1
|
Yan J, Zhang M, Li J, Rondon SI, Gao Y. Synthesis and bioactivity studies of the potato tuber moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae) sex pheromone analogs. PEST MANAGEMENT SCIENCE 2024. [PMID: 39390786 DOI: 10.1002/ps.8482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Potato (Solanum tuberosum L.) is a staple food crop globally, but its production is consistently threatened by diseases and arthropod pests like the potato tuber moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). Phthorimaea operculella is often controlled by chemical applications. Sex pheromones have been used to detect, monitor, or control agricultural pests. Phthorimaea operculella sex pheromones mainly contain two chemical structures, 4E,7Z-trisadene-1-ol acetate and 4E,7Z,10Z-trisadene-1-ol acetate. However, the pheromone analogs are expected to act as mimics, synergists, antagonists, and inhibitors for pheromones and can be synthesized at a large scale. RESULT In this study, a total of 11 sex pheromone analogs of P. operculella were designed and synthesized. Results showed that the antennae exhibited a concentration-dependent response to sex pheromones and their analogs. Different analogs and dosages had significant effects on the electrophysiological response of the antennae. In the field trials, when used alone, A6, B3 and B5 exhibited significant trapping effects in tobacco and potato fields. When used alternately with sex pheromone components, the analog B3 had significantly higher trapping effects in both tobacco and potato fields compared to the control, while combinations containing fluorinated analogs showed lower trapping effects. CONCLUSION In summary, the use of sex pheromone analogs holds great promise for integration into pest management programs. Further investigation to fine-tune dosage and duration for optimal use is still needed. © 2024 Society of Chemical Industry. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Junjie Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Mengdi Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jing Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Silvia I Rondon
- Oregon Integrated Pest Management Center, Oregon State University, Corvallis, OR, USA
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
2
|
Hu J, Zhang Y, Tan L, Wang X, Liu W, Wang G, Zheng X. Functional characterization of sex pheromone receptors PflaOR29 and PflaOR44 involved in the chemoreception of a diurnal moth, Phauda flammans (Walker) (Lepidoptera: Phaudidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105998. [PMID: 39084772 DOI: 10.1016/j.pestbp.2024.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
Recognition of sex pheromones released by heterosexual moths via sex pheromone receptors is key for establishing mating connections in moths. The day-flying moth Phauda flammans is an oligophagous pest in southern cities of China and Southeast Asian countries. Our previous study reported that male P. flammans can be attracted to two sex pheromone compounds [Z-9-hexadecenal and (Z, Z, Z)-9,12,15-octadecadienal] released by females in the field; however, the mechanism of olfactory recognition is not clear. In this study, two sex pheromone receptor genes (PflaOR29 and PflaOR44) were cloned. Among the different tissues, both PflaOR29 and PflaOR44 were highly expressed in the antennae of mated male adults. At different developmental stages, the expression levels of PflaOR29 and PflaOR44 were significantly greater in mated male adults than other stages. The fluorescence signals of PflaOR29 and PflaOR44 were mostly distributed on the dorsal side of the antennae, with a large number of trichoid sensilla. The results of the gene function of PflaOR29 and PflaOR44 based on a Drosophila empty neuron heterologous expression system indicated that PflaOR29 strongly responded to (Z, Z, Z)-9,12,15-octadecadienal but not to Z-9-hexadecenal, whereas PflaOR44 did not respond to the two sex pheromones. Our findings clarify the sex pheromone receptor gene corresponding to (Z, Z, Z)-9,12,15-octadecatrienal. These results provide essential information for analyzing the mechanism of sexual communication in diurnal moths and for identifying target genes for the development of efficient attractants.
