1
|
Chaumeau V, Sawasdichai S, Min TZMMM, Kularbkeeree T, Jaruwan N, Gloria N, Lee NY, Trackoolchengkaew M, Phanaphadungtham M, Rongthong P, Inta A, Watthanaworawit W, Nosten F. Identification of Southeast Asian Anopheles mosquito species with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a cross-correlation approach. Parasit Vectors 2025; 18:8. [PMID: 39819789 PMCID: PMC11737280 DOI: 10.1186/s13071-024-06655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is proposed for mosquito species identification. The absence of public repositories sharing mass spectra and open-source data analysis pipelines for fingerprint matching to mosquito species limits the widespread use of this technology. The objective of this study was to develop a free open-source data analysis pipeline for Anopheles species identification with MALDI-TOF MS. METHODS Anopheles mosquitoes were captured in 33 villages in Karen (Kayin) state in Myanmar. A subset of 403 specimens was selected for inclusion in either the reference or the test panel (270 and 133 specimens, respectively). Three hundred fifty-nine specimens could be identified with DNA barcodes and were assigned to 21 sensu stricto species and five sibling species pairs or complexes. A total of 3584 mass spectra of the head of these specimens identified with DNA barcoding were acquired and the similarity between mass spectra was quantified using a cross-correlation approach adapted from the published literature. A reference mass spectra database was created using all spectra of the PCR-identified specimens assigned to the reference panel. A simulation experiment was carried out by querying the reference database with the spectra of the test panel to evaluate the performance of species identification with MALDI-TOF MS at varying thresholds of the cross-correlation index for the algorithm to output an identification result and with varying numbers of technical replicates for the tested specimens, considering PCR identification results as the reference. RESULTS With one spot and a threshold value of -14 for the cross-correlation index on the log scale, the sensitivity was 0.99 [95% credible interval (CrI): 0.98-1.00], the predictive positive value was 0.99 (95% CrI: 0.98-0.99), and the accuracy was 0.98 (95% CrI: 0.97-0.99). It was not possible to directly estimate the sensitivity and negative predictive value because there was no true negative (i.e., queries of species not referenced in the database) in the assessment. CONCLUSIONS The cross-correlation approach can be used to match mass spectral fingerprints to predefined taxa. MALDI-TOF MS is a valuable tool for rapid, accurate, and affordable identification of Anopheles species.
Collapse
Affiliation(s)
- Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Thu Zar Ma Ma Moe Min
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Thithiwarada Kularbkeeree
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Naw Jaruwan
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Naw Gloria
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Naw Yu Lee
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Muesuwa Trackoolchengkaew
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Monticha Phanaphadungtham
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Patcharamai Rongthong
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Aritsara Inta
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - Wanitda Watthanaworawit
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
M'madi SA, Diarra AZ, Bérenger JM, Almeras L, Parola P, Ritmes PP. Efficiency of MALDI-TOF MS at identifying and discriminating immature stages of cimex lectularius and cimex hemipterus bed bugs. Sci Rep 2024; 14:28694. [PMID: 39562593 PMCID: PMC11577014 DOI: 10.1038/s41598-024-78024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Over the last two decades, an increase in bed bug infestations has been observed worldwide. Although their definitive role as vectors of infectious agents has not yet been demonstrated, bed bugs have a direct effect on human health through dermatological reactions to their bites and psychological disorders linked to domestic infestations. In this study, the effectiveness of using MALDI-TOF MS to correctly identify these two bed bug species at immature stages was assessed, as well as it effectiveness as discriminating between the immature stages (IS) of C. lectularius and C. hemipterus and their associated developmental stages. A total of 305 specimens were subjected to MALDI-TOF MS analysis, including 153 C. lectularius (28 eggs and 25 nymphs per stage from IS1 to IS5) and 152 C. hemipterus (27 eggs and 25 nymphs per stage from IS1 to IS5). ). MALDI-TOF MS analysis enabled us to obtain 84.97% (130/153) of high-quality MS spectra in terms of reproducibility and profile intensity. Twenty-four spectra including two per stage, from egg to IS5, and per bed bug species - were added to our in-house MS reference arthropod spectra database. All specimens were correctly identified at the species level, independently of the developmental stage, with log score values (LSVs) ranging from 1.75 to 2.79 (mean = 2.29 ± 0.12) and 1.81 to 2.71 (mean = 2.37 ± 0.03) for C. lectularius and C. hemipterus, respectively. MALDI-TOF MS correctly classified 53,33% (104/195) of the Cimex at the correct immature stage. Conversely, an accurate comparison of the profiles with a Genetic Algorithm model underlined that grouping the immature stages in two groups, early (IS1-IS2) and late (IS3-IS4-IS5), made it possible to obtain a cross validation (CV) and recognition capability (RC) greater than 92% and 94%, respectively, for both species. This study holds great promise for the management of bed bug infestations.
Collapse
Affiliation(s)
- Saidou Ahamada M'madi
- Aix Marseille University, SSA, RITMES, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Adama Zan Diarra
- IHU-Méditerranée Infection, Marseille, France
- MINES, IRD, Marseille, France
| | - Jean-Michel Bérenger
- Aix Marseille University, SSA, RITMES, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Lionel Almeras
- Aix Marseille University, SSA, RITMES, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Philippe Parola
- Aix Marseille University, SSA, RITMES, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Philippe Parola Ritmes
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| |
Collapse
|
3
|
Silva CMDA, Dos Santos FN, Mota TF, Brodskyn CI, Fraga DBM, Magalhães-Junior JT. Identification of Lutzomyia longipalpis' using MALDI-TOF peptide/protein profiles. Acta Trop 2024; 257:107303. [PMID: 38950763 DOI: 10.1016/j.actatropica.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Sand flies are vectors of great public health importance, since they constitute a group of hematophagous insects responsible for etiological agents transmission of zoonotic diseases such a visceral leishmaniasis. In face of the expansion of these diseases, efficient control strategies are needed which depend on comprehending the sand fly eco-epidemiology. In this regard, MALDI-TOF mass spectrometry has been used for bacteria, fungi and yeast detection studies through peptide/protein profiles. However, little is known about interference of biological factors associated with vector ecology, such as blood meal preferences and even sand fly age on the peptide/protein profiles. Thus, the present study aimed to evaluate the differences in peptide/protein profiles of the sand fly Lutzomyia longipalpis, by means of MALDI-TOF, due to the sand fly's age, sex, blood meal source and Leishmania infantum infection. Sample preparation was made removing both head and last abdomen segments keeping the thorax, its appendices and the rest of the abdomen. Five specimens per pool were used to obtain peptide/protein extract of which 1 μL solution was deposited over 1 μL MALDI matrix dried. Characteristic spectra were analyzed using principal coordinate analysis as well as indicator species analysis to discriminate differences in sand flies's peptide/protein profile by sex, age, blood meal source and L. infantum infection. The results show that the evaluated variables produced distinct peptide/protein profiles, demonstrated by the identification of specific diagnostic ions. It was found that the interference of biological factors should be taken into account when using the MALDI-TOF analysis of sand fly species identification and eco-epidemiological applications in field studies. Based on our results, we believe that it is possible to identify infected specimens and the source of blood meal in a collection of wild sand flies, serving to measure infectivity and understand the dynamics of the vector's transmission chain. Our results may be useful for epidemiological studies that look at the ecology of sand flies and leishmaniasis, as well as for raising awareness of biological characteristics' impact on peptide/protein profiles in sand fly species identification.
Collapse
Affiliation(s)
- Caliene Melo de Andrade Silva
- Universidade Federal do Oeste da Bahia (UFOB), Centro Multidisciplinar da Barra, Barra, Bahia, Brazil, 47100-000; Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710.
| | - Fábio Neves Dos Santos
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil, 13083-970; Instituto de Química, Universidade Federal da Bahia (UFBA), Campus Universitário de Ondina, Salvador, Bahia, Brazil, 40170-290
| | - Tiago Feitosa Mota
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710
| | - Claudia Ida Brodskyn
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710
| | - Deborah Bittencourt Mothé Fraga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710; Universidade Federal da Bahia (UFBA), Escola de Medicina Veterinária e Zootecnia, Salvador, Bahia, Brazil, 40170-110
| | | |
Collapse
|
4
|
Fu C, Zhang P, Zou X, Song T. Descriptive analyses of differentially expressed proteins during intrapuparial stage based on the label-free proteomics technique between Chrysomya megacephala and Synthesiomyia nudiseta. Leg Med (Tokyo) 2023; 64:102269. [PMID: 37201397 DOI: 10.1016/j.legalmed.2023.102269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
The lack of rapid and accurate species identification methods on pupae restricts the practical application of forensic entomology. It is a new idea to construct portable and rapid identification kits based on the principle of antigen/antibody interaction. Screening differentially expressed proteins (DEPs) of fly pupae is a basis of solving the problem. Here, we used the label-free proteomics technique to discover the DEPs and further validate using the parallel reaction monitoring technique (PRM) in the common flies. In this study, we reared the Chrysomya megacephala and Synthesiomyia nudiseta at constanttemperature, and then we sampled at least four pupae at 24 h intervals until the end of the intrapuparial stage. We found 132 DEPs between Ch. megacephala, and S. nudiseta groups, with 68 and 64 proteins being up-regulated and down-regulated between the two groups. Among the 132 DEPs, we selected five proteins having potential for further development and utilization, such as C1-tetrahydrofolate synthase, Malate dehydrogenase, Transferrin, Protein disulfide-isomerase, and Fructose-bisphosphate aldolase, for further validation using PRM-targeted proteomics, with the trends of PRM results being consistent with the label-free data for corresponding proteins. The present study investigated DEPs via the label-free technique during the pupal development in the Ch. megacephala, and S. nudiseta and provided reference data for development of rapid and accurate identification kits.
Collapse
Affiliation(s)
- Chunliu Fu
- Hainan Modern Women and Children's Hospital, Haikou 571100, China
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Medical University, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Haikou 570100, China
| | - Xing Zou
- Department of Forensic Medicine, Hainan Medical University, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Haikou 570100, China
| | - Tao Song
- Department of Forensic Medicine, Hainan Medical University, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Haikou 570100, China.
| |
Collapse
|
5
|
Rossel S, Kaiser P, Bode-Dalby M, Renz J, Laakmann S, Auel H, Hagen W, Arbizu PM, Peters J. Proteomic fingerprinting enables quantitative biodiversity assessments of species and ontogenetic stages in Calanus congeners (Copepoda, Crustacea) from the Arctic Ocean. Mol Ecol Resour 2023; 23:382-395. [PMID: 36114815 DOI: 10.1111/1755-0998.13714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 01/04/2023]
Abstract
Species identification is pivotal in biodiversity assessments and proteomic fingerprinting by MALDI-TOF mass spectrometry has already been shown to reliably identify calanoid copepods to species level. However, MALDI-TOF data may contain more information beyond mere species identification. In this study, we investigated different ontogenetic stages (copepodids C1-C6 females) of three co-occurring Calanus species from the Arctic Fram Strait, which cannot be identified to species level based on morphological characters alone. Differentiation of the three species based on mass spectrometry data was without any error. In addition, a clear stage-specific signal was detected in all species, supported by clustering approaches as well as machine learning using Random Forest. More complex mass spectra in later ontogenetic stages as well as relative intensities of certain mass peaks were found as the main drivers of stage distinction in these species. Through a dilution series, we were able to show that this did not result from the higher amount of biomass that was used in tissue processing of the larger stages. Finally, the data were tested in a simulation for application in a real biodiversity assessment by using Random Forest for stage classification of specimens absent from the training data. This resulted in a successful stage-identification rate of almost 90%, making proteomic fingerprinting a promising tool to investigate polewards shifts of Atlantic Calanus species and, in general, to assess stage compositions in biodiversity assessments of Calanoida, which can be notoriously difficult using conventional identification methods.
Collapse
Affiliation(s)
- Sven Rossel
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Wilhelmshaven, Germany
| | - Patricia Kaiser
- Universität Bremen, BreMarE - Bremen Marine Ecology, Marine Zoology, Bremen, Germany
| | - Maya Bode-Dalby
- Universität Bremen, BreMarE - Bremen Marine Ecology, Marine Zoology, Bremen, Germany
| | - Jasmin Renz
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Hamburg, Germany
| | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany.,Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Holger Auel
- Universität Bremen, BreMarE - Bremen Marine Ecology, Marine Zoology, Bremen, Germany
| | - Wilhelm Hagen
- Universität Bremen, BreMarE - Bremen Marine Ecology, Marine Zoology, Bremen, Germany
| | - Pedro Martínez Arbizu
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Wilhelmshaven, Germany
| | - Janna Peters
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg Research Institute, Hamburg, Germany
| |
Collapse
|
6
|
Entomological Survey and Impact of Climatic Factors on the Dynamics of Sandflies in Central Morocco. ScientificWorldJournal 2023. [DOI: 10.1155/2023/6952992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sandflies are small insects belonging to the order Diptera, which make up the Phlebotominae subfamily within the Psychodidae family. In the fight against leishmaniasis in the prefecture of Meknes, Morocco, a study of the phlebotomist population was carried out during the period of activity of sandflies while studying the link between the abundance of these insects and climatic factors, namely, temperature, moisture, rainfall, and wind speed. A total of 958 phlebotomus were captured, 73% of which belong to Phlebotomus sergenti, a vector of Leishmania species causing human cutaneous leishmaniasis. This study also showed the existence of two months of risk in July and September with a positive correlation between temperature and abundance of sandflies and a negative correlation between abundance of sandflies and rainfall and moisture. Indeed, it is necessary to strengthen the means to fight this disease during periods of activity and to use medium-term climatological forecasts to develop an alert system for leishmaniasis.
Collapse
|
7
|
Sánchez-Juanes F, Calvo Sánchez N, Belhassen García M, Vieira Lista C, Román RM, Álamo Sanz R, Muro Álvarez A, Muñoz Bellido JL. Applications of MALDI-TOF Mass Spectrometry to the Identification of Parasites and Arthropod Vectors of Human Diseases. Microorganisms 2022; 10:2300. [PMID: 36422371 PMCID: PMC9695109 DOI: 10.3390/microorganisms10112300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 08/27/2023] Open
Abstract
Arthropod vectors and parasites are identified morphologically or, more recently, by molecular methods. Both methods are time consuming and require expertise and, in the case of molecular methods, specific devices. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) identification of bacteria has meant a major change in clinical microbiology laboratories because of its simplicity, speed and specificity, and its capacity to identify microorganisms, in some cases, directly from the sample (urine cultures, blood cultures). Recently, MALDI-TOF MS has been shown as useful for the identification of some parasites. On the other hand, the identification of vector arthropods and the control of their populations is essential for the control of diseases transmitted by arthropods, and in this aspect, it is crucial to have fast, simple and reliable methods for their identification. Ticks are blood-sucking arthropods with a worldwide distribution, that behave as efficient vectors of a wide group of human and animal pathogens, including bacteria, protozoa, viruses, and even helminths. They are capable of parasitizing numerous species of mammals, birds and reptiles. They constitute the second group of vectors of human diseases, after mosquitoes. MALDI-TOF MS has been shown as useful for the identification of different tick species, such as Ixodes, Rhipicephalus and Amblyomma. Some studies even suggest the possibility of being able to determine, through MALDI-TOF MS, if the arthropod is a carrier of certain microorganisms. Regarding mosquitoes, the main group of vector arthropods, the possibility of using MALDI-TOF MS for the identification of different species of Aedes and Anopheles has also been demonstrated. In this review, we address the possibilities of this technology for the identification of parasites and arthropod vectors, its characteristics, advantages and possible limitations.
Collapse
Affiliation(s)
- Fernando Sánchez-Juanes
- Department of Biochemistry and Molecular Biology, University of Salamanca, 37007 Salamanca, Spain
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Noelia Calvo Sánchez
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Moncef Belhassen García
- Department of Medicine-Infectious Diseases, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
| | - Carmen Vieira Lista
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
| | - Raul Manzano Román
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
| | - Rufino Álamo Sanz
- Public Health Information Service, Consejería de Sanidad, Junta de Castilla y León, 47007 Valladolid, Spain
| | - Antonio Muro Álvarez
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
| | - Juan Luis Muñoz Bellido
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
| |
Collapse
|
8
|
Huguenin A, Pesson B, Kaltenbach ML, Diarra AZ, Parola P, Depaquit J, Randrianambinintsoa FJ. MALDI-TOF MS Limits for the Identification of Mediterranean Sandflies of the Subgenus Larroussius, with a Special Focus on the Phlebotomus perniciosus Complex. Microorganisms 2022; 10:microorganisms10112135. [PMID: 36363727 PMCID: PMC9698236 DOI: 10.3390/microorganisms10112135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Leishmania infantum is the agent of visceral leishmaniasis in the Mediterranean basin. It is transmitted by sandflies of the subgenus Larroussius. Although Phlebotomus perniciosus is the most important vector in this area, an atypical Ph. perniciosus easily confused with Ph. longicuspis has been observed in North Africa. MALDI-TOF MS, an important tool for vector identification, has recently been applied for the identification of sandflies. Spectral databases presented in the literature, however, include only a limited number of Larroussius species. Our objective was to create an in-house database to identify Mediterranean sandflies and to evaluate the ability of MALDI-TOF MS to discriminate close species or atypical forms within the Larroussius subgenus. Field-caught specimens (n = 94) were identified morphologically as typical Ph. perniciosus (PN; n = 55), atypical Ph. perniciosus (PNA; n = 9), Ph. longicuspis (n = 9), Ph. ariasi (n = 9), Ph. mascittii (n = 3), Ph. neglectus (n = 5), Ph. perfiliewi (n = 1), Ph. similis (n = 9) and Ph. papatasi (n = 2). Identifications were confirmed by sequencing of the mtDNA CytB region and sixteen specimens were included in the in-house database. Blind assessment on 73 specimens (representing 1073 good quality spectra) showed a good agreement (98.5%) between MALDI-TOF MS and molecular identification. Discrepancies concerned confusions between Ph. perfiliewi and Ph. perniciosus. Hierarchical clustering did not allow classification of PN and PNA. The use of machine learning, however, allowed discernment between PN and PNA and between the lcus and lcx haplotypes of Ph. longicuspis (accuracy: 0.8938 with partial-least-square regression and random forest models). MALDI-TOF MS is a promising tool for the rapid and accurate identification of field-caught sandflies. The use of machine learning could allow to discriminate similar species.
Collapse
Affiliation(s)
- Antoine Huguenin
- EA 7510 ESCAPE, USC VECPAR, ANSES, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51096 Reims, France
- Laboratoire de Parasitologie, Pôle de Biologie Territoriale, CHU, 51100 Reims, France
- Correspondence: ; Tel.: +33-3-26-78-4224
| | - Bernard Pesson
- EA 7510 ESCAPE, USC VECPAR, ANSES, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Matthieu L. Kaltenbach
- EA 7510 ESCAPE, USC VECPAR, ANSES, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Adama Zan Diarra
- IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Parola
- IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Jérôme Depaquit
- EA 7510 ESCAPE, USC VECPAR, ANSES, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51096 Reims, France
- Laboratoire de Parasitologie, Pôle de Biologie Territoriale, CHU, 51100 Reims, France
| | | |
Collapse
|
9
|
Bamou R, Costa MM, Diarra AZ, Martins AJ, Parola P, Almeras L. Enhanced procedures for mosquito identification by MALDI-TOF MS. Parasit Vectors 2022; 15:240. [PMID: 35773735 PMCID: PMC9248115 DOI: 10.1186/s13071-022-05361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/05/2022] [Indexed: 11/15/2022] Open
Abstract
Background In the last decade, an innovative approach has emerged for arthropod identification based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Increasing interest in applying the original technique for arthropod identification has led to the development of a variety of procedures for sample preparation and selection of body parts, among others. However, the absence of a consensual strategy hampers direct inter-study comparisons. Moreover, these different procedures are confusing to new users. Establishing optimized procedures and standardized protocols for mosquito identification by MALDI-TOF MS is therefore a necessity, and would notably enable the sharing of reference MS databases. Here, we assess the optimal conditions for mosquito identification using MALDI-TOF MS profiling. Methods Three homogenization methods, two of which were manual and one automatic, were used on three distinct body parts (legs, thorax, head) of two mosquito laboratory strains, Anopheles coluzzii and Aedes aegypti, and the results evaluated. The reproducibility of MS profiles, identification rate with relevant scores and the suitability of procedures for high-throughput analyses were the main criteria for establishing optimized guidelines. Additionally, the consequences of blood-feeding and geographical origin were evaluated using both laboratory strains and field-collected mosquitoes. Results Relevant score values for mosquito identification were obtained for all the three body parts assayed using MALDI-TOF MS profiling; however, the thorax and legs were the most suitable specimens, independently of homogenization method or species. Although the manual homogenization methods were associated with a high rate of identification on the three body parts, this homogenization mode is not adaptable to the processing of a large number of samples. Therefore, the automatic homogenization procedure was selected as the reference homogenization method. Blood-feeding status did not hamper the identification of mosquito species, despite the presence of MS peaks from original blood in the MS profiles of the three body parts tested from both species. Finally, a significant improvement in identification scores was obtained for field-collected specimens when MS spectra of species from the same geographical area were added to the database. Conclusion The results of the current study establish guidelines for the selection of mosquito anatomic parts and modality of sample preparation (e.g. homogenization) for future specimen identification by MALDI-TOF MS profiling. These standardized operational protocols could be used as references for creating an international MS database. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05361-0.
Collapse
Affiliation(s)
- Roland Bamou
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Monique Melo Costa
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Adama Zan Diarra
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratório Misto Internacional "Sentinela", FIOCRUZ, IRD, Universidade de Brasília (UnB), Rio de Janeiro, RJ, Brazil
| | - Philippe Parola
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Lionel Almeras
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France. .,IHU Méditerranée Infection, Marseille, France. .,Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.
| |
Collapse
|
10
|
Sousa-Paula LCD, Pessoa FAC, Otranto D, Dantas-Torres F. Beyond taxonomy: species complexes in New World phlebotomine sand flies. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:267-283. [PMID: 33480064 DOI: 10.1111/mve.12510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
A species complex (= species group, species series) is an assemblage of species, which are related morphologically and phylogenetically. Recent research has revealed several arthropod vector species that were believed to be a single nominal species actually representing a group of closely related species, which are sometimes morphologically indistinguishable at one or more developmental stages. In some instances, differences in terms of vector competence, capacity, or both have been recorded. It highlights the importance of detecting and studying species complexes to improve our understanding of pathogen transmission patterns, which may be vectored more or less efficiently by different species within the complex. Considering more than 540 species, about one-third of the phlebotomine sand flies in the New World present males and/or females morphologically indistinguishable to one or more species. Remarkably, several of these species may act in transmission of pathogenic agents. In this article, we review recent research on species complexes in phlebotomine sand flies from the Americas. Possible practical implications of recently acquired knowledge and future research needs are also discussed.
Collapse
Affiliation(s)
- L C de Sousa-Paula
- Laboratory of Immunoparasitology, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
| | - F A C Pessoa
- Laboratório de Ecologia e Doenças Transmissíveis na Amazônia, Leônidas e Maria Deane Institute, Oswaldo Cruz Foundation (FIOCRUZ), Manaus, Amazonas, Brazil
| | - D Otranto
- Parasitology Unit, Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - F Dantas-Torres
- Laboratory of Immunoparasitology, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
| |
Collapse
|
11
|
Sevestre J, Diarra AZ, Laroche M, Almeras L, Parola P. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: an emerging tool for studying the vectors of human infectious diseases. Future Microbiol 2021; 16:323-340. [PMID: 33733821 DOI: 10.2217/fmb-2020-0145] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arthropod vectors have historically been identified morphologically, and more recently using molecular biology methods. However, both of these methods are time-consuming and require specific expertise and equipment. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, which has revolutionized the routine identification of microorganisms in clinical microbiology laboratories, was recently successfully applied to the identification of arthropod vectors. Since then, the robustness of this identification technique has been confirmed, extended to a large panel of arthropod vectors, and assessed for detecting blood feeding behavior and identifying the infection status in regard to certain pathogenic agents. In this study, we summarize the state-of-the-art of matrix-assisted laser desorption ionization time-of-flight mass spectrometry applied to the identification of arthropod vectors (ticks, mosquitoes, phlebotomine sand-flies, fleas, triatomines, lice and Culicoides), their trophic preferences and their ability to discriminate between infection statuses.
Collapse
Affiliation(s)
- Jacques Sevestre
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Z Diarra
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Maureen Laroche
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Lionel Almeras
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,Département Microbiologie et Maladies Infectieuses, Unité Parasitologie et Entomologie, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Philippe Parola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
12
|
New assessment of Anopheles vector species identification using MALDI-TOF MS. Malar J 2021; 20:33. [PMID: 33422056 PMCID: PMC7796594 DOI: 10.1186/s12936-020-03557-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
Background Anopheles species identification is essential for an effective malaria vector control programme. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has been developed to identify adult Anopheles species, using the legs or the cephalothorax. The protein repertoire from arthropods can vary according to compartment, but there is no general consensus regarding the anatomic part to be used. Methods To determine the body part of the Anopheles mosquitoes best suited for the identification of field specimens, a mass spectral library was generated with head, thorax with wings and legs of Anopheles gambiae, Anopheles arabiensis and Anopheles funestus obtained from reference centres. The MSL was evaluated using two independent panels of 52 and 40 An. gambiae field-collected in Mali and Guinea, respectively. Geographic variability was also tested using the panel from Mali and several databases containing added specimens from Mali and Senegal. Results Using the head and a database without specimens from the same field collection, the proportion of interpretable and correct identifications was significantly higher than using the other body parts at a threshold value of 1.7 (p < 0.0001). The thorax of engorged specimens was negatively impacted by the blood meal after frozen storage. The addition of specimens from Mali into the database significantly improved the results of Mali panel (p < 0.0001), which became comparable between head and legs. With higher identification scores, the using of the head will allow to decrease the number of technical replicates of protein extract per specimen, which represents a significant improvement for routine use of MALDI-TOF MS. Conclusions The using of the head of Anopheles may improve the performance of MALDI-TOF MS. Region-specific mass spectrum databases will have to be produced. Further research is needed to improve the standardization in order to share online spectral databases.
Collapse
|
13
|
Dvořák V, Tsirigotakis N, Pavlou C, Dokianakis E, Akhoundi M, Halada P, Volf P, Depaquit J, Antoniou M. Sand fly fauna of Crete and the description of Phlebotomus (Adlerius) creticus n. sp. (Diptera: Psychodidae). Parasit Vectors 2020; 13:547. [PMID: 33148317 PMCID: PMC7640489 DOI: 10.1186/s13071-020-04358-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Greek island of Crete is endemic for both visceral leishmaniasis (VL) and recently increasing cutaneous leishmaniasis (CL). This study summarizes published data on the sand fly fauna of Crete, the results of new sand fly samplings and the description of a new sand fly species. METHODS All published and recent samplings were carried out using CDC light traps, sticky traps or mouth aspirators. The specific status of Phlebotomus (Adlerius) creticus n. sp., was assessed by morphological analysis, cytochrome b (cytb) sequencing and MALDI-TOF protein profiling. RESULTS Published data revealed the presence of 10 Phlebotomus spp. and 2 Sergentomyia spp. During presented field work, 608 specimens of 8 species of Phlebotomus and one species of Sergentomyia were collected. Both published data and present samplings revealed that the two most common and abundant species were Phlebotomus neglectus, a proven vector of Leishmania infantum causing VL, and Ph. similis, a suspected vector of L. tropica causing CL. In addition, the field surveys revealed the presence of a new species, Ph. (Adlerius) creticus n. sp. CONCLUSIONS The identification of the newly described species is based on both molecular and morphological criteria, showing distinct characters of the male genitalia that differentiate it from related species of the subgenus Adlerius as well as species-specific sequence of cytb and protein spectra generated by MALDI-TOF mass spectrometry.
Collapse
Affiliation(s)
- Vít Dvořák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nikolaos Tsirigotakis
- Laboratory of Clinical Bacteriology Parasitology Zoonoses and Geographical Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Christoforos Pavlou
- Laboratory of Clinical Bacteriology Parasitology Zoonoses and Geographical Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Emmanouil Dokianakis
- Laboratory of Clinical Bacteriology Parasitology Zoonoses and Geographical Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Mohammad Akhoundi
- Département de Parasitologie-Mycologie, Hôpital Avicenne AP-HP, Bobigny, France
| | - Petr Halada
- BioCeV – Institute of Microbiology, The Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jérôme Depaquit
- FEA7510 “ESCAPE”, USC ANSES “VECPAR”, Faculté de Pharmacie, Université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, 51096 Reims cedex, Reims, France
| | - Maria Antoniou
- Laboratory of Clinical Bacteriology Parasitology Zoonoses and Geographical Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
14
|
Benkacimi L, Gazelle G, El Hamzaoui B, Bérenger JM, Parola P, Laroche M. MALDI-TOF MS identification of Cimex lectularius and Cimex hemipterus bedbugs. INFECTION GENETICS AND EVOLUTION 2020; 85:104536. [PMID: 32927120 DOI: 10.1016/j.meegid.2020.104536] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 11/29/2022]
Abstract
Bedbugs (Cimex lectularius and C. hemipterus) have reemerged as a major public health problem around the world. Their bites cause various skin lesions as well as discomfort and anxiety. Their role as potential vectors of various infectious agents is discussed. Accordingly, all suspected cases of bedbug infestations need to be documented thoroughly, with an unequivocal identification of the arthropods involved, if any are present. Although morphological identification is easily and quickly performed by entomologists or professionals, it can be challenging otherwise. Also, distinguishing Cimex lectularius and C. hemipterus requires entomological expertise. MALDI-TOF mass spectrometry has been recently presented as an additional tool for arthropod identification. In this study, we assess the use of MALDI-TOF MS for the identification of laboratory and wild strains of C. lectularius and C. hemipterus. Several body parts of laboratory reared C. lectularius specimens were used to develop a MALDI-TOF MS protocol for bedbug identification, which was later validated using five other laboratory and wild populations of C. hemipterus and C. lectularius. A total of 167C. lectularius and C. hemipterus bedbug specimens (98 laboratory specimens and 69 wild specimens) were submitted to MALDI-TOF MS analysis. 143/167 (85.63%) provided high quality MS spectra. The in-lab database was then upgraded with a total of 20 reference spectra from all bedbug populations and the rest of the MS spectra (123 bedbugs) were blind tested. All specimens were properly identified to the species level using MALDI-TOF MS and 86,25% (69/80) were aptly identified according to their origin with LSVs ranging from 1.867 to 2.861. MALDI-TOF MS appears as a reliable additional tool for the identification of these two anthropophilic species.
Collapse
Affiliation(s)
- Linda Benkacimi
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Gladys Gazelle
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Basma El Hamzaoui
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Jean-Michel Bérenger
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
15
|
Ouarti B, Laroche M, Righi S, Meguini MN, Benakhla A, Raoult D, Parola P. Development of MALDI-TOF mass spectrometry for the identification of lice isolated from farm animals. ACTA ACUST UNITED AC 2020; 27:28. [PMID: 32351208 PMCID: PMC7191974 DOI: 10.1051/parasite/2020026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/11/2020] [Indexed: 12/18/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is now routinely used for the rapid identification of microorganisms isolated from clinical samples and has been recently successfully applied to the identification of arthropods. In the present study, this proteomics tool was used to identify lice collected from livestock and poultry in Algeria. The MALDI-TOF MS spectra of 408 adult specimens were measured for 14 species, including Bovicola bovis, B. ovis, B. caprae, Haematopinus eurysternus, Linognathus africanus, L. vituli, Solenopotes capillatus, Menacanthus stramineus, Menopon gallinae, Chelopistes meleagridis, Goniocotes gallinae, Goniodes gigas, Lipeurus caponis and laboratory reared Pediculus humanus corporis. Good quality spectra were obtained for 305 samples. Spectral analysis revealed intra-species reproducibility and inter-species specificity that were consistent with the morphological classification. A blind test of 248 specimens was performed against the in-lab database upgraded with new spectra and validated using molecular tools. With identification percentages ranging from 76% to 100% alongside high identification scores (mean = 2.115), this study proposes MALDI-TOF MS as an effective tool for discriminating lice species.
Collapse
Affiliation(s)
- Basma Ouarti
- Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, 13005 Marseille, France - IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Maureen Laroche
- Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, 13005 Marseille, France - IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Souad Righi
- Université Chadli Bendjdid, Département des sciences Vétérinaire, 36000 El Tarf, Algeria
| | - Mohamed Nadir Meguini
- Université Chadli Bendjdid, Département des sciences Vétérinaire, 36000 El Tarf, Algeria - Institut des Sciences Vétérinaire et Agronomiques, Université Mohamed Cherif Messaadia, 41000 Souk-Ahras, Algeria
| | - Ahmed Benakhla
- Université Chadli Bendjdid, Département des sciences Vétérinaire, 36000 El Tarf, Algeria
| | - Didier Raoult
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France - Aix Marseille Univ., IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, 13005 Marseille, France - IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
16
|
Shirani-Bidabadi L, Zahraei-Ramazani AR, Yaghoobi-Ershadi MR, Akhavan AA, Oshaghi MA, Enayati AA, Rassi Y, Gholampour F, Shareghi N, Madreseh E, Vatandoost H. Monitoring of Laboratory Reared of Phlebotomus papatasi (Diptera: Psychodidae), Main Vector of Zoonotic Cutaneous Leishmaniasis to Different Imagicides in Hyper endemic Areas, Esfahan Province, Iran. J Arthropod Borne Dis 2020; 14:116-125. [PMID: 32766355 PMCID: PMC7382688 DOI: 10.18502/jad.v14i1.2718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/30/2020] [Indexed: 12/05/2022] Open
Abstract
Background: In domestic and per domestic area, insecticides such as DDT, malathion, fenitrothion, propoxur and, more recently, synthetic pyrethroids such as deltamethrin and lambda-cyhalothrin, have been successfully used to control sand flies in many countries. The present study reports the results of time-mortality bioassay to DDT 4%, lambda-cyhalothrin 0.05%, permethrin 0.75%, cyfluthrin 0.15% and deltamethrin 0.05% in recently colonized Phlebotomus papatasi populations in Iran. Methods: The insecticide susceptibility status of P. papatasi laboratory population was assessed during 2016–2017, following the standard WHO technique for mosquito (WHO, 2013) based on diagnostic dose. Sand flies collected from rural area of Badrood (Matin Abad), Natanz County, Esfahan Province, using aspirator. Results: Susceptibility test to DDT and pyrethroids was assessed on 3534 laboratory-reared P. papatasi (1746 females and 1788 males). The LT
50
and LT
90
values were measured using probit analysis and regression lines. The test results against males of P. papatasi revealed that LT
50
values to DDT 4%, Permethrin 0.75%, Deltamethrin 0.05%, Cyfluthrin 0.15% and Lambdacyhalothrin 0.05% were 439.28, 108.90, 97.75, 5.00 and 57.84 seconds. The figures for females were 641.62, 136.15, 146.44, 8.71 and 72.69 seconds, respectively. Conclusion: According to presented results, the reared population of sand flies collected from a hyper-endemic region of Esfahan Province is still susceptible to prethroids and Resistance candidate to DDT 4%.
Collapse
Affiliation(s)
- Leila Shirani-Bidabadi
- Department of Vector Biology and Control, School of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Reza Zahraei-Ramazani
- Department of Medical Entomology and Vector control,School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Yaghoobi-Ershadi
- Department of Medical Entomology and Vector control,School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ahmad Akhavan
- Department of Medical Entomology and Vector control,School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector control,School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Enayati
- Department of Medical Entomology and Vector control, School of Public Health, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Yavar Rassi
- Department of Medical Entomology and Vector control,School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gholampour
- Department of Medical Entomology and Vector control,School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Shareghi
- Esfahan Health Research Station, National Institute of Health Research ,Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Madreseh
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector control,School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Chemical Polutants and Pesticides, Institute for Environmenatl Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Gherbi R, Bounechada M, Latrofa MS, Annoscia G, Tarallo VD, Dantas-Torres F, Otranto D. Phlebotomine sand flies and Leishmania species in a focus of cutaneous leishmaniasis in Algeria. PLoS Negl Trop Dis 2020; 14:e0008024. [PMID: 32069279 PMCID: PMC7048314 DOI: 10.1371/journal.pntd.0008024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/28/2020] [Accepted: 01/02/2020] [Indexed: 01/28/2023] Open
Abstract
Cutaneous leishmaniasis is a disease caused by various Leishmania spp., which are transmitted by phlebotomine sand flies. Algeria is one of the most affected countries, with thousands of cutaneous leishmaniasis cases registered every year. From March to November of 2016 and 2017, sand flies were collected in 12 municipalities in Setif province, North-Eastern Algeria. Sand flies were identified and females were tested by PCR for detecting Leishmania DNA. Additionally, cutaneous leishmaniasis cases notified during the study period were analysed. Out of 1804 sand flies collected, 1737 were identified as belonging to seven species, with Phlebotomus perniciosus (76.2%), Ph. papatasi (16.7%) and Ph. sergenti (5.0%) being the most common species, representing together 97.9% of the collected specimens. The remaining specimens were identified as Sergentomyia minuta, Se. fallax, Ph. longicuspis and Ph. perfiliewi. The number of sand flies collected monthly was positively correlated with temperature. Out of 804 females tested, nine Ph. perniciosus (1.1%) scored positive for Leishmania infantum (n = 5), L. major (n = 3) and L. tropica (n = 1), respectively. During the study period, 34 cutaneous leishmaniasis cases were notified in Setif, of which 58.8% were patients residing in two urban and peri-urban municipalities and 41.2% in rural areas. The finding of Ph. perniciosus as the most abundant species in Setif suggests that this sand fly may be adapted to different biotopes in the North-East region of Algeria. The detection of different Leishmania spp. in Ph. perniciosus suggests a complex epidemiological picture of cutaneous leishmaniasis in Setif, with the involvement of different etiological agents and possibly with different reservoir hosts and vectors. Leishmaniasis is a group of neglected diseases, with more than 350 million people at risk and 2 million new cases every year. Leishmania parasites are transmitted by phlebotomine sand flies. Algeria is one of most affected countries, with thousands of cutaneous leishmaniasis cases registered every year. However, in spite of the scientific knowledge gained over the last decades, the understanding of the biology and the ecology of sand flies in some areas of Algeria is still fragmentary. The present study was conducted from 2016 to 2017 to assess the sand fly population in Setif and also the Leishmania spp. circulating in this province. Our data suggest a complex epidemiological picture of cutaneous leishmaniasis in Setif, with the involvement of different etiological agents and possibly with different reservoir hosts and vectors.
Collapse
Affiliation(s)
- Roumaissa Gherbi
- Laboratory of Improvement and Development of Plant and Animal Production, University of Ferhat Abbas, Setif, Algeria
| | - Mustapha Bounechada
- Laboratory of Improvement and Development of Plant and Animal Production, University of Ferhat Abbas, Setif, Algeria
| | - Maria Stefania Latrofa
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy
| | - Giada Annoscia
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy
| | | | - Filipe Dantas-Torres
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy
- Department of Immunology, Aggeu Magalhães Institute (Fiocruz), Recife, Brazil
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Felestin Sq., Hamedan, Iran
- * E-mail:
| |
Collapse
|
18
|
Diarra AZ, Laroche M, Berger F, Parola P. Use of MALDI-TOF MS for the Identification of Chad Mosquitoes and the Origin of Their Blood Meal. Am J Trop Med Hyg 2019; 100:47-53. [PMID: 30526738 DOI: 10.4269/ajtmh.18-0657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a clinical microbiology tool for the systematic identification of microorganisms. It has recently been presented as an innovative tool for the rapid and accurate identification of mosquitoes and their blood meal. To evaluate the capacity of this tool to identify mosquitoes collected in a tropical environment and preserved with silica gel, we analyzed 188 mosquitoes of different species collected in Chad, which were preserved with silica gel for 2 months. The MALDI-TOF MS analysis correctly identified 96% of the mosquitoes and 37.5% of their blood meals. Using MALDI-TOF MS and molecular biology, eight mosquito species were identified, including Anopheles gambiae s.l., Anopheles rufipes, Culex quinquefasciatus, Culex neavei, Culex pipiens, Culex perexiguus, Culex rima, and Culex watti. Blood meal identification revealed that mosquitoes fed mainly on humans, birds, and cows. Matrix-assisted desorption/ionization time-of-flight mass spectrometry appears to be a promising, fast, and reliable tool to identify mosquitoes and the origin of their blood meal for samples stored with silica gel.
Collapse
Affiliation(s)
- Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France.,Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France
| | - Franck Berger
- Aix Marseille Univ, Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France.,SSA, CESPA, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
19
|
Arfuso F, Gaglio G, Abbate JM, Caracappa G, Lupia A, Napoli E, Giarratana F, Latrofa MS, Giannetto S, Otranto D, Brianti E. Identification of phlebotomine sand flies through MALDI-TOF mass spectrometry and in-house reference database. Acta Trop 2019; 194:47-52. [PMID: 30871992 DOI: 10.1016/j.actatropica.2019.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 01/20/2023]
Abstract
Phlebotomine sand flies are vectors for many pathogens responsible for human and animal diseases worldwide. Their identification at species level is of importance in epidemiological studies and control programmes. MALDI-TOF MS has been increasingly investigated as an alternative approach to the conventional identification of arthropods species. To establish an in-house protein spectra database for a quick and reliable species identification of phlebotomine sand flies, 166 field-caught sand fly specimens, morphologically identified as Phlebotomus perniciosus (no = 56; 26 males and 30 females), Phlebotomus neglectus (no = 4 males), Phlebotomus sergenti (no = 6; 4 males and 2 females) and Sergentomyia minuta (no = 100; 45 males and 55 females), were subjected to MALDI-TOF MS analyses. Out of 166, 149 specimens (89.8%) produced consistent species-specific protein spectra. Good quality database for P. perniciosus and S. minuta were generated; no databases have yet constructed for P. neglectus and P. sergenti due to the low number of specimens examined. The identification of 80 sand flies (no = 20 P. perniciosus; no = 60 S. minuta) were confirmed using the new generated SuperSpectra as validation test. The results reported support the use of MALDI-TOF MS for rapid, simple and reliable phlebotomine sand fly species identification suggesting its usefulness in accurate survey studies, ultimately improving biological and epidemiological knowledge on these important vectors of pathogens.
Collapse
Affiliation(s)
- Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Gabriella Gaglio
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Jessica Maria Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Giulia Caracappa
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Angelo Lupia
- Biologist Practitioner, Via A. Gramsci 15, 88050, Catanzaro, Italy
| | - Ettore Napoli
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Filippo Giarratana
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Maria Stefania Latrofa
- Department of Veterinary Medicine, University of Bari, Strada prov.le per Casamassima km. 3, Valenzano, Bari, Italy
| | - Salvatore Giannetto
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Strada prov.le per Casamassima km. 3, Valenzano, Bari, Italy
| | - Emanuele Brianti
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168, Messina, Italy.
| |
Collapse
|
20
|
Identification of French Guiana sand flies using MALDI-TOF mass spectrometry with a new mass spectra library. PLoS Negl Trop Dis 2019; 13:e0007031. [PMID: 30707700 PMCID: PMC6373979 DOI: 10.1371/journal.pntd.0007031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 02/13/2019] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
Phlebotomine sand flies are insects that are highly relevant in medicine, particularly as the sole proven vectors of leishmaniasis. Accurate identification of sand fly species is an essential prerequisite for eco-epidemiological studies aiming to better understand the disease. Traditional morphological identification is painstaking and time-consuming, and molecular methods for extensive screening remain expensive. Recent studies have shown that matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a promising tool for rapid and cost-effective identification of arthropod vectors, including sand flies. The aim of this study was to validate the use of MALDI-TOF MS for the identification of Northern Amazonian sand flies. We constituted a MALDI-TOF MS reference database comprising 29 species of sand flies that were field-collected in French Guiana, which are expected to cover many of the more common species of the Northern Amazonian region, including known vectors of leishmaniasis. Carrying out a blind test, all the sand flies tested (n = 157) with a log (score) threshold greater than 1.7 were correctly identified at the species level. We confirmed that MALDI-TOF MS protein profiling is a useful tool for the study of sand flies, including neotropical species, known for their great diversity. An application that includes the spectra generated here will be available to the scientific community in the near future via an online platform. Phlebotomine sand flies are small insects, mostly known for their role in the transmission of Leishmania parasites to humans and other mammals. In French Guiana, the main clinical form of the disease manifests as cutaneous lesions also called American cutaneous leishmaniasis. The transmission of Leishmania from wild mammals to humans depends on the species of sand fly involved in the transmission. To better understand the mechanism of disease transmission, it is essential to accurately identify sand flies, including both vector and non-vector species. Until now, sand flies have mainly been identified using morphological and molecular methods. Recent studies have shown that a new tool based on protein profiling compiled in a library of spectra may be useful for the identification of arthropod vectors. This tool has the advantage of being less time-consuming, less expensive and does not require technical skills. The aim of this study was to assess the usefulness and accuracy of this new tool in identifying Northern Amazonian sand flies.
Collapse
|
21
|
Merchant A, Yu T, Shi J, Zhou X. Development of a Diagnostic Marker for Phlebotomus papatasi to Initiate a Potential Vector Surveillance Program in North America. INSECTS 2018; 9:insects9040162. [PMID: 30424532 PMCID: PMC6315872 DOI: 10.3390/insects9040162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022]
Abstract
Phlebotomus papatasi, an Old World sand fly species, is primarily responsible for the transmission of leishmaniasis, a highly infectious and potentially lethal disease. International travel, especially military rotations, between domestic locations and P. papatasi-prevalent regions in the Middle East poses an imminent threat to the public health of US citizens. Because of its small size and cryptic morphology, identification of P. papatasi is challenging and labor-intensive. Here, we developed a ribosomal DNA-polymerase chain reaction (PCR)-based diagnostic assay that is capable of detecting P. papatasi genomic DNA from mixed samples containing multiple sand flies native to the Americas. Serial dilution of P. papatasi samples demonstrated that this diagnostic assay could detect one P. papatasi from up to 255 non-target sand flies. Due to its simplicity, sensitivity and specificity, this rapid identification tool is suited for a long-term surveillance program to screen for the presence of P. papatasi in the continental United States and to reveal geographical regions potentially vulnerable to sand fly-borne diseases.
Collapse
Affiliation(s)
- Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| | - Tian Yu
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| | - Jizhe Shi
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
22
|
Halada P, Hlavackova K, Risueño J, Berriatua E, Volf P, Dvorak V. Effect of trapping method on species identification of phlebotomine sandflies by MALDI-TOF MS protein profiling. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:388-392. [PMID: 29774958 DOI: 10.1111/mve.12305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/19/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
Sandflies (Diptera: Psychodidae) (Newstead, 1911) are blood-feeding insects that transmit human pathogens including Leishmania (Trypanosomatida: Trypanosomatidae) parasites, causative agents of the leishmaniases. To elucidate Leishmania transmission cycles, conclusive identification of vector species is essential. Molecular approaches including matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) protein profiling have recently emerged to complement morphological identification. The aim of this study was to evaluate the effect of the trap type used to collect sandflies, specifically Centers for Disease Control (CDC) light or sticky traps, the two most commonly used in sandfly surveys, on subsequent MALDI-TOF MS protein profiling. Specimens of five species (Phlebotomus ariasi, Phlebotomus papatasi, Phlebotomus perniciosus, Phlebotomus sergenti, Sergentomyia minuta) collected in periurban and agricultural habitats in southeast Spain were subjected to protein profiling. Acquired protein spectra were queried against an in-house reference database and their quality assessed to evaluate the trap type effect. The results indicate that trap choice can substantially affect the quality of protein spectra in collected sandflies. Whereas specimens retrieved from light traps produced intense and reproducible spectra that allowed reliable species determination, profiles of specimens from sticky traps were compromised and often did not enable correct identification. Sticky traps should therefore not be used in surveys that deploy MALDI-TOF MS protein profiling for species identification.
Collapse
Affiliation(s)
- P Halada
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - K Hlavackova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - J Risueño
- Department of Animal Health, Faculty of Veterinary Science, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - E Berriatua
- Department of Animal Health, Faculty of Veterinary Science, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - P Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - V Dvorak
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
23
|
Mewara A, Sharma M, Kaura T, Zaman K, Yadav R, Sehgal R. Rapid identification of medically important mosquitoes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Parasit Vectors 2018; 11:281. [PMID: 29720246 PMCID: PMC5932809 DOI: 10.1186/s13071-018-2854-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/17/2018] [Indexed: 11/30/2022] Open
Abstract
Background Accurate and rapid identification of dipteran vectors is integral for entomological surveys and is a vital component of control programs for mosquito-borne diseases. Conventionally, morphological features are used for mosquito identification, which suffer from biological and geographical variations and lack of standardization. We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for protein profiling of mosquito species from North India with the aim of creating a MALDI-TOF MS database and evaluating it. Methods Mosquito larvae were collected from different rural and urban areas and reared to adult stages. The adult mosquitoes of four medically important genera, Anopheles, Aedes, Culex and Armigerus, were morphologically identified to the species level and confirmed by ITS2-specific PCR sequencing. The cephalothoraces of the adult specimens were subjected to MALDI-TOF analysis and the signature peak spectra were selected for creation of database, which was then evaluated to identify 60 blinded mosquito specimens. Results Reproducible MALDI-TOF MS spectra spanning over 2–14 kDa m/z range were produced for nine mosquito species: Anopheles (An. stephensi, An. culicifacies and An. annularis); Aedes (Ae. aegypti and Ae. albopictus); Culex (Cx. quinquefasciatus, Cx. vishnui and Cx. tritaenorhynchus); and Armigerus (Ar. subalbatus). Genus- and species-specific peaks were identified to create the database and a score of > 1.8 was used to denote reliable identification. The average numbers of peaks obtained were 55–60 for Anopheles, 80–100 for Aedes, 30–60 for Culex and 45–50 peaks for Armigeres species. Of the 60 coded samples, 58 (96.67%) were correctly identified by MALDI-TOF MS with a score > 1.8, while there were two unreliable identifications (both Cx. quinquefasciatus with scores < 1.8). Conclusions MALDI-TOF MS appears to be a pragmatic technique for accurate and rapid identification of mosquito species. The database needs to be expanded to include species from different geographical regions and also different life-cycle stages to fully harness the technique for entomological surveillance programs. Electronic supplementary material The online version of this article (10.1186/s13071-018-2854-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abhishek Mewara
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India.
| | - Megha Sharma
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Taruna Kaura
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Kamran Zaman
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Rakesh Yadav
- Medical Microbiology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| |
Collapse
|