsey-Wright Bldg., 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
10
|
Wu K, Li S, Wang J, Ni Y, Huang W, Liu Q, Ling E. Peptide Hormones in the Insect Midgut. Front Physiol 2020; 11:191. [PMID: 32194442 PMCID: PMC7066369 DOI: 10.3389/fphys.2020.00191] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Insects produce many peptide hormones that play important roles in regulating growth, development, immunity, homeostasis, stress, and other processes to maintain normal life. As part of the digestive system, the insect midgut is also affected by hormones secreted from the prothoracic gland, corpus allatum, and various neuronal cells; these hormones regulate the secretion and activity of insects’ digestive enzymes and change their feeding behaviors. In addition, the insect midgut produces certain hormones when it recognizes various components or pathogenic bacteria in ingested foods; concurrently, the hormones regulate other tissues and organs. In addition, intestinal symbiotic bacteria can produce hormones that influence insect signaling pathways to promote host growth and development; this interaction is the result of long-term evolution. In this review, the types, functions, and mechanisms of hormones working on the insect midgut, as well as hormones produced therein, are reviewed for future reference in biological pest control.
Collapse
Affiliation(s)
- Kai Wu
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Shirong Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Yuyang Ni
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qiuning Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, China
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Liu A, Liu F, Shi W, Huang H, Wang G, Ye H. C-Type allatostatin and its putative receptor from the mud crab serve an inhibitory role in ovarian development. ACTA ACUST UNITED AC 2019; 222:jeb.207985. [PMID: 31558587 DOI: 10.1242/jeb.207985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023]
Abstract
C-Type allatostatins are a family of peptides that characterized by a conserved unblocked PISCF motif at the C-terminus. In insects, it is well known that C-type allatostatin has a potent inhibitory effect on juvenile hormone biosynthesis by the corpora allata. C-Type allatostatin has been widely identified from crustacean species but little is known about its roles. Therefore, this study investigated the tissue distribution patterns of C-type allatostatin and its putative receptor in the mud crab Scylla paramamosain, and further explored its potential effect on vitellogenesis. Firstly, cDNAs encoding C-type allatostatin (Sp-AST-C) precursor and its putative receptor (Sp-AST-CR) were isolated. Subsequently, RT-PCR revealed that Sp-AST-C was mainly expressed in the nervous tissue, middle gut and heart, whereas Sp-AST-CR had extensive expression in all tissues tested except the eyestalk ganglion and hepatopancreas. In addition, in situ hybridization in the cerebral ganglion showed that Sp-AST-C was localized in clusters 6 and 8 of the protocerebrum, clusters 9, 10 and 11 of the deutocerebrum, and clusters 14 and 15 of the tritocerebrum. Whole-mount immunofluorescence revealed a similar distribution pattern. Synthetic Sp-AST-C had no effect on the abundance of S. paramamosain vitellogenin (Sp-Vg) in the hepatopancreas and ovary in vitro but significantly reduced the expression of its receptor (Sp-VgR) in the ovary in a dose-dependent manner. Furthermore, Sp-VgR expression, vitellin content and oocyte diameter in the ovary were reduced 16 days after the first injection of Sp-AST-C. Finally, in situ hybridization showed that Sp-AST-CR transcript was specifically localized in the oocytes, which further indicated that the oocytes are the target cells for Sp-AST-C. In conclusion, our results suggested that the Sp-AST-C signaling system is involved in the regulation of ovarian development, possibly by directly inhibiting the uptake of yolk by oocytes and obstructing oocyte growth.
Collapse
Affiliation(s)
- An Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Fang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Wenyuan Shi
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Guizhong Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
12
|
Sawadro MK, Bednarek AW, Molenda AE, Babczyńska AI. Expression profile of genes encoding allatoregulatory neuropeptides in females of the spider Parasteatoda tepidariorum (Araneae, Theridiidae). PLoS One 2019; 14:e0222274. [PMID: 31504071 PMCID: PMC6736302 DOI: 10.1371/journal.pone.0222274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 08/26/2019] [Indexed: 12/23/2022] Open
Abstract
Allatoregulatory neuropeptides are multifunctional proteins that take part in the synthesis and secretion of juvenile hormones. In insects, allatostatins are inhibitors of juvenile hormone biosynthesis in the corpora allata while allatotropins, act as stimulators. By quantitative real-time PCR, we analyzed the gene expression of allatostatin A (PtASTA), allatostatin B (PtASTB), allatostatin C (PtASTC), allatotropin (PtAT) and their receptors (PtASTA-R, PtASTB-R, PtASTC-R, PtAT-R) in various tissues in different age groups of female spiders. In the presented manuscript, the presence of allatostatin A, allatostatin C, and allatotropin are reported in females of the spider P. tepidariorum. The obtained results indicated substantial differences in gene expression levels for allatoregulatory neuropeptides and their receptors in the different tissues. Additionally, the gene expression levels also varied depending on the female age. Strong expression was observed coinciding with sexual maturation in the neuroendocrine and nervous system, and to a lower extent in the digestive tissues and ovaries. Reverse trends were observed for the expression of genes encoding the receptors of these neuropeptides. In conclusion, our study is the first hint that the site of synthesis and secretion is fulfilled by similar structures as observed in other arthropods. In addition, the results of the analysis of spider physiology give evidence that the general functions like regulation of the juvenile hormone synthesis, regulation of the digestive tract and ovaries action, control of vitellogenesis process by the neuropeptides seem to be conserved among arthropods and are the milestone to future functional studies.
Collapse
Affiliation(s)
- Marta Katarzyna Sawadro
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa, Katowice, Poland
| | - Agata Wanda Bednarek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa, Katowice, Poland
| | - Agnieszka Ewa Molenda
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa, Katowice, Poland
| | | |
Collapse
|
13
|
Pietrantonio PV, Xiong C, Nachman RJ, Shen Y. G protein-coupled receptors in arthropod vectors: omics and pharmacological approaches to elucidate ligand-receptor interactions and novel organismal functions. CURRENT OPINION IN INSECT SCIENCE 2018; 29:12-20. [PMID: 30551818 PMCID: PMC6296246 DOI: 10.1016/j.cois.2018.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 05/04/2023]
Abstract
Regulation of many physiological processes in animals, certainly those controlled by neuropeptide hormones, involves G protein-coupled receptors (GPCRs). Our work focusing on endocrine regulation of diuresis and water balance in mosquitoes and ticks started in 1997 with the kinin receptor, at the dawn of the omics era. After the genomic revolution, we began work on the endocrinology of reproduction in the red imported fire ant. We will use the template of this comparative work to summarize key points about GPCRs and signaling, and emphasize the most recent developments in the pharmacology of arthropod neuropeptide GPCRs. We will discuss omics' contributions to the advancement of this field, and its influence on peptidomimetic design while emphasizing work on blood feeding arthropods.
Collapse
Affiliation(s)
- Patricia V Pietrantonio
- Department of Entomology, Texas A&M University (TAMU), College Station, TX 77843-2475, United States.
| | - Caixing Xiong
- Department of Entomology, TAMU, College Station, TX 77843-2475, United States
| | - Ronald James Nachman
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, United States
| | - Yang Shen
- Department of Electrical and Computer Engineering, TAMU, College Station, TX 77843-3128, United States
| |
Collapse
|
14
|
Nouzova M, Rivera-Pérez C, Noriega FG. Omics approaches to study juvenile hormone synthesis. CURRENT OPINION IN INSECT SCIENCE 2018; 29:49-55. [PMID: 30551825 PMCID: PMC6470398 DOI: 10.1016/j.cois.2018.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 05/04/2023]
Abstract
The juvenile hormones (JHs) are a family of insect acyclic sesquiterpenoids produced by the corpora allata (CA), a pair of endocrine glands connected to the brain. They are involved in the regulation of development, reproduction, behavior, caste determination, diapause, stress response, and numerous polyphenisms. In the post-genomics era, comprehensive analyses using functional 'omics' technologies such as transcriptomics, proteomics and metabolomics have increased our understanding of the activity of the minute CA. This review attempts to summarize some of the 'omics' studies that have contributed to further understand JH synthesis in insects, with an emphasis on our own research on the mosquito Aedes aegypti.
Collapse
Affiliation(s)
- Marcela Nouzova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA
| | | | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
15
|
Nouzova M, Michalkova V, Hernández-Martínez S, Rivera-Perez C, Ramirez CE, Fernandez-Lima F, Noriega FG. JH biosynthesis and hemolymph titers in adult male Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 95. [PMID: 29526769 PMCID: PMC5927834 DOI: 10.1016/j.ibmb.2018.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Juvenile hormone (JH) is a major hormonal regulator in insects. In Aedes aegypti females, JH signals the completion of the ecdysis to the adult stage and initiates reproductive processes. Although the regulation of JH synthesis and titer in Ae. aegypti females has been extensively studied, relatively little is known about changes of JH synthesis and titers in male mosquitoes, as well as on the roles of JH controlling male reproductive biology. A better understanding of male mosquito reproductive biology, including an improved knowledge of the hormonal control of reproduction, could increase the likelihood of success of male-targeting vector control programs. Using a high performance liquid chromatography coupled to electrospray tandem mass spectrometry method, we measured JH biosynthesis and hemolymph levels in male mosquitoes during pupal and adult stages. Our results revealed tightly concomitant changes in JH biosynthesis and JH hemolymph titers. Synthesis of JH III was very low in late pupae, significantly increased during the first 24 h after adult eclosion, and then remained relatively constant during the first six days after adult eclosion. Feeding high sugar diets resulted in an increase of JH synthesis and titers, and starvation significantly decreased JH synthesis, but this effect could be reversed by changing the males back to a high sugar diet. JH synthesis rates were similar in virgin and mated males, but hemolymph JH levels were different in well-nourished virgin and mated males. Starvation resulted in a significant reduction in insemination rates; with well-nourished males inseminating 2 times more females than water-fed. Giving a 20% sugar meal for 24 h to those mosquitoes that were previously starved for 6 days, caused a significant rise in insemination rates, restoring them to levels similar to those recorded for 20% fed males. These results suggest that nutrition plays a role on male fecundity, and this effect might be mediated by JH.
Collapse
Affiliation(s)
- Marcela Nouzova
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Veronika Michalkova
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Salvador Hernández-Martínez
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | | | - Cesar E Ramirez
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA; Biomolecular Science Institute, Florida International University, Miami, FL, USA
| | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL, USA; Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
16
|
Ribeiro JMC, Martin-Martin I, Moreira FR, Bernard KA, Calvo E. A deep insight into the male and female sialotranscriptome of adult Culex tarsalis mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 95:1-9. [PMID: 29526772 PMCID: PMC5927831 DOI: 10.1016/j.ibmb.2018.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 06/09/2023]
Abstract
Previously, a Sanger-based sialotranscriptome analysis of adult female Culex tarsalis was published based on ∼2000 ESTs. During the elapsed 7.5 years, pyrosequencing has been discontinued and Illumina sequences have increased considerable in size and decreased in price. We here report an Illumina-based sialotranscriptome that allowed finding the missing apyrase from the salivary transcriptome of C. tarsalis, to determine several full-length members of the 34-62 kDa family, when a single EST has been found previously, in addition to identifying many salivary families with lower expression levels that were not detected previously. The use of multiple libraries including salivary glands and carcasses from male and female organisms allowed for an unprecedented insight into the tissue specificity of transcripts, and in this particular case permitting identification of transcripts putatively associated with blood feeding, when exclusive of female salivary glands, or associated with sugar feeding, when transcripts are found upregulated in both male and female glands.
Collapse
Affiliation(s)
- José M C Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway Room 2E32D, Rockville, MD, 20852, United States.
| | - Ines Martin-Martin
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway Room 2E32D, Rockville, MD, 20852, United States
| | - Fernando R Moreira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI, 53706, United States
| | - Kristen A Bernard
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI, 53706, United States
| | - Eric Calvo
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway Room 2E32D, Rockville, MD, 20852, United States
| |
Collapse
|
17
|
Sawadro M, Bednarek A, Babczyńska A. The current state of knowledge on the neuroactive compounds that affect the development, mating and reproduction of spiders (Araneae) compared to insects. INVERTEBRATE NEUROSCIENCE 2017; 17:4. [DOI: 10.1007/s10158-017-0197-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022]
|
18
|
Martínez-Rincón RO, Rivera-Pérez C, Diambra L, Noriega FG. Modeling the flux of metabolites in the juvenile hormone biosynthesis pathway using generalized additive models and ordinary differential equations. PLoS One 2017; 12:e0171516. [PMID: 28158248 PMCID: PMC5291429 DOI: 10.1371/journal.pone.0171516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022] Open
Abstract
Juvenile hormone (JH) regulates development and reproductive maturation in insects. The corpora allata (CA) from female adult mosquitoes synthesize fluctuating levels of JH, which have been linked to the ovarian development and are influenced by nutritional signals. The rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the pathway, which is the outcome of a complex interplay of changes in precursor pools and enzyme levels. A comprehensive study of the changes in enzymatic activities and precursor pool sizes have been previously reported for the mosquito Aedes aegypti JH biosynthesis pathway. In the present studies, we used two different quantitative approaches to describe and predict how changes in the individual metabolic reactions in the pathway affect JH synthesis. First, we constructed generalized additive models (GAMs) that described the association between changes in specific metabolite concentrations with changes in enzymatic activities and substrate concentrations. Changes in substrate concentrations explained 50% or more of the model deviances in 7 of the 13 metabolic steps analyzed. Addition of information on enzymatic activities almost always improved the fitness of GAMs built solely based on substrate concentrations. GAMs were validated using experimental data that were not included when the model was built. In addition, a system of ordinary differential equations (ODE) was developed to describe the instantaneous changes in metabolites as a function of the levels of enzymatic catalytic activities. The results demonstrated the ability of the models to predict changes in the flux of metabolites in the JH pathway, and can be used in the future to design and validate experimental manipulations of JH synthesis.
Collapse
Affiliation(s)
- Raúl O. Martínez-Rincón
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), CONACYT, La Paz, Baja California Sur, México
| | - Crisalejandra Rivera-Pérez
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), CONACYT, La Paz, Baja California Sur, México
| | - Luis Diambra
- Centro Regional de Estudios Genómicos (CREG), UNLP, La Plata, Buenos Aires, Argentina
| | - Fernando G. Noriega
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
- Biomolecular Science Institute, Florida International University, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
19
|
Transcriptomic characterization and curation of candidate neuropeptides regulating reproduction in the eyestalk ganglia of the Australian crayfish, Cherax quadricarinatus. Sci Rep 2016; 6:38658. [PMID: 27924858 PMCID: PMC5141488 DOI: 10.1038/srep38658] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/11/2016] [Indexed: 11/17/2022] Open
Abstract
The Australian redclaw crayfish (Cherax quadricarinatus) has recently received attention as an emerging candidate for sustainable aquaculture production in Australia and worldwide. More importantly, C. quadricarinatus serves as a good model organism for the commercially important group of decapod crustaceans as it is distributed worldwide, easy to maintain in the laboratory and its reproductive cycle has been well documented. In order to better understand the key reproduction and development regulating mechanisms in decapod crustaceans, the molecular toolkit available for model organisms such as C. quadricarinatus must be expanded. However, there has been no study undertaken to establish the C. quadricarinatus neuropeptidome. Here we report a comprehensive study of the neuropeptide genes expressed in the eyestalk in the Australian crayfish C. quadricarinatus. We characterised 53 putative neuropeptide-encoding transcripts based on key features of neuropeptides as characterised in other species. Of those, 14 neuropeptides implicated in reproduction regulation were chosen for assessment of their tissue distribution using RT-PCR. Further insights are discussed in relation to current knowledge of neuropeptides in other species and potential follow up studies. Overall, the resulting data lays the foundation for future gene-based neuroendocrinology studies in C. quadricarinatus.
Collapse
|
20
|
Fast, ultra-trace detection of juvenile hormone III from mosquitoes using mass spectrometry. Talanta 2016; 159:371-378. [PMID: 27474320 DOI: 10.1016/j.talanta.2016.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 11/22/2022]
Abstract
In the present work, a new protocol for fast separation and quantification of JH III from biological samples using liquid chromatography coupled to electrospray tandem mass spectrometry is described. In particular, the proposed protocol improves existing methodologies by combining a limited number of sample preparation steps with fast LC-MS/MS detection, providing lower limits of detection and demonstrated matrix effect control, together with high inter and intraday reproducibility. A limit of detection of 8pg/mL (0.32pg on column) was achieved, representing a 15-fold gain in sensitivity with respect to previous LC-MS based protocols. The performance of the LC-MS/MS protocol is comparable to previously described JH III quantitation protocol based on fluorescence detection, with the added advantage that quantification is independent of the availability of fluorescent tags that are often unavailable or show quite diverse responses on a batch-to-batch basis. Additionally, a detailed description of the JH III fragmentation pathway is provided for the first time, based on isolation of the molecular ion and their intermediate fragments using in-source MS/MS, MS/MS(n) and FT-ICR MS/MS measurements. The JH III workflow was evaluated as a function of developmental changes, sugar feeding and farnesoic acid stimulation in mosquitoes and can be applied to the detection of other juvenile hormones.
Collapse
|
21
|
Identification of ten mevalonate enzyme-encoding genes and their expression in response to juvenile hormone levels in Leptinotarsa decemlineata (Say). Gene 2016; 584:136-47. [DOI: 10.1016/j.gene.2016.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 11/17/2022]
|
22
|
Caers J, Boonen K, Van Den Abbeele J, Van Rompay L, Schoofs L, Van Hiel MB. Peptidomics of Neuropeptidergic Tissues of the Tsetse Fly Glossina morsitans morsitans. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:2024-2038. [PMID: 26463237 DOI: 10.1007/s13361-015-1248-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Neuropeptides and peptide hormones are essential signaling molecules that regulate nearly all physiological processes. The recent release of the tsetse fly genome allowed the construction of a detailed in silico neuropeptide database (International Glossina Genome Consortium, Science 344, 380-386 (2014)), as well as an in-depth mass spectrometric analysis of the most important neuropeptidergic tissues of this medically and economically important insect species. Mass spectrometric confirmation of predicted peptides is a vital step in the functional characterization of neuropeptides, as in vivo peptides can be modified, cleaved, or even mispredicted. Using a nanoscale reversed phase liquid chromatography coupled to a Q Exactive Orbitrap mass spectrometer, we detected 51 putative bioactive neuropeptides encoded by 19 precursors: adipokinetic hormone (AKH) I and II, allatostatin A and B, capability/pyrokinin (capa/PK), corazonin, calcitonin-like diuretic hormone (CT/DH), FMRFamide, hugin, leucokinin, myosuppressin, natalisin, neuropeptide-like precursor (NPLP) 1, orcokinin, pigment dispersing factor (PDF), RYamide, SIFamide, short neuropeptide F (sNPF) and tachykinin. In addition, propeptides, truncated and spacer peptides derived from seven additional precursors were found, and include the precursors of allatostatin C, crustacean cardioactive peptide, corticotropin releasing factor-like diuretic hormone (CRF/DH), ecdysis triggering hormone (ETH), ion transport peptide (ITP), neuropeptide F, and proctolin, respectively. The majority of the identified neuropeptides are present in the central nervous system, with only a limited number of peptides in the corpora cardiaca-corpora allata and midgut. Owing to the large number of identified peptides, this study can be used as a reference for comparative studies in other insects. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jelle Caers
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Kurt Boonen
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
- Laboratory of Zoophysiology, Department of Physiology, University of Ghent, 9000, Ghent, Belgium
| | - Liesbeth Van Rompay
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| | - Matthias B Van Hiel
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
23
|
Verlinden H, Gijbels M, Lismont E, Lenaerts C, Vanden Broeck J, Marchal E. The pleiotropic allatoregulatory neuropeptides and their receptors: A mini-review. JOURNAL OF INSECT PHYSIOLOGY 2015; 80:2-14. [PMID: 25982521 DOI: 10.1016/j.jinsphys.2015.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Juvenile hormones (JH) are highly pleiotropic insect hormones essential for post-embryonic development. The circulating JH titer in the hemolymph of insects is influenced by enzymatic degradation, binding to JH carrier proteins, uptake and storage in target organs, but evidently also by rates of production at its site of synthesis, the corpora allata (CA). The multiple processes in which JH is involved alongside the critical significance of JH in insect development emphasize the importance for elucidating the control of JH production. Production of JH in CA cells is regulated by different factors: by neurotransmitters, such as dopamine and glutamate, but also by allatoregulatory neuropeptides originating from the brain and axonally transported to the CA where they bind to their G protein-coupled receptors (GPCRs). Different classes of allatoregulatory peptides exist which have other functions aside from acting as influencers of JH production. These pleiotropic neuropeptides regulate different processes in different insect orders. In this mini-review, we will give an overview of allatotropins and allatostatins, and their recently characterized GPCRs with a view to better understand their modes of action and different action sites.
Collapse
Affiliation(s)
- Heleen Verlinden
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Marijke Gijbels
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Els Lismont
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Cynthia Lenaerts
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Elisabeth Marchal
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
24
|
Areiza M, Nouzova M, Rivera-Perez C, Noriega FG. 20-Hydroxyecdysone stimulation of juvenile hormone biosynthesis by the mosquito corpora allata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:100-5. [PMID: 26255691 PMCID: PMC4558257 DOI: 10.1016/j.ibmb.2015.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/18/2015] [Accepted: 08/02/2015] [Indexed: 05/21/2023]
Abstract
Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. JH titer decreases in the last instar larvae allowing pupation and metamorphosis to progress. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again "competent" to synthesize JH, which plays an essential role orchestrating reproductive maturation. 20-hydroxyecdysone (20E) prepares the pupae for ecdysis, and would be an ideal candidate to direct a developmental program in the CA of the pharate adult mosquito. In this study, we provide evidence that 20E acts as an age-linked hormonal signal, directing CA activation in the mosquito pupae. Stimulation of the inactive brain-corpora allata-corpora cardiaca complex (Br-CA-CC) of the early pupa (24 h before adult eclosion or -24 h) in vitro with 20E resulted in a remarkable increase in JH biosynthesis, as well as increase in the activity of juvenile hormone acid methyltransferase (JHAMT). Addition of methyl farnesoate but not farnesoic acid also stimulated JH synthesis by the Br-CA-CC of the -24 h pupae, proving that epoxidase activity is present, but not JHAMT activity. Separation of the CA-CC complex from the brain (denervation) in the -24 h pupae also activated JH synthesis. Our results suggest that an increase in 20E titer might override an inhibitory effect of the brain on JH synthesis, phenocopying denervation. All together these findings provide compelling evidence that 20E acts as a developmental signal that ensures proper reactivation of JH synthesis in the mosquito pupae.
Collapse
Affiliation(s)
- Maria Areiza
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Marcela Nouzova
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|