1
|
Mocchetti A, De Rouck S, Naessens S, Dermauw W, Van Leeuwen T. SYNCAS based CRISPR-Cas9 gene editing in predatory mites, whiteflies and stinkbugs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 177:104232. [PMID: 39615800 DOI: 10.1016/j.ibmb.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
Despite the establishment of CRISPR-Cas9 gene editing protocols in a wide range of organisms, genetic engineering is still challenging for many organisms due to constraints including lethality of embryo injection, difficulties in egg/embryo collection or viviparous lifestyles. Recently, an efficient CRISPR-Cas9 method, termed SYNCAS, was developed to genetically modify spider mites and thrips species. The method is based on maternal injection of formulated CRISPR-Cas9 using saponin and BAPC. Here, we investigate whether the method can be used to perform gene editing in other arthropods such as the beneficial predatory mites Amblyseius swirskii and Phytoseiulus persimilis, and the pests Bemisia tabaci and Nezara viridula. For the predatory mites, Antp and SLC25A38 were used as target genes, while the ortholog of the Drosophila melanogaster ABCG transporter white was targeted in B. tabaci and N. viridula. All species were successfully edited with the highest efficiencies (up to 39%) being obtained for B. tabaci. For A. swirskii and P. persimilis no clear phenotypes could be observed, even though SLC25A38 was successfully knocked-out. The lack of a color phenotype in SLC25A38 mutants was confirmed in the spider mite Tetranychus urticae. Disruption of the target gene Antp is likely lethal in predatory mites, as no true null mutants could be recovered. For B. tabaci, KO of white resulted in orange eyes which diverges from the phenotype seen in white mutants of D. melanogaster. In the last species, N. viridula, a single phenotypic mutant could be detected having a patchy white body coloration with wild type eye coloration. Genotyping revealed a single amino acid deletion at the target site, suggesting the creation of a hypomorphic allele. To conclude, the protocols provided in this work can contribute to the genetic study of predatory mites used in biological control, as well as hemipteran pests.
Collapse
Affiliation(s)
- A Mocchetti
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - S De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - S Naessens
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - W Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - T Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| |
Collapse
|
2
|
Jangra S, Potts J, Ghosh A, Seal DR. Genome editing: A novel approach to manage insect vectors of plant viruses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104189. [PMID: 39341259 DOI: 10.1016/j.ibmb.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Insect vectors significantly threaten global agriculture by transmitting numerous plant viruses. Various measures, from conventional insecticides to genetic engineering, are used to mitigate this threat. However, none provide complete resistance. Therefore, researchers are looking for novel control options. In recent years with the advancements in genomic technologies, genomes and transcriptomes of various insect vectors have been generated. However, the lack of knowledge about gene functions hinders the development of novel strategies to restrict virus spread. RNA interference (RNAi) is widely used to elucidate gene functions, but its variable efficacy hampers its use in managing insect vectors and plant viruses. Genome editing has the potential to overcome these challenges and has been extensively used in various insect pest species. This review summarizes the progress and potential of genome editing in plant virus vectors and its application as a functional genomic tool to elucidate virus-vector interactions. We also discuss the major challenges associated with editing genes of interest in insect vectors.
Collapse
Affiliation(s)
- Sumit Jangra
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA.
| | - Jesse Potts
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dakshina R Seal
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| |
Collapse
|
3
|
Manjunatha M, Pham M, Gulia-Nuss M, Nuss A. Gene editing in agricultural, health, and veterinary pest arthropods: recent advances. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101235. [PMID: 39019112 PMCID: PMC11528696 DOI: 10.1016/j.cois.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/21/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Pest arthropods cause significant crop damage or are vectors of pathogens for both plants and animals. The current standard of pest management prevents against crop losses and protects human and animal health, but shortcomings exist, such as insecticide resistance and environmental damage to nontarget organisms. New management methods are therefore needed. The development of new tools, such as site-specific gene editing, has accelerated the study of gene function and phenotype in nonmodel arthropod species and may enable the development of new strategies for pathogen and arthropod control. Here, the most recent developments in gene editing in arthropod pests are briefly reviewed. Additionally, technological advances that could be applicable to new species or enhance the success rates of gene editing in species with already established protocols are highlighted.
Collapse
Affiliation(s)
- Madhusudan Manjunatha
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, USA
| | - Michael Pham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
| | - Andrew Nuss
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, USA; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA.
| |
Collapse
|
4
|
İnak E, De Rouck S, Demirci B, Dermauw W, Geibel S, Van Leeuwen T. A novel target-site mutation (H146Q) outside the ubiquinone binding site of succinate dehydrogenase confers high levels of resistance to cyflumetofen and pyflubumide in Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 170:104127. [PMID: 38657708 DOI: 10.1016/j.ibmb.2024.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Mitochondrial electron transfer inhibitors at complex II (METI-II), also referred to as succinate dehydrogenase inhibitors (SDHI), represent a recently developed class of acaricides encompassing cyflumetofen, cyenopyrafen, pyflubumide and cyetpyrafen. Despite their novelty, resistance has already developed in the target pest, Tetranychus urticae. In this study a new mutation, H146Q in a highly conserved region of subunit B of complex II, was identified in a T. urticae population resistant to all METI-IIs. In contrast to previously described mutations, H146Q is located outside the ubiquinone binding site of complex II. Marker-assisted backcrossing of this mutation in a susceptible genetic background validated its association with resistance to cyflumetofen and pyflubumide, but not cyenopyrafen or cyetpyrafen. Biochemical assays and the construction of inhibition curves with isolated mitochondria corroborated this selectivity. In addition, phenotypic effects of H146Q, together with the previously described H258L, were further examined via CRISPR/Cas9 gene editing. Although both mutations were successfully introduced into a susceptible T. urticae population, the H146Q gene editing event was only recovered in individuals already harboring the I260V mutation, known to confer resistance towards cyflumetofen. The combination of H146Q + I260V conferred high resistance levels to all METI-II acaricides with LC50 values over 5000 mg a.i./L for cyflumetofen and pyflubumide. Similarly, the introduction of H258L via gene editing resulted in high resistance levels to all tested acaricides, with extreme LC50 values (>5000 mg a.i./L) for cyenopyrafen and cyetpyrafen, but lower resistance levels for pyflubumide and cyflumetofen. Together, these findings indicate that different mutations result in a different cross-resistance spectrum, probably also reflecting subtle differences in the binding mode of complex II acaricides.