Collapse
Affiliation(s)
- Jin Hu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yan Zhang
- Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Shenzhen 518120, China; Northeast Forestry University, Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Harbin 150040, China
| | - Liusu Tan
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaoyun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wei Liu
- Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Shenzhen 518120, China
| | - Guirong Wang
- Institute of Agricultural Genome, Chinese Academy of Agricultural Sciences (Shenzhen), Shenzhen Branch of Lingnan Modern Agricultural Science and Technology Laboratory, Key Laboratory of Agricultural Gene Data Analysis, Ministry of Agriculture and Rural Affairs, Shenzhen 518120, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Wang L, Yang C, Mei X, Guo B, Yang X, Zhang T, Ning J. Identification of sex pheromone in Macdunnoughia crassisigna Warren (Lepidoptera: Noctuidae) and field optimization of the sex attractant. PEST MANAGEMENT SCIENCE 2024; 80:577-585. [PMID: 37735837 DOI: 10.1002/ps.7783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Sex pheromones have proven to be a viable tool for monitoring and controlling pests and is an important part of integrated pest management (IPM). The noctuid moth Macdunnoughia crassisigna Warren poses a significant threat as a defoliator pest, impacting soybean and cruciferous vegetable production and quality in East Asia. However, a lack of comprehensive knowledge about its sexual chemical signaling hampers the development of semiochemical-based IPM approaches for M. crassisigna. RESULTS We first determined the mating rhythms of M. crassisigna. We then collected pheromones from the sex glands of virgin females at the mating peak and analyzed their components using gas chromatography-electroantennogram detection analysis. The results showed that three components elicited significant electrophysiological responses in male antennae. Gas chromatography-mass spectrometry analysis characterized these components as (Z)-7-dodecene acetate (Z7-12:OAc), (Z)-9-tetradecene acetate (Z9-14:OAc), and (Z)-11-hexadecen-1-ol (Z11-16:OH). Further field experiments indicated that the mixture of Z7-12:OAc and Z9-14:OAc at a ratio of 3:1 displayed significant attractivity to males, confirming its role as a putative sex pheromone of M. crassisigna. Long-term monitoring tests showed that traps baited with these pheromone lures effectively mirrored the population dynamics of M. crassisigna. CONCLUSION This study successfully identified and validated the sex pheromone released by female M. crassisigna and formulated potent sex lures for field-based pest monitoring. These findings enriched our understanding of chemical communication in Noctuidae and laid a foundation for developing practical monitoring and control methods against M. crassisigna. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liuyang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Chaoxia Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangdong Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingbo Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Tao Zhang
- Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Institute of Plant Protection, Baoding, China
| | - Jun Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
de Fouchier A, Fruitet E, Lievers R, Kuperus P, Emerson J, Gould F, Heckel DG, Groot AT. Lipases and carboxylesterases affect moth sex pheromone compounds involved in interspecific mate recognition. Nat Commun 2023; 14:7505. [PMID: 37980401 PMCID: PMC10657362 DOI: 10.1038/s41467-023-43100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/31/2023] [Indexed: 11/20/2023] Open
Abstract
Moth sex pheromones are a classical model for studying sexual selection. Females typically produce a species-specific pheromone blend that attracts males. Revealing the enzymes involved in the interspecific variation in blend composition is key for understanding the evolution of these sexual communication systems. The nature of the enzymes involved in the variation of acetate esters, which are prominent compounds in moth pheromone blends, remains unclear. We identify enzymes involved in acetate degradation using two closely related moth species: Heliothis (Chloridea) subflexa and H. (C.) virescens, which have different quantities of acetate esters in their sex pheromone. Through comparative transcriptomic analyses and CRISPR/Cas9 knockouts, we show that two lipases and two esterases from H. virescens reduce the levels of pheromone acetate esters when expressed in H. subflexa females. Together, our results show that lipases and carboxylesterases are involved in tuning Lepidoptera pheromones composition.
Collapse
Affiliation(s)
- Arthur de Fouchier
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands.
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena, Germany.
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France.
| | - Elise Fruitet
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena, Germany
| | - Rik Lievers
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Peter Kuperus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Jennifer Emerson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - David G Heckel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena, Germany
| | - Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena, Germany
| |
Collapse
|
5
|
Scott AM, Johnson NS, Siefkes MJ, Li W. Synergistic behavioral antagonists of a sex pheromone reduce reproduction of invasive sea lamprey. iScience 2023; 26:107744. [PMID: 37810212 PMCID: PMC10550721 DOI: 10.1016/j.isci.2023.107744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Sex pheromones impart maximal attraction when their components are present at optimal ratios that confer balanced olfactory inputs in potential mates. Altering ratios or adding pheromone analogs to optimal mixtures may disrupt balanced olfactory antagonism and result in reduced attraction, however, tests in natural populations are lacking. We tested this hypothesis in sea lamprey (Petromyzon marinus), a fish whose male sex pheromone attracts females when two critical components, 3-keto petromyzonol sulfate (3kPZS) and petromyzonol sulfate (PZS), are present at certain ratios. Here, we report a pheromone analog, petromyzonol tetrasulfate (3sPZS), reduced female attraction to 3kPZS but not to PZS. 3sPZS mixed with additional PZS synergistically disrupted female attraction to the male pheromone and reduced spawning by 97% in a high-density population. Our results provide evidence of balanced olfactory antagonism in a vertebrate and establish a tactic to disrupt spawning of sea lamprey, a destructive invader of the Laurentian Great Lakes.
Collapse
Affiliation(s)
- Anne M. Scott
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas S. Johnson
- U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, MI 49759, USA
| | | | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Gao Z, Xie M, Gui S, He M, Lu Y, Wang L, Chen J, Smagghe G, Gershenzon J, Cheng D. Differences in rectal amino acid levels determine bacteria-originated sex pheromone specificity in two closely related flies. THE ISME JOURNAL 2023; 17:1741-1750. [PMID: 37550382 PMCID: PMC10504272 DOI: 10.1038/s41396-023-01488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Sex pheromones are widely used by insects as a reproductive isolating mechanism to attract conspecifics and repel heterospecifics. Although researchers have obtained extensive knowledge about sex pheromones, little is known about the differentiation mechanism of sex pheromones in closely related species. Using Bactrocera dorsalis and Bactrocera cucurbitae as the study model, we investigated how the male-borne sex pheromones are different. The results demonstrated that both 2,3,5-trimethylpyrazine (TMP) and 2,3,5,6-tetramethylpyrazine (TTMP) were sex pheromones produced by rectal Bacillus in the two flies. However, the TMP/TTMP ratios were reversed, indicating sex pheromone specificity in the two flies. Bacterial fermentation results showed that different threonine and glycine levels were responsible for the preference of rectal Bacillus to produce TMP or TTMP. Accordingly, threonine (glycine) levels and the expression of the threonine and glycine coding genes were significantly different between B. dorsalis and B. cucurbitae. In vivo assays confirmed that increased rectal glycine and threonine levels by amino acid feeding could significantly decrease the TMP/TTMP ratios and result in significantly decreased mating abilities in the studied flies. Meanwhile, decreased rectal glycine and threonine levels due to RNAi of the glycine and threonine coding genes was found to significantly increase the TMP/TTMP ratios and result in significantly decreased mating abilities. The study contributes to the new insight that insects and their symbionts can jointly regulate sex pheromone specificity in insects, and in turn, this helps us to better understand how the evolution of chemical communication affects speciation.
Collapse
Affiliation(s)
- Zijie Gao
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Mingxue Xie
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Shiyu Gui
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Muyang He
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Luoluo Wang
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China
| | - Jingyuan Chen
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Molecular and Cellular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, 1050, Belgium
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Daifeng Cheng
- Department of Entomology, South China Agricultural University, Guangzhou, 510640, China.
| |
Collapse
|
7
|
Zhang BY, Li FQ, Qu C, Dewer Y, Fu YJ, Luo C. Identification and Expression Profiles of Candidate Sex Pheromone Biosynthesis Genes by the Transcriptome Analysis of Sex Pheromone Glands in Spodoptera litura and Spodoptera exigua. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7009-7019. [PMID: 37126455 DOI: 10.1021/acs.jafc.3c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Like many insects, females of the Noctuid moth Spodoptera litura and Spodoptera exigua release chemical signals to attract males from a long distance for successful mating. In this study, 98 and 86 genes related to the sex pheromone biosynthesis of S. litura and S. exigua were identified. The tissue expression profiles of highly expressed genes in sex pheromone glands (PGs) were further examined by real-time quantitative polymerase chain reaction. The results displayed that only SlitDes5 and SexiDes5 gene were specifically and significantly overexpressed in the PGs of S. litura and S. exigua. The functional study of SlitDes5 gene showed that RNA interference reduced its expression level by 49.42%. In addition, the content of the sex pheromones of S. litura, Z9E11-14:OAc, Z9E12-14:OAc, E11-14:OAc, and Z9-14:OAc, decreased by 41.98% on average. Our findings provide a basis for better understanding the key genes that affect the biosynthesis of sex pheromones and for determining potential gene targets for pest control strategies.
Collapse
Affiliation(s)
- Bi-Yun Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Feng-Qi Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki 12618, Egypt
| | - Yue-Jun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
8
|
Zhang S, Liu F, Yang B, Liu Y, Wang GR. Functional characterization of sex pheromone receptors in Spodoptera frugiperda, S. exigua, and S. litura moths. INSECT SCIENCE 2023; 30:305-320. [PMID: 35932282 DOI: 10.1111/1744-7917.13098] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Moths possess an extremely sensitive and diverse sex pheromone processing system, in which pheromone receptors (PRs) are essential to ensure communication between mating partners. Functional properties of some PRs are conserved among species, which is important for reproduction. However, functional differentiation has occurred in some homologous PR genes, which may drive species divergence. Here, using genome analysis, 17 PR genes were identified from Spodoptera frugiperda, S. exigua, and S. litura, which belong to 6 homologous groups (odorant receptor [OR]6, 11, 13, 16, 56, and 62); of which 6 PR genes (OR6, OR11, OR13, OR16, OR56, and OR62) were identified in S. frugiperda and S. exigua, and 5 PR genes were identified in S. litura, excluding OR62. Using heterologous expression in Xenopus oocytes, we characterized the functions of PR orthologs including OR6, OR56, and OR62, which have not been clarified in previous studies. OR6 orthologs were specifically tuned to (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:OAc), and OR62 orthologs were robustly tuned to Z7-12:OAc in S. frugiperda and S. exigua. The optimal ligand for OR56 was Z7-12:OAc in S. frugiperda, but responses were minimal in S. exigua and S. litura. In addition, SfruOR6 was male antennae-specific, whereas SfruOR56 and SfruOR62 were male antennae-biased. Our study further clarified the functional properties of PRs in 3 Spodoptera moth species, providing a comprehensive understanding of the mechanisms of intraspecific communication and interspecific isolation in Spodoptera.
Collapse
Affiliation(s)
- Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
9
|
Qu C, Kang Z, Zhang B, Fang Y, Wang R, Li F, Zhao H, Luo C. Genome-Wide Identification and Expression Profiling of Candidate Sex Pheromone Biosynthesis Genes in the Fall Armyworm ( Spodoptera frugiperda). INSECTS 2022; 13:insects13121078. [PMID: 36554988 PMCID: PMC9783692 DOI: 10.3390/insects13121078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 05/17/2023]
Abstract
Spodoptera frugiperda is an agricultural pest causing substantial damage and losses to commercial crops. Sex pheromones are critical for successful mating in Lepidoptera and have been used for monitoring and control of many pest species. The sex pheromone of S. frugiperda is known, but the genes involved in its biosynthesis have not been identified. We systematically studied 99 candidate sex pheromone genes in the genome of S. frugiperda including 1 acetyl-CoA carboxylase (ACC), 11 fatty acid synthases (FASs), 17 desaturases (DESs), 4 fatty acid transport proteins (FATPs), 29 fatty acyl-CoA reductases (FARs), 17 acetyl-CoA acetyltransferases (ACTs), 5 acyl-CoA dehydrogenase (ACDs), 3 enoyl-CoA hydratases (ECHs), 3 hydroxyacyl-CoA dehydrogenases (HCDs), 6 ethyl-CoA thiolases (KCTs), and 3 acyl-CoA-binding proteins (ACBPs). Based on the comparative transcriptome results, we found 22 candidate sex pheromone biosynthesis genes predominately expressed in pheromone glands (PGs) than abdomens without PGs including SfruFAS4, SfruFATP3, SfruACD5, SfruKCT3, SfruDES2, SfruDES5, SfruDES11, SfruDES13, SfruFAR1, SfruFAR2, SfruFAR3, SfruFAR6, SfruFAR7, SfruFAR8, SfruFAR9, SfruFAR10, SfruFAR11, SfruFAR14, SfruFAR16, SfruFAR29, SfruACT6, and SfruACT10. A combination of phylogenetic and tissue-specific transcriptomic analyses indicated that SfruDES5, SfruDES11, SfruFAR2, SfruFAR3, and SfruFAR9 may be key genes involved in the sex pheromone synthesis of S. frugiperda. Our results could provide a theoretical basis for understanding the molecular mechanisms of sex pheromone biosynthesis in S. frugiperda, and also provide new targets for developing novel pest control methods based on disrupting sexual communication.
Collapse
Affiliation(s)
- Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhiwei Kang
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Biyun Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fengqi Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haipeng Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
- Correspondence: (H.Z.); (C.L.)
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: (H.Z.); (C.L.)
| |
Collapse
|
10
|
Wang QH, Gao X, Yu HS, Zhang Z, Yu QY. Exploring the Terminal Pathway of Sex Pheromone Biosynthesis and Metabolism in the Silkworm. INSECTS 2021; 12:insects12121062. [PMID: 34940150 PMCID: PMC8706005 DOI: 10.3390/insects12121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Insect sex pheromone biosynthesis has received widespread attention, while the terminal pathway related to aldehyde synthesis and metabolism is still poorly understood at a molecular level. Previous studies found that the silkworm, Bombyx mori (Lepidoptera, Bombycidae), has two pheromone compounds, bombykol and bombykal, with a ratio of 11:1, while its closest wild relative, B. mandarina, only uses bombykol as a pheromone. In this study, sex pheromone gland transcriptomes were compared between the domestic and wild silkworms. All the candidate gene families were identified. Then we used the differentially expressed information, tissue and developmental expression profiles, and phylogenetic analysis to identify the putative causal genes involved in the terminal pathway. Our findings provide insights into the aldehyde synthesis and metabolism pathways and evolutionary conservation in moths. Abstract Sex pheromones are vital to sexual communication and reproduction in insects. Although some key enzymes in pheromone production have been well studied, information on genes involved in the terminal pathway is limited. The domestic silkworm employs a pheromone blend containing (E,Z)-10,12-hexadecadienol (bombykol) and analogous (E,Z)-10,12-hexadecadienal (bombykal); whereas, its wild ancestor B. mandarina uses only bombykol. The two closely related moths might be a good model for exploring the genes involved in aldehyde pheromone synthesis and metabolism. By deep sequencing and analyzing the sex pheromone gland (PG) transcriptomes; we identified 116 candidate genes that may be related to pheromone biosynthesis, metabolism, and chemoreception. Spatiotemporal expression profiles and differentially expressed analysis revealed that four alcohol oxidases (BmorAO1; 2; 3; and 4); one aldehyde reductase (BmorAR1); and one aldehyde oxidase (BmorAOX5) might be involved in the terminal pathway. Phylogenetic analysis showed that, except for BmorAO3 and MsexAO3, AOs did not show a conversed orthologous relationship among moths; whereas, ARs and AOXs were phylogenetically conserved. This study provides crucial candidates for further functional elucidation, and which may be utilized as potential targets to disrupt sexual communication in other moth pests.
Collapse
Affiliation(s)
- Qing-Hai Wang
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
| | - Xing Gao
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
| | - Hong-Song Yu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi 563000, China;
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
- Correspondence:
| |
Collapse
|
11
|
Xing Y, Thanasirungkul W, Aslam A, Niu F, Guo HR, Chi DF. Genes involved in the Type I pheromone biosynthesis pathway and chemoreception from the sex pheromone gland transcriptome of Dioryctria abietella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100892. [PMID: 34428712 DOI: 10.1016/j.cbd.2021.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022]
Abstract
Dioryctria abietella is a coniferous seed orchard pest that can damage a series of host plants and cause huge losses to the forest economy. Sex pheromones play an important role in lepidopteran sex communication for reproduction and can be used as biological control agents to monitor and trap pests. However, the genes involved in the biosynthesis, transportation, and degradation of D. abietella sex pheromones have not been studied extensively. Transcriptome analysis of female D. abietella sex pheromone glands (PGs) revealed that 210 candidate genes might be involved in sex pheromone biosynthesis (139 genes) and chemoreception systems (71 genes). The gene expression patterns exhibited four desaturase genes (DabiDES4-7) and one fatty acid reductase gene (DabiFAR6), which were more highly expressed in sex pheromone glands than in other tissues, suggesting that these enzymes play an important role in D. abietella sex pheromone synthesis. In addition, most DabiOBPs showed high expression in antennae, but only DabiOBP4 exhibited specific expression in sex pheromone glands, suggesting that they may play many physiological roles in D. abietella. We put forth a reasonable hypothesis about type I pheromone biosynthesis pathways based on these genes identified in the D. abietella sex pheromone gland transcriptome. Our findings lay a foundation for population monitoring, mating disruption, mass trapping, and the development of ecologically acceptable management strategies.
Collapse
Affiliation(s)
- Ya Xing
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Wariya Thanasirungkul
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Asad Aslam
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Fang Niu
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Hong-Ru Guo
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - De-Fu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
12
|
Byers KJRP, Darragh K, Fernanda Garza S, Abondano Almeida D, Warren IA, Rastas PMA, Merrill RM, Schulz S, McMillan WO, Jiggins CD. Clustering of loci controlling species differences in male chemical bouquets of sympatric Heliconius butterflies. Ecol Evol 2021; 11:89-107. [PMID: 33437416 PMCID: PMC7790645 DOI: 10.1002/ece3.6947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
The degree to which loci promoting reproductive isolation cluster in the genome-that is, the genetic architecture of reproductive isolation-can influence the tempo and mode of speciation. Tight linkage between these loci can facilitate speciation in the face of gene flow. Pheromones play a role in reproductive isolation in many Lepidoptera species, and the role of endogenously produced compounds as secondary metabolites decreases the likelihood of pleiotropy associated with many barrier loci. Heliconius butterflies use male sex pheromones to both court females (aphrodisiac wing pheromones) and ward off male courtship (male-transferred antiaphrodisiac genital pheromones), and it is likely that these compounds play a role in reproductive isolation between Heliconius species. Using a set of backcross hybrids between H. melpomene and H. cydno, we investigated the genetic architecture of putative male pheromone compound production. We found a set of 40 significant quantitative trait loci (QTL) representing 33 potential pheromone compounds. QTL clustered significantly on two chromosomes, chromosome 8 for genital compounds and chromosome 20 for wing compounds, and chromosome 20 was enriched for potential pheromone biosynthesis genes. There was minimal overlap between pheromone QTL and known QTL for mate choice and color pattern. Nonetheless, we did detect linkage between a QTL for wing androconial area and optix, a color pattern locus known to play a role in reproductive isolation in these species. This tight clustering of putative pheromone loci might contribute to coincident reproductive isolating barriers, facilitating speciation despite ongoing gene flow.
Collapse
Affiliation(s)
- Kelsey J. R. P. Byers
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
| | - Kathy Darragh
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Evolution and EcologyUniversity of California DavisDavisCAUSA
| | - Sylvia Fernanda Garza
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Collective BehaviourMax Planck Institute of Animal BehaviourKonstanzGermany
| | - Diana Abondano Almeida
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Institute for Ecology, Evolution and DiversityGoethe UniversitätFrankfurtGermany
| | - Ian A. Warren
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Richard M. Merrill
- Smithsonian Tropical Research InstitutePanamaPanama
- Division of Evolutionary BiologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Stefan Schulz
- Institute of Organic ChemistryDepartment of Life SciencesTechnische Universität BraunschweigBraunschweigGermany
| | | | - Chris D. Jiggins
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
| |
Collapse
|
13
|
Li RT, Huang LQ, Dong JF, Wang CZ. A moth odorant receptor highly expressed in the ovipositor is involved in detecting host-plant volatiles. eLife 2020; 9:53706. [PMID: 32436842 PMCID: PMC7308088 DOI: 10.7554/elife.53706] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/20/2020] [Indexed: 11/25/2022] Open
Abstract
Antennae are often considered to be the nostrils of insects. Here, we sequenced the transcriptome of the pheromone gland-ovipositor complex of Helicoverpa assulta and discovered that an odorant receptor (OR) gene, HassOR31, had much higher expression in the ovipositor than in antennae or other tissues. To determine whether the ovipositor was involved in odorant detection, we co-expressed HassOR31 and its co-receptor, HassORco, in a Xenopus oocyte model system, and demonstrated that the OR was responsive to 12 plant odorants, especially Z-3-hexenyl butyrate. These odorants elicited electrophysiological responses of some sensilla in the ovipositor, and HassOR31 and HassORco were co-expressed within ovipositor sensilla. Two oviposition preference experiments showed that female moths lacking antennae still preferentially selected oviposition sites containing plant volatiles. We suggest that the expression of HassOR31 in the ovipositor of H. assulta helps females to determine precise egg-laying sites in host plants. When most insects reproduce they lay eggs that hatch into juveniles known as larvae. To provide good sources of food for the larvae, the adult insects have to carefully select where to lay the eggs. Host plants produce specific sets of chemicals known as odorants that the adult insects are able to smell using proteins called odorant receptors. It is generally thought that odorant receptors in the antennae on the head are responsible for guiding adult insects to good egg-laying sites. However, recent studies have reported that odorant receptors are also present in the egg-laying organs of several different species of moth. It remains unclear what role these odorant receptors may play in egg-laying. The oriental tobacco budworm (Helicoverpa assulta) is considered a serious pest in agriculture. The adult moths lay their eggs on a narrow range of plants in the nightshade family including tobacco and hot pepper. Li et al. have now investigated the odorant receptors of H. assulta and found that one gene for an odorant receptor called HassOR31 was expressed much more in the egg-laying organs of the moths than in the antennae. Further experiments showed that this receptor was tuned to respond to 12 odorants that also stimulated responses in the egg-laying organ of H. assulta. Together these findings suggest that this odorant receptor in the egg-laying organ helps the moths find suitable host plants to lay their eggs on. The work of Li et al. may help us understand how H. assulta evolved to lay its eggs on specific members of the nightshade family and lead to new methods of controlling this pest. An insect’s sense of smell guides many other behaviors including finding food, mates and avoiding enemies. Therefore, these findings may inspire researchers to investigate whether odorant receptors in the antennae or other organs guide these behaviors.
Collapse
Affiliation(s)
- Rui-Ting Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun-Feng Dong
- Forestry College, Henan University of Science and Technology, Luoyang, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Li YQ, Bai LS, Zhao CX, Xu JJ, Sun ZJ, Dong YL, Li DX, Liu XL, Ma ZQ. Functional Characterization of Two Carboxylesterase Genes Involved in Pyrethroid Detoxification in Helicoverpa armigera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3390-3402. [PMID: 32096985 DOI: 10.1021/acs.jafc.9b06690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Insect carboxylesterases are major enzymes involved in metabolism of xenobiotics including insecticides. Two carboxylesterase genes, CarE001A and CarE001H, were cloned from the destructive agricultural pest Helicoverpa armigera. Quantitative real-time polymerase chain reaction showed that CarE001A and CarE001H were predominantly expressed in fat body and midgut, respectively; developmental expression analyses found that the expression levels of both CarEs were significantly higher in fifth-instar larvae than in other life stages. Recombinant CarE001A and CarE001H expressed in the Escherichia coli exhibited high enzymatic activity toward α-naphthyl acetate. Inhibition assays showed that organophosphates had strong inhibition on CarEs activity compared to pyrethroids. Metabolism assays indicated that CarE001A and CarE001H were able to metabolize β-cypermethrin and λ-cyhalothrin. Homology modeling and molecular docking analyses demonstrated that β-cypermethrin could fit nicely into the active pocket of both carboxylesterases. These results suggested that CarE001A and CarE001H could play important roles in the detoxification of pyrehtroids in H. armigera.
Collapse
Affiliation(s)
- Yong-Qiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li-Sha Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cai-Xia Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing-Jing Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhong-Juan Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan-Ling Dong
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - De-Xian Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xi-Li Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhi-Qing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Engineering and Research Center of Biological Pesticide of Shaanxi Province, Yangling, Shaanxi 712100, China
| |
Collapse
|
15
|
Yan Q, Liu XL, Wang YL, Tang XQ, Shen ZJ, Dong SL, Deng JY. Two Sympatric Spodoptera Species Could Mutually Recognize Sex Pheromone Components for Behavioral Isolation. Front Physiol 2019; 10:1256. [PMID: 31611820 PMCID: PMC6777146 DOI: 10.3389/fphys.2019.01256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022] Open
Abstract
Spodoptera exigua and S. litura are two sympatric species in China and many other countries. Both moths employ a multiple component sex pheromone blend, including a common component Z9,E12-14:OAc, and two specific components Z9-14:OH and Z11-16:OAc for S. exigua, and one specific component Z9,E11-14:OAc for S. litura. For the two species, it has been well documented that males are able to recognize and behaviorally attracted by their species-specific sex pheromone, which functions as a means of reproductive isolation, but whether males could mutually recognize pheromone components of its sympatric species is unknown. In the present study, the electroantennogram (EAG) and field evaluation were conducted to address this topic. The EAG recordings revealed that males of each species could significantly respond to specific components of its sympatric species, although the response values were lower than that to its own major component. In field tests, the specific components Z9-14:OH and Z11-16:OAc of S. exigua strongly inhibited the male catches of S. litura to its conspecific sex pheromone, while specific component Z9,E11-14:OAc of S. litura significantly reduced the male catches of S. exigua to its sex pheromone. Furthermore, the combined lure of the two species completely inhibited male catches of S. litura, and significantly decreased the male catches of S. exigua, compared to the species-specific lure alone. The results demonstrated that males of the two sibling species could perceive the specific components of its counterpart, suggesting that mutual recognition of pheromone components may function to strengthen the behavioral isolation between the two species. Our study has added new knowledge to the reproductive isolation via sex pheromone communication system in sympatric moth species, and provided a base for designing of mating disruption tactics targeting multispecies by using insect sex pheromones.
Collapse
Affiliation(s)
- Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Long Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yu-Lei Wang
- Department of Plant Protection, Zhejiang A& F University, Hangzhou, China
| | - Xiao-Qin Tang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Entomology, Nanjing Agricultural University, Nanjing, China.,College of Plant Sciences, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | - Zhi-Jie Shen
- Department of Plant Protection, Zhejiang A& F University, Hangzhou, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jian-Yu Deng
- Department of Plant Protection, Zhejiang A& F University, Hangzhou, China
| |
Collapse
|
16
|
Dou X, Liu S, Ahn SJ, Choi MY, Jurenka R. Transcriptional comparison between pheromone gland-ovipositor and tarsi in the corn earworm moth Helicoverpa zea. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100604. [PMID: 31280038 DOI: 10.1016/j.cbd.2019.100604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 01/05/2023]
Abstract
The corn earworm, Helicoverpa zea, utilizes (Z)-11-hexadecenal as the major sex pheromone component. The saturated fatty acid derivative hexadecanal is also found in the pheromone gland and recently a large amount (0.5-1.5 μg) was found in male tarsi with lower amounts (0.05-0.5 μg) in female tarsi. In this study, we compared the transcriptome between female pheromone glands (including the ovipositor) and female and male tarsi to identify differences between these tissues, particularly the genes involved in sex pheromone biosynthesis and chemosensation. We found transcripts encoding 9 fatty acyl-CoA desaturases, 20 fatty acyl-CoA reductases, 8 alcohol oxidases, some G protein-coupled receptors and many transcripts involved in signal transduction and pheromone transportation. Also we found gustatory and olfactory receptors associated with the tarsi and ovipositor. Differential expression analysis showed that there were many genes differentially expressed between tissues, including the candidate desaturases, fatty acyl-CoA reductases, and alcohol oxidases. We discuss how some of these genes produce proteins that could be involved in the biosynthesis of hexadecanal in tarsi and (Z)-11-hexadecenal in the pheromone gland and the possible role of proteins in chemosensation of the tarsi and ovipositor.
Collapse
Affiliation(s)
- Xiaoyi Dou
- Department of Entomology, Iowa State University, Ames, IA 50010, USA
| | - Sijun Liu
- Department of Entomology, Iowa State University, Ames, IA 50010, USA
| | - Seung-Joon Ahn
- USDA ARS Horticultural Crops Research Unit, 3420 NW Orchard Ave., Corvallis, OR, USA; Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA
| | - Man-Yeon Choi
- USDA ARS Horticultural Crops Research Unit, 3420 NW Orchard Ave., Corvallis, OR, USA
| | - Russell Jurenka
- Department of Entomology, Iowa State University, Ames, IA 50010, USA.
| |
Collapse
|
17
|
Zhang YN, Zhang XQ, Zhu GH, Zheng MY, Yan Q, Zhu XY, Xu JW, Zhang YY, He P, Sun L, Palli SR, Zhang LW, Dong SL. A Δ9 desaturase (SlitDes11) is associated with the biosynthesis of ester sex pheromone components in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:152-159. [PMID: 31027575 DOI: 10.1016/j.pestbp.2019.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 05/28/2023]
Abstract
Sex pheromone biosynthesis in moths relies on the activity of multiple enzymes, including Δ9 desaturase, which plays an important role in catalyzing desaturation at the Δ9 position of the carbon chain. However, the physiological function of moth Δ9 desaturase has not been elucidated in vivo. In this study, we used the CRISPR/Cas9 system to knockout the Δ9 desaturase gene (SlitDes11) of Spodoptera litura to analyze its role in sex pheromone biosynthesis. First, through the direct injection of SlitDes11-single guide RNA (sgRNA)/Cas9 messenger RNA into newly laid eggs, gene editing was induced in around 30% of eggs 24 h after injection and was induced in 20.8% of the resulting adult moths. Second, using a sibling-crossing strategy, insects with mutant SlitDes11 (bearing a premature stop codon) were selected, and homozygous mutants were obtained in the G5 generation. Third, pheromone gland extracts of adult female homozygous SlitDes11 mutants were analyzed using Gas chromatography (GC). The results showed that titers of all three ester sex pheromone components; Z9, E11-14:Ac, Z9,E12-14:Ac, and Z9-14:Ac; were reduced by 62.40%, 78.50%, and 72.50%, respectively. This study provides the first direct evidence for the role of SlitDes11 in sex pheromone biosynthesis in S. litura, and indicates the gene could be as potential target to disrupt sexual communication in S. litura for developing a new pollution-free insecticide.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China.
| | - Xiao-Qing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guan-Heng Zhu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China; Department of Entomology, University of Kentucky, Lexington, USA
| | - Mei-Yan Zheng
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yun-Ying Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | | | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China.
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|