Collapse
Affiliation(s)
- Emre İnak
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Plant Protection, Faculty of Agriculture, Ankara University, 06135, Ankara, Turkey
| | - Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Berke Demirci
- Graduate School of Natural and Applied Sciences, Ankara University, 06110, Ankara, Turkey
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sven Geibel
- Bayer AG, Crop Science Division, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
5
|
Kondo K, Tanaka A, Kunieda T. Single-step generation of homozygous knockout/knock-in individuals in an extremotolerant parthenogenetic tardigrade using DIPA-CRISPR. PLoS Genet 2024; 20:e1011298. [PMID: 38870088 PMCID: PMC11175437 DOI: 10.1371/journal.pgen.1011298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Tardigrades are small aquatic invertebrates known for their remarkable tolerance to diverse extreme stresses. To elucidate the in vivo mechanisms underlying this extraordinary resilience, methods for genetically manipulating tardigrades have long been desired. Despite our prior success in somatic cell gene editing by microinjecting Cas9 ribonucleoproteins (RNPs) into the body cavity of tardigrades, the generation of gene-edited individuals remained elusive. In this study, employing an extremotolerant parthenogenetic tardigrade species, Ramazzottius varieornatus, we established conditions that led to the generation of gene-edited tardigrade individuals. Drawing inspiration from the direct parental CRISPR (DIPA-CRISPR) technique employed in several insects, we simply injected a concentrated Cas9 RNP solution into the body cavity of parental females shortly before their initial oviposition. This approach yielded gene-edited G0 progeny. Notably, only a single allele was predominantly detected at the target locus for each G0 individual, indicative of homozygous mutations. By co-injecting single-stranded oligodeoxynucleotides (ssODNs) with Cas9 RNPs, we achieved the generation of homozygously knocked-in G0 progeny, and these edited alleles were inherited by G1/G2 progeny. This is the first example of heritable gene editing in the entire phylum of Tardigrada. This establishment of a straightforward method for generating homozygous knockout/knock-in individuals not only facilitates in vivo analyses of the molecular mechanisms underpinning extreme tolerance, but also opens up avenues for exploring various topics, including Evo-Devo, in tardigrades.
Collapse
Affiliation(s)
- Koyuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Tsudanuma, Narashino, Chiba, Japan
| | - Akihiro Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
De Rouck S, Mocchetti A, Dermauw W, Van Leeuwen T. SYNCAS: Efficient CRISPR/Cas9 gene-editing in difficult to transform arthropods. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104068. [PMID: 38171463 DOI: 10.1016/j.ibmb.2023.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
The genome editing technique CRISPR/Cas9 has led to major advancements in many research fields and this state-of-the-art tool has proven its use in genetic studies for various arthropods. However, most transformation protocols rely on microinjection of CRISPR/Cas9 components into embryos, a method which is challenging for many species. Alternatively, injections can be performed on adult females, but transformation efficiencies can be very low as was shown for the two-spotted spider mite, Tetranychus urticae, a minute but important chelicerate pest on many crops. In this study, we explored different CRISPR/Cas9 formulations to optimize a maternal injection protocol for T. urticae. We observed a strong synergy between branched amphipathic peptide capsules and saponins, resulting in a significant increase of CRISPR/Cas9 knock-out efficiency, exceeding 20%. This CRISPR/Cas9 formulation, termed SYNCAS, was used to knock-out different T. urticae genes - phytoene desaturase, CYP384A1 and Antennapedia - but also allowed to develop a co-CRISPR strategy and facilitated the generation of T. urticae knock-in mutants. In addition, SYNCAS was successfully applied to knock-out white and white-like genes in the western flower thrips, Frankliniella occidentalis. The SYNCAS method allows routine genome editing in these species and can be a game changer for genetic research in other hard to transform arthropods.
Collapse
Affiliation(s)
- Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Antonio Mocchetti
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| |
Collapse
|
7
|
Vandenhole M, Lu X, Tsakireli D, Mermans C, De Rouck S, De Beer B, Simma E, Pergantis SA, Jonckheere W, Vontas J, Van Leeuwen T. Contrasting roles of cytochrome P450s in amitraz and chlorfenapyr resistance in the crop pest Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104039. [PMID: 37992878 DOI: 10.1016/j.ibmb.2023.104039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
The molecular mechanisms of amitraz and chlorfenapyr resistance remain only poorly understood for major agricultural pests and vectors of human diseases. This study focusses on a multi-resistant field strain of the crop pest Tetranychus urticae, which could be readily selected in the laboratory to high levels of amitraz and chlorfenapyr resistance. Toxicity experiments using tralopyril, the active toxophore of chlorfenapyr, suggested decreased activation as a likely mechanism underlying resistance. Starting from the same parental strain, transcriptome profiling revealed that a cluster of detoxifying genes was upregulated after amitraz selection, but unexpectedly downregulated after chlorfenapyr selection. Further functional validation associated the upregulation of CYP392A16 with amitraz metabolism and the downregulation of CYP392D8 with reduced activation of chlorfenapyr to tralopyril. Genetic mapping (QTL analysis by BSA) was conducted in an attempt to unravel the genetic mechanisms of expression variation and resistance. This revealed that chlorfenapyr resistance was associated with a single QTL, while 3 QTLs were uncovered for amitraz resistance. Together with the observed contrasting gene expression patterns, we argue that transcriptional regulators most likely underly the distinct expression profiles associated with resistance, but these await further functional validation.
Collapse
Affiliation(s)
- Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Xueping Lu
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Dimitra Tsakireli
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13, Heraklion, Crete, Greece
| | - Catherine Mermans
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Sander De Rouck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Berdien De Beer
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Eba Simma
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Spiros A Pergantis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Wim Jonckheere
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - John Vontas
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13, Heraklion, Crete, Greece
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium.
| |
Collapse
|
8
|
Li Z, Wang L, Yi T, Liu D, Li G, Jin DC. The nuclear receptor gene E75 plays a key role in regulating the molting process of the spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:1-11. [PMID: 38112881 DOI: 10.1007/s10493-023-00868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
The nuclear receptor gene Ecdysone-induced protein 75 (E75), as the component of ecdysone response genes in the ecdysone signaling pathway, has important regulatory function for insect molting. However, the regulatory function of E75 during the molting process of spider mites is not yet clear. In this study, the expression pattern of E75 in the molting process of the spider mite Tetranychus urticae was analyzed. The results showed that there was a peak at 8 h post-molting, followed by a decline 8 h after entering each respective quiescent stage across various developmental stages. During the deutonymph stage, the expression dynamics of E75, observed at 4-h intervals, indicated that the transcript levels of TuE75 peaked at 24 h, coinciding with the onset of molting in the mites. To investigate the function of TuE75 during the molting process, silencing TuE75 through dsRNA injection into deutonymph mites at the age of 8 h yielded a notable outcome: 78% of the deutonymph mites were unable to progress to the adult stage. Among these phenotypic mites, 37% were incapable of transitioning into the quiescent state and eventually succumbed after a certain period. An additional 41% of the mites successfully entered the quiescent state but encountered difficulties in shedding the old epidermis, leading to eventual mortality. In summary, these results suggested that TuE75 plays a key role in the molting process of T. urticae.
Collapse
Affiliation(s)
- Zhuo Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Liang Wang
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Dongdong Liu
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China.
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China.
| |
Collapse
|
9
|
Terradas G, Macias VM, Peterson H, McKeand S, Krawczyk G, Rasgon JL. The Development and Expansion of in vivo Germline Editing Technologies in Arthropods: Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) and Beyond. Integr Comp Biol 2023; 63:1550-1563. [PMID: 37742320 PMCID: PMC10755176 DOI: 10.1093/icb/icad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
In the past 20 years, sequencing technologies have led to easy access to genomic data from nonmodel organisms in all biological realms. Insect genetic manipulation, however, continues to be a challenge due to various factors, including technical and cost-related issues. Traditional techniques such as microinjection of gene-editing vectors into early stage embryos have been used for arthropod transgenesis and the discovery of Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) technologies allowed for targeted mutagenesis and the creation of knockouts or knock-ins in arthropods. Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) acts as an alternative to embryonic microinjections, which require expensive equipment and extensive hands-on training. ReMOT Control's main advantage is its ease of use coupled with the ability to hypothetically target any vitellogenic species, as injections are administered to the egg-laying adult rather than embryos. After its initial application in the mosquito Aedes aegypti, ReMOT Control has successfully produced mutants not only for mosquitoes but for multiple arthropod species from diverse orders, such as ticks, mites, wasps, beetles, and true bugs, and is being extended to crustaceans, demonstrating the versatility of the technique. In this review, we discuss the current state of ReMOT Control from its proof-of-concept to the advances and challenges in the application across species after 5 years since its development, including novel extensions of the technique such as direct parental (DIPA)-CRISPR.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Vanessa M Macias
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Hillary Peterson
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Sage McKeand
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Grzegorz Krawczyk
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Jason L Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| |
Collapse
|
10
|
Hajdusek O, Kopacek P, Perner J. Experimental platforms for functional genomics in ticks. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101102. [PMID: 37586557 DOI: 10.1016/j.cois.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Ticks are blood-feeding ectoparasites that devastate cattle farming and are an omnipresent nuisance to pets and humans, posing a threat of pathogen transmission. Laboratory experimental models can be instrumental in the search for molecular targets of novel acaricides or vaccines. Mainly, though, the experimental models represent invaluable tools for broadening our basic understanding of key processes of tick blood-feeding physiology and vector competence. In order to understand the function of a single component within the full complexity of a feeding tick, genetic or biochemical interventions are used for systemic phenotypisation. In this work, we summarise current experimental modalities that represent powerful approaches for determining biological functions of tick molecular components.
Collapse
Affiliation(s)
- Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
11
|
Wang L, Li Z, Yi T, Li G, Smagghe G, Jin D. Ecdysteroid Biosynthesis Halloween Gene Spook Plays an Important Role in the Oviposition Process of Spider Mite, Tetranychus urticae. Int J Mol Sci 2023; 24:14797. [PMID: 37834248 PMCID: PMC10573261 DOI: 10.3390/ijms241914797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
In insects, the ecdysteroid hormone regulates development and reproduction. However, its function in the reproduction process of spider mites is still unclear. In this study, we investigated the effect of the Halloween gene Spook on the oviposition of the reproduction process in a spider mite, Tetranychus urticae. The expression patterns of the ecdysteroid biosynthesis and signaling pathway genes, as analyzed by RT-qPCR, showed that the expression pattern of the Halloween genes was similar to the oviposition pattern of the female mite and the expression patterns of the vitellogenesis-related genes TuVg and TuVgR, suggesting that the Halloween genes are involved in the oviposition of spider mites. To investigate the function of the ecdysteroid hormone on the oviposition of the reproduction process, we carried out an RNAi assay against the Halloween gene Spook by injection in female mites. Effective silencing of TuSpo led to a significant reduction of oviposition. In summary, these results provide an initial study on the effect of Halloween genes on the reproduction in T. urticae and may be a foundation for a new strategy to control spider mites.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Zhuo Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Daochao Jin
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| |
Collapse
|
12
|
Ji M, Vandenhole M, De Beer B, De Rouck S, Villacis-Perez E, Feyereisen R, Clark RM, Van Leeuwen T. A nuclear receptor HR96-related gene underlies large trans-driven differences in detoxification gene expression in a generalist herbivore. Nat Commun 2023; 14:4990. [PMID: 37591878 PMCID: PMC10435515 DOI: 10.1038/s41467-023-40778-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
The role, magnitude, and molecular nature of trans-driven expression variation underlying the upregulation of detoxification genes in pesticide resistant arthropod populations has remained enigmatic. In this study, we performed expression quantitative trait locus (eQTL) mapping (n = 458) between a pesticide resistant and a susceptible strain of the generalist herbivore and crop pest Tetranychus urticae. We found that a single trans eQTL hotspot controlled large differences in the expression of a subset of genes in different detoxification gene families, as well as other genes associated with host plant use. As established by additional genetic approaches including RNAi gene knockdown, a duplicated gene with a nuclear hormone receptor HR96-related ligand-binding domain was identified as causal for the expression differences between strains. The presence of a large family of HR96-related genes in T. urticae may enable modular control of detoxification and host plant use genes, facilitating this species' known and rapid evolution to diverse pesticides and host plants.
Collapse
Affiliation(s)
- Meiyuan Ji
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Berdien De Beer
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sander De Rouck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ernesto Villacis-Perez
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - René Feyereisen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
13
|
De Rouck S, İnak E, Dermauw W, Van Leeuwen T. A review of the molecular mechanisms of acaricide resistance in mites and ticks. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103981. [PMID: 37391089 DOI: 10.1016/j.ibmb.2023.103981] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 07/02/2023]
Abstract
The Arachnida subclass of Acari comprises many harmful pests that threaten agriculture as well as animal health, including herbivorous spider mites, the bee parasite Varroa, the poultry mite Dermanyssus and several species of ticks. Especially in agriculture, acaricides are often used intensively to minimize the damage they inflict, promoting the development of resistance. Beneficial predatory mites used in biological control are also subjected to acaricide selection in the field. The development and use of new genetic and genomic tools such as genome and transcriptome sequencing, bulked segregant analysis (QTL mapping), and reverse genetics via RNAi or CRISPR/Cas9, have greatly increased our understanding of the molecular genetic mechanisms of resistance in Acari, especially in the spider mite Tetranychus urticae which emerged as a model species. These new techniques allowed to uncover and validate new resistance mutations in a larger range of species. In addition, they provided an impetus to start elucidating more challenging questions on mechanisms of gene regulation of detoxification associated with resistance.
Collapse
Affiliation(s)
- Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Emre İnak
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapı, 06110, Ankara, Turkiye
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 9820 Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
14
|
CRISPR-Cas Genome Editing for Insect Pest Stress Management in Crop Plants. STRESSES 2022. [DOI: 10.3390/stresses2040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global crop yield and food security are being threatened by phytophagous insects. Innovative methods are required to increase agricultural output while reducing reliance on hazardous synthetic insecticides. Using the revolutionary CRISPR-Cas technology to develop insect-resistant plants appears to be highly efficient at lowering production costs and increasing farm profitability. The genomes of both a model insect, Drosophila melanogaster, and major phytophagous insect genera, viz. Spodoptera, Helicoverpa, Nilaparvata, Locusta, Tribolium, Agrotis, etc., were successfully edited by the CRISPR-Cas toolkits. This new method, however, has the ability to alter an insect’s DNA in order to either induce a gene drive or overcome an insect’s tolerance to certain insecticides. The rapid progress in the methodologies of CRISPR technology and their diverse applications show a high promise in the development of insect-resistant plant varieties or other strategies for the sustainable management of insect pests to ensure food security. This paper reviewed and critically discussed the use of CRISPR-Cas genome-editing technology in long-term insect pest management. The emphasis of this review was on the prospective uses of the CRISPR-Cas system for insect stress management in crop production through the creation of genome-edited crop plants or insects. The potential and the difficulties of using CRISPR-Cas technology to reduce pest stress in crop plants were critically examined and discussed.
Collapse
|
15
|
Singh S, Rahangdale S, Pandita S, Saxena G, Upadhyay SK, Mishra G, Verma PC. CRISPR/Cas9 for Insect Pests Management: A Comprehensive Review of Advances and Applications. AGRICULTURE 2022; 12:1896. [DOI: 10.3390/agriculture12111896] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Insect pests impose a serious threat to agricultural productivity. Initially, for pest management, several breeding approaches were applied which have now been gradually replaced by genome editing (GE) strategies as they are more efficient and less laborious. CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-associated system) was discovered as an adaptive immune system of bacteria and with the scientific advancements, it has been improvised into a revolutionary genome editing technique. Due to its specificity and easy handling, CRISPR/Cas9-based genome editing has been applied to a wide range of organisms for various research purposes. For pest control, diverse approaches have been applied utilizing CRISPR/Cas9-like systems, thereby making the pests susceptible to various insecticides, compromising the reproductive fitness of the pest, hindering the metamorphosis of the pest, and there have been many other benefits. This article reviews the efficiency of CRISPR/Cas9 and proposes potential research ideas for CRISPR/Cas9-based integrated pest management. CRISPR/Cas9 technology has been successfully applied to several insect pest species. However, there is no review available which thoroughly summarizes the application of the technique in insect genome editing for pest control. Further, authors have highlighted the advancements in CRISPR/Cas9 research and have discussed its future possibilities in pest management.
Collapse
Affiliation(s)
- Sanchita Singh
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Department of Botany, University of Lucknow, Lucknow 226007, UP, India
| | - Somnath Rahangdale
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Shivali Pandita
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Department of Zoology, University of Lucknow, Lucknow 226007, UP, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow 226007, UP, India
| | | | - Geetanjali Mishra
- Department of Zoology, University of Lucknow, Lucknow 226007, UP, India
| | - Praveen C. Verma
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| |
Collapse
|
16
|
Takeda M, Suzuki T. Circadian and Neuroendocrine Basis of Photoperiodism Controlling Diapause in Insects and Mites: A Review. Front Physiol 2022; 13:867621. [PMID: 35812309 PMCID: PMC9257128 DOI: 10.3389/fphys.2022.867621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The photoperiodic system is concealed in the highly complex black-box, comprising four functional subunits: 1) a photo/thermo-sensitive input unit, 2) a photoperiodic clock based on a circadian system, 3) a condenser unit counting the number of inductive signals, and 4) a neuroendocrine switch that triggers a phenotypic shift. This review aims to summarize the research history and current reach of our understanding on this subject to connect it with the molecular mechanism of the circadian clock rapidly being unveiled. The review also focuses on the mode of intersubunit information transduction. It will scan the recent advancement in research on each functional subunit, but special attention will be given to the circadian clock-endocrine conjunct and the role of melatonin signaling in the regulation of insect photoperiodism. Prothoracicotropic hormone (PTTH) probably plays the most crucial role in the regulation of pupal diapause, which is the simplest model system of diapause regulation by hormones investigated so far, particularly in the Chinese oak silkmoth (Antheraea pernyi). A search for the trigger to release the PTTH found some candidates, that is, indoleamines. Indolamine metabolism is controlled by arylalkylamine N-acetyltransferase (aaNAT). Indolamine dynamics and aaNAT enzymatic activity changed according to photoperiods. aaNAT activity and melatonin content in the brain showed not only a photoperiodic response but also a circadian fluctuation. aaNAT had multiple E-boxes, suggesting that it is a clock-controlled gene (ccg), which implies that cycle (cyc, or brain-muscle Arnt-like 1 = Bmal1)/Clock (Clk) heterodimer binds to E-box and stimulates the transcription of aaNAT, which causes the synthesis of melatonin. RNAi against transcription modulators, cyc, or Clk downregulated aaNAT transcription, while RNAi against repressor of cyc/Clk, per upregulated aaNAT transcription. Immunohistochemical localization showed that the circadian neurons carry epitopes of melatonin-producing elements such as aaNAT, the precursor serotonin, HIOMT, and melatonin as well as clock gene products such as cyc-ir, Per-ir, and dbt-ir, while PTTH-producing neurons juxtaposed against the clock neurons showed hMT2-ir in A. pernyi brain. Melatonin probably binds to the putative melatonin receptor (MT) that stimulates Ca2+ influx, which in turn activates PKC. This induces Rab 8 phosphorylation and exocytosis of PTTH, leading to termination of diapause. All the PTTH-expressing neurons have PKC-ir, and Rab8-ir. When diapause is induced and maintained under short days, serotonin binding to 5HTR1B suppresses PTTH release in a yet unknown way. RNAi against this receptor knocked out photoperiodism; short day response is blocked and diapause was terminated even under the short day condition. The result showed that a relatively simple system controls both induction and termination in pupal diapause of A. pernyi: the circadian system regulates the transcription of aaNAT as a binary switch, the enzyme produces a melatonin rhythm that gates PTTH release, and 5HTR1B and MT are probably also under photoperiodic regulation. Finally, we listed the remaining riddles which need to be resolved, to fully understand this highly complex system in future studies.
Collapse
Affiliation(s)
- Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
17
|
Rahman MU, Bilal M, Shah JA, Kaushik A, Teissedre PL, Kujawska M. CRISPR-Cas9-Based Technology and Its Relevance to Gene Editing in Parkinson's Disease. Pharmaceutics 2022; 14:1252. [PMID: 35745824 PMCID: PMC9229276 DOI: 10.3390/pharmaceutics14061252] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) and other chronic and debilitating neurodegenerative diseases (NDs) impose a substantial medical, emotional, and financial burden on individuals and society. The origin of PD is unknown due to a complex combination of hereditary and environmental risk factors. However, over the last several decades, a significant amount of available data from clinical and experimental studies has implicated neuroinflammation, oxidative stress, dysregulated protein degradation, and mitochondrial dysfunction as the primary causes of PD neurodegeneration. The new gene-editing techniques hold great promise for research and therapy of NDs, such as PD, for which there are currently no effective disease-modifying treatments. As a result, gene therapy may offer new treatment options, transforming our ability to treat this disease. We present a detailed overview of novel gene-editing delivery vehicles, which is essential for their successful implementation in both cutting-edge research and prospective therapeutics. Moreover, we review the most recent advancements in CRISPR-based applications and gene therapies for a better understanding of treating PD. We explore the benefits and drawbacks of using them for a range of gene-editing applications in the brain, emphasizing some fascinating possibilities.
Collapse
Affiliation(s)
- Mujeeb ur Rahman
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland;
| | - Muhammad Bilal
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, China;
- Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pierre-Louis Teissedre
- Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France;
- Institut des Sciences de la Vigne et du Vin, INRA, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Małgorzata Kujawska
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland;
| |
Collapse
|
18
|
Njiru C, Xue W, De Rouck S, Alba JM, Kant MR, Chruszcz M, Vanholme B, Dermauw W, Wybouw N, Van Leeuwen T. Intradiol ring cleavage dioxygenases from herbivorous spider mites as a new detoxification enzyme family in animals. BMC Biol 2022; 20:131. [PMID: 35658860 PMCID: PMC9167512 DOI: 10.1186/s12915-022-01323-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Background Generalist herbivores such as the two-spotted spider mite Tetranychus urticae thrive on a wide variety of plants and can rapidly adapt to novel hosts. What traits enable polyphagous herbivores to cope with the diversity of secondary metabolites in their variable plant diet is unclear. Genome sequencing of T. urticae revealed the presence of 17 genes that code for secreted proteins with strong homology to “intradiol ring cleavage dioxygenases (DOGs)” from bacteria and fungi, and phylogenetic analyses show that they have been acquired by horizontal gene transfer from fungi. In bacteria and fungi, DOGs have been well characterized and cleave aromatic rings in catecholic compounds between adjacent hydroxyl groups. Such compounds are found in high amounts in solanaceous plants like tomato, where they protect against herbivory. To better understand the role of this gene family in spider mites, we used a multi-disciplinary approach to functionally characterize the various T. urticae DOG genes. Results We confirmed that DOG genes were present in the T. urticae genome and performed a phylogenetic reconstruction using transcriptomic and genomic data to advance our understanding of the evolutionary history of spider mite DOG genes. We found that DOG expression differed between mites from different plant hosts and was induced in response to jasmonic acid defense signaling. In consonance with a presumed role in detoxification, expression was localized in the mite’s gut region. Silencing selected DOGs expression by dsRNA injection reduced the mites’ survival rate on tomato, further supporting a role in mitigating the plant defense response. Recombinant purified DOGs displayed a broad substrate promiscuity, cleaving a surprisingly wide array of aromatic plant metabolites, greatly exceeding the metabolic capacity of previously characterized microbial DOGs. Conclusion Our findings suggest that the laterally acquired spider mite DOGs function as detoxification enzymes in the gut, disarming plant metabolites before they reach toxic levels. We provide experimental evidence to support the hypothesis that this proliferated gene family in T. urticae is causally linked to its ability to feed on an extremely wide range of host plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01323-1.
Collapse
|
19
|
Ding BY, Xie XC, Shang F, Smagghe G, Niu JZ, Wang JJ. Characterization of carotenoid biosynthetic pathway genes in the pea aphid (Acyrthosiphon pisum) revealed by heterologous complementation and RNA interference assays. INSECT SCIENCE 2022; 29:645-656. [PMID: 34399028 DOI: 10.1111/1744-7917.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Carotenoids are involved in many essential physiological functions and are produced from geranylgeranyl pyrophosphate through synthase, desaturase, and cyclase activities. In the pea aphid (Acyrthosiphon pisum), the duplication of carotenoid biosynthetic genes, including carotenoid synthases/cyclases (ApCscA-C) and desaturases (ApCdeA-D), through horizontal gene transfer from fungi has been detected, and ApCdeB has known dehydrogenation functions. However, whether other genes contribute to aphid carotenoid biosynthesis, and its specific regulatory pathway, remains unclear. In the current study, functional analyses of seven genes were performed using heterologous complementation and RNA interference assays. The bifunctional enzymes ApCscA-C were responsible for the synthase of phytoene, and ApCscC may also have a cyclase activity. ApCdeA, ApCdeC, and ApCdeD had diverse dehydrogenation functions. ApCdeA catalyzed the enzymatic conversion of phytoene to neurosporene (three-step product), ApCdeC catalyzed the enzymatic conversion of phytoene to ζ-carotene (two-step product), and ApCdeD catalyzed the enzymatic conversion of phytoene to lycopene (four-step product). Silencing of ApCscs reduced the expression levels of ApCdes, and silencing these carotenoid biosynthetic genes reduced the α-, β-, and γ-carotene levels, as well as the total carotenoid level. The results suggest that these genes were activated and led to carotenoid biosynthesis in the pea aphid.
Collapse
Affiliation(s)
- Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest, Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiu-Cheng Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest, Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest, Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest, Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest, Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest, Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Shirai Y, Piulachs MD, Belles X, Daimon T. DIPA-CRISPR is a simple and accessible method for insect gene editing. CELL REPORTS METHODS 2022; 2:100215. [PMID: 35637909 PMCID: PMC9142683 DOI: 10.1016/j.crmeth.2022.100215] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/03/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022]
Abstract
Current approaches for insect gene editing require microinjection of materials into early embryos. This severely limits the application of gene editing to a great number of insect species, especially to those whose reproduction systems preclude access to early embryos for injection. To overcome these limitations, we report a simple and accessible method for insect gene editing, termed "direct parental" CRISPR (DIPA-CRISPR). We show that injection of Cas9 ribonucleoproteins (RNPs) into the haemocoel of adult females efficiently introduces heritable mutations in developing oocytes. Importantly, commercially available standard Cas9 protein can be directly used for DIPA-CRISPR, which makes this approach highly practical and feasible. DIPA-CRISPR enables highly efficient gene editing in the cockroaches, on which conventional approaches cannot be applied, and in the model beetle Tribolium castaneum. Due to its simplicity and accessibility, DIPA-CRISPR will greatly extend the application of gene editing technology to a wide variety of insects.
Collapse
Affiliation(s)
- Yu Shirai
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Maria-Dolors Piulachs
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, Barcelona 08003, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, Barcelona 08003, Spain
| | - Takaaki Daimon
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
21
|
Nganso BT, Pines G, Soroker V. Insights into gene manipulation techniques for Acari functional genomics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103705. [PMID: 35134533 DOI: 10.1016/j.ibmb.2021.103705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Functional genomics is an essential tool for elucidating the structure and function of genes in any living organism. Here, we review the use of different gene manipulation techniques in functional genomics of Acari (mites and ticks). Some of these Acari species inflict severe economic losses to managed crops and health problems to humans, wild and domestic animals, but many also provide important ecosystem services worldwide. Currently, RNA interference (RNAi) is the leading gene expression manipulation tool followed by gene editing via the bacterial type II Clustered Regularly Interspaced Short Palindromic Repeats and associated protein 9 system (CRISPR-Cas9). Whilst RNAi, via siRNA, does not always lead to expected outcomes, the exploitations of the CRISPR systems in Acari are still in their infancy and are limited only to CRISP/Cas9 to date. In this review, we discuss the advantages and disadvantages of RNAi and CRISPR-Cas9 and the technical challenges associated with their exploitations. We also compare the biochemical machinery of RNAi and CRISPR-Cas9 technologies. We highlight some potential solutions for experimental optimization of each mechanism in gene function studies. The potential benefits of adopting various CRISPR-Cas9 systems for expanding on functional genomics experiments in Acari are also discussed.
Collapse
Affiliation(s)
- Beatrice T Nganso
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| | - Gur Pines
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| | - Victoria Soroker
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| |
Collapse
|
22
|
Sharma A, Pham MN, Reyes JB, Chana R, Yim WC, Heu CC, Kim D, Chaverra-Rodriguez D, Rasgon JL, Harrell RA, Nuss AB, Gulia-Nuss M. Cas9-mediated gene editing in the black-legged tick, Ixodes scapularis, by embryo injection and ReMOT Control. iScience 2022; 25:103781. [PMID: 35535206 PMCID: PMC9076890 DOI: 10.1016/j.isci.2022.103781] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 11/04/2022] Open
Abstract
Despite their capacity to acquire and pass on an array of debilitating pathogens, research on ticks has lagged behind other arthropod vectors, such as mosquitoes, largely because of challenges in applying available genetic and molecular tools. CRISPR-Cas9 is transforming non-model organism research; however, successful gene editing has not yet been reported in ticks. Technical challenges for injecting tick embryos to attempt gene editing have further slowed research progress. Currently, no embryo injection protocol exists for any chelicerate species, including ticks. Herein, we report a successful embryo injection protocol for the black-legged tick, Ixodes scapularis, and the use of this protocol for genome editing with CRISPR-Cas9. We also demonstrate that the ReMOT Control technique could be successfully used to generate genome mutations outside Insecta. Our results provide innovative tools to the tick research community that are essential for advancing our understanding of the molecular mechanisms governing pathogen transmission by tick vectors and the underlying biology of host-vector-pathogen interactions.
Collapse
Affiliation(s)
- Arvind Sharma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Michael N. Pham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Jeremiah B. Reyes
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Randeep Chana
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Won C. Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Chan C. Heu
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Donghun Kim
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Duverney Chaverra-Rodriguez
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jason L. Rasgon
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Robert A. Harrell
- Insect Transformation Facility, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Andrew B. Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
23
|
Gainett G, Crawford AR, Klementz BC, So C, Baker CM, Setton EVW, Sharma PP. Eggs to long-legs: embryonic staging of the harvestman Phalangium opilio (Opiliones), an emerging model arachnid. Front Zool 2022; 19:11. [PMID: 35246168 PMCID: PMC8896363 DOI: 10.1186/s12983-022-00454-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The comparative embryology of Chelicerata has greatly advanced in recent years with the integration of classical studies and genetics, prominently spearheaded by developmental genetic works in spiders. Nonetheless, the understanding of the evolution of development and polarization of embryological characters in Chelicerata is presently limited, as few non-spider species have been well studied. A promising focal species for chelicerate evo-devo is the daddy-long-legs (harvestman) Phalangium opilio, a member of the order Opiliones. Phalangium opilio, breeds prolifically and is easily accessible in many parts of the world, as well as tractable in a laboratory setting. Resources for this species include developmental transcriptomes, a draft genome, and protocols for RNA interference, but a modern staging system is critically missing for this emerging model system. RESULTS We present a staging system of P. opilio embryogenesis that spans the most important morphogenetic events with respect to segment formation, appendage elongation and head development. Using time-lapse imaging, confocal microscopy, colorimetric in situ hybridization, and immunohistochemistry, we tracked the development of synchronous clutches from egg laying to adulthood. We describe key events in segmentation, myogenesis, neurogenesis, and germ cell formation. CONCLUSION Considering the phylogenetic position of Opiliones and the unduplicated condition of its genome (in contrast to groups like spiders and scorpions), this species is poised to serve as a linchpin for comparative studies in arthropod development and genome evolution. The staging system presented herein provides a valuable reference for P. opilio that we anticipate being useful to the arthropod evo-devo community, with the goal of revitalizing research in the comparative development of non-spider arachnids.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.
| | - Audrey R Crawford
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Calvin So
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
24
|
Papapostolou KM, Riga M, Samantsidis GR, Skoufa E, Balabanidou V, Van Leeuwen T, Vontas J. Over-expression in cis of the midgut P450 CYP392A16 contributes to abamectin resistance in Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103709. [PMID: 34995778 DOI: 10.1016/j.ibmb.2021.103709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 mediated metabolism is a well-known mechanism of insecticide resistance. However, to what extent qualitative or quantitative changes are responsible for increased metabolism, is not well understood. Increased expression of P450 genes is most often reported, but the underlying regulatory mechanisms remain widely unclear. In this study, we investigate CYP392A16, a P450 from the polyphagous and major agricultural pest Tetranychus urticae. High expression levels of CYP392A16 and in vitro metabolism assays have previously associated this P450 with abamectin resistance. Here, we show that CYP392A16 is primarily localized in the midgut epithelial cells, as indicated by immunofluorescence analysis, a finding also supported by a comparison between feeding and contact toxicity bioassays. Silencing via RNAi of CYP392A16 in a highly resistant T. urticae population reduced insecticide resistance levels from 3400- to 1900- fold, compared to the susceptible reference strain. Marker-assisted backcrossing, using a single nucleotide polymorphism (SNP) found in the CYP392A16 allele from the resistant population, was subsequently performed to create congenic lines bearing this gene in a susceptible genetic background. Toxicity assays indicated that the allele derived from the resistant strain confers 3.6-fold abamectin resistance compared to the lines with susceptible genetic background. CYP392A16 is over-expressed at the same levels in these lines, pointing to cis-regulation of gene expression. In support of that, functional analysis of the putative promoter region from the resistant and susceptible parental strains revealed a higher reporter gene expression, confirming the presence of cis-acting regulatory mechanisms.
Collapse
Affiliation(s)
- Kyriaki Maria Papapostolou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Maria Riga
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece.
| | - George-Rafael Samantsidis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Evangelia Skoufa
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000, Ghent, Belgium
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece.
| |
Collapse
|
25
|
Manjunathachar HV, Azhahianambi P, Kumar B, Ghosh S. Screening for the "Achilles Heel" of Hyalomma anatolicum Ticks by RNA Interference Technology and an Update on Anti-Tick Vaccine Design. Methods Mol Biol 2022; 2411:307-330. [PMID: 34816413 DOI: 10.1007/978-1-0716-1888-2_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over the years, RNA interference (RNAi) has evolved as a valuable tool to study the tick gene function, screening and preliminary characterization of tick-protective antigens in a relatively short time, with a minimal use of laboratory animals before conducting expensive vaccine trials for the development of improved vaccine composition. In this process, a double-stranded RNA (dsRNA) of gene of interest is introduced into the tick system which specifically suppresses expression of a target gene. The results of RNAi-based gene silencing were interpreted by reduction in targeted gene transcript, changes in phenotypic data and anatomical/ biochemical changes in ticks; thereby, providing a clue to the probable role played by the gene in the tick biological system. Across the globe, various tick research groups applied RNAi technique for characterization and identification of new anti-tick vaccine targets. Herein, we used the RNAi tool in Hyalomma anatolicum ticks for identification and characterization of vaccine candidates.
Collapse
Affiliation(s)
- H V Manjunathachar
- ICMR-National Animal Resource Facility for Biomedical Research (ICMR-NARFBR), Hyderabad, Telangana, India
| | - P Azhahianambi
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Binod Kumar
- Department of Veterinary Parasitology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - S Ghosh
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India.
| |
Collapse
|
26
|
Wei P, Wang C, Li C, Chen M, Sun J, Van Leeuwen T, He L. Comparing the efficiency of RNAi after feeding and injection of dsRNA in spider mites. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104966. [PMID: 34802516 DOI: 10.1016/j.pestbp.2021.104966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Pesticide resistance in spider mites drives the development of acaricides with novel mode of action, which could benefit from RNAi as a screening tool in search of new molecular targets. RNAi via oral delivery of dsRNA has been frequently reported in spider mites, but injection of dsRNA is rarely reported. We compare here the efficiency of oral delivery versus injection of dsRNA in female adult mites. When comparing silencing efficiency, oral delivery of dsRNAs silenced 40.6 ± 8.9% of CPR, 63.8 ± 6.9% of CHMP2A, and 37.7 ± 5.7% of CHMP3 genes. Similar silencing efficiencies were found for injection (48.6 ± 3.7% of CPR, 70.2 ± 4.1% of CHMP2A, 59.8 ± 2.2% of CHMP3), but with much lower quantities of dsRNAs. Oral delivery of dsRNA failed to silence the expression of the CHMP4B gene, but this could be accomplished by injection of dsRNA (23.1 ± 1.0%). When scoring the phenotypic effects of silencing, both oral delivery and injection of CHMP2A- and CHMP3-dsRNA influenced the locomotion speed of mites significantly. For CPR, silencing could only be accomplished by dsRNA injection, not by feeding. CPR silencing significantly impacted the toxicity of a typical acaricide, pyridaben, as the susceptibility of mites raised 2.75-fold. Last, injection of Eya-dsRNA in adults produced transgenerational phenotypic effects on 3.59% of offspring, as quantified by an observed deviation in eye development, while oral delivery of Eya-dsRNA did not. In conclusion, injection of dsRNA is superior to oral delivery in silencing the expression of the selected genes in this study and could be considered the method of choice to study gene function in reverse genetic approaches.
Collapse
Affiliation(s)
- Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Chao Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Chunji Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Ming Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jingyu Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China.
| |
Collapse
|
27
|
Faber NR, Meiborg AB, Mcfarlane GR, Gorjanc G, Harpur BA. A gene drive does not spread easily in populations of the honey bee parasite Varroa destructor. APIDOLOGIE 2021; 52:1112-1127. [PMID: 35068598 PMCID: PMC8755698 DOI: 10.1007/s13592-021-00891-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 05/29/2023]
Abstract
UNLABELLED Varroa mites (Varroa destructor) are the most significant threat to beekeeping worldwide. They are directly or indirectly responsible for millions of colony losses each year. Beekeepers are somewhat able to control varroa populations through the use of physical and chemical treatments. However, these methods range in effectiveness, can harm honey bees, can be physically demanding on the beekeeper, and do not always provide complete protection from varroa. More importantly, in some populations varroa mites have developed resistance to available acaricides. Overcoming the varroa mite problem will require novel and targeted treatment options. Here, we explore the potential of gene drive technology to control varroa. We show that spreading a neutral gene drive in varroa is possible but requires specific colony-level management practices to overcome the challenges of both inbreeding and haplodiploidy. Furthermore, continued treatment with acaricides is necessary to give a gene drive time to fix in the varroa population. Unfortunately, a gene drive that impacts female or male fertility does not spread in varroa. Therefore, we suggest that the most promising way forward is to use a gene drive which carries a toxin precursor or removes acaricide resistance alleles. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13592-021-00891-5.
Collapse
Affiliation(s)
- Nicky R. Faber
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG United Kingdom
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Adriaan B. Meiborg
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG United Kingdom
| | - Gus R. Mcfarlane
- Burdon Group, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG United Kingdom
| | - Gregor Gorjanc
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG United Kingdom
| | - Brock A. Harpur
- Department of Entomology, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
28
|
Han W, Tang F, Zhong Y, Zhang J, Liu Z. Identification of yellow gene family and functional analysis of Spodoptera frugiperda yellow-y by CRISPR/Cas9. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104937. [PMID: 34446204 DOI: 10.1016/j.pestbp.2021.104937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/06/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
For a devastating agricultural pest, functional genomics promotes the finding of novel technology to control Spodoptera frugiperda, such as the genetics-based strategies. In the present study, 11 yellow genes were identified in Spodoptera frugiperda. The transcriptome analysis showed the tissue-specific expression of part yellow genes, which suggested the importance of yellow genes in some biological processes in S. frugiperda, such as pigmentation. Among these yellow genes, the expression profiles of yellow-y gene showed that it was expressed in all life stages. In order to realize the further study of yellow-y, we employed CRISPR/Cas9 system to knock out this gene. Following knock out, diverse phenotypes were observed, such as color changes in both larvae and adults. Different from the wild-type larvae and adults, G0 mutants were yellowed since hatching. However, no color difference was observed with the pupal cuticle between the wild-type and mutant pupae before the 8th day. On the basis of the single-pair strategy of G0 generation, the yellow-y gene was proved to be a recessive gene. The G1 yellowish larvae with biallelic mutations displayed a relatively longer development period than wild-type, and often generated abnormal pupae and moths. The deletion of yellow-y also resulted in a decline in the fecundity. The results revealed that yellow-y gene was important for S. frugiperda pigmentation, as well as in its development and reproduction. Besides, the present study set up a standard procedure to knock out genes in S. frugiperda, which could be helpful for our understanding some key molecular processes, such as functional roles of detoxification genes as insecticide resistance mechanisms or modes of action of insecticides to facilitate the management of this insect pest.
Collapse
Affiliation(s)
- Weikang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Fengxian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yanni Zhong
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Junteng Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
29
|
Zhou H, Liu J, Wan F, Guo F, Ning Y, Liu S, Ding W. Insight into the mechanism of action of scoparone inhibiting egg development of Tetranychus cinnabarinus Boisduval. Comp Biochem Physiol C Toxicol Pharmacol 2021; 246:109055. [PMID: 33894369 DOI: 10.1016/j.cbpc.2021.109055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023]
Abstract
Investigating the mechanisms of action of natural bioactive products against pests is a vital strategy to develop novel promising biopesticides. Scoparone, isolated from Artemisia capillaris, exhibited potent oviposition inhibition activity against Tetranychus cinnabarinus (a crop-threatening mite pests with strong fecundity). To explore the underlying mechanism, the vitellogenin (Vg) protein content, and Vg gene expression of mites from three consecutive generations of G0 individuals exposed to scoparone were determined, revealing marked inhibition. This study is the first to explore the egg development defect behaviour of mite pests induced by scoparone. The egg-laying inhibition of mites by scoparone was significantly increased by 47.43% compared with that of the control when TcVg was silenced by RNA interference (RNAi), suggesting that egg-development inhibition of female T. cinnabarinus by scoparone was mediated by low Vg gene expression. Furthermore, scoparone bound to the Vg protein in vitro, and its Kd value was 218.9 μM, implying its potential function in inhibiting the egg development of mites by directly targeting the Vg protein. This study will lay the foundation for the future applications of scoparone as an agrochemical for controlling the strong egg-laying capacity mite pests in agriculture.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Jinlin Liu
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Fenglin Wan
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Yeshuang Ning
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Sisi Liu
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
30
|
Nuss A, Sharma A, Gulia-Nuss M. Genetic Manipulation of Ticks: A Paradigm Shift in Tick and Tick-Borne Diseases Research. Front Cell Infect Microbiol 2021; 11:678037. [PMID: 34041045 PMCID: PMC8141593 DOI: 10.3389/fcimb.2021.678037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Ticks are obligate hematophagous arthropods that are distributed worldwide and are one of the most important vectors of pathogens affecting humans and animals. Despite the growing burden of tick-borne diseases, research on ticks has lagged behind other arthropod vectors, such as mosquitoes. This is largely because of challenges in applying functional genomics and genetic tools to the idiosyncrasies unique to tick biology, particularly techniques for stable genetic transformations. CRISPR-Cas9 is transforming non-model organism research; however, successful germline editing has yet to be accomplished in ticks. Here, we review the ancillary methods needed for transgenic tick development and the use of CRISPR/Cas9, the most promising gene-editing approach, for tick genetic transformation.
Collapse
Affiliation(s)
- Andrew Nuss
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, United States
- Department of Agriculture, Veterinary, and Rangeland Sciences, The University of Nevada, Reno, NV, United States
| | - Arvind Sharma
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, United States
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, United States
| |
Collapse
|
31
|
Li S, Lv M, Li T, Hao M, Xu H. Spirodiclofen ether derivatives: semisynthesis, structural elucidation, and pesticidal activities against Tetranychus cinnabarinus Boisduval, Aphis citricola Van der Goot and Mythimna separata Walker. PEST MANAGEMENT SCIENCE 2021; 77:2395-2402. [PMID: 33415823 DOI: 10.1002/ps.6267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Spirodiclofen is a spirocyclic tetronic acid-type acaricidal agent. Nowadays, serious pests resistance to spirodiclofen and cross-resistance to other acaricides has appeared. To overcome pests resistance and discover new potential agrochemicals, a series of ether derivatives were prepared based on spirodiclofen as a lead compound. Their pesticidal activities were investigated against three typically agricultural pests, Mythimna separata Walker, Aphis citricola Van der Goot and Tetranychus cinnabarinus Boisduval. RESULTS Four steric structures of compounds 5e, 5f, 5i and 5j were determined by single-crystal X-ray diffraction. Against T. cinnabarinus, compounds 5b, 5f and 5l exhibited potent acaricidal activity, and their good control effects in the glasshouse were observed when compared with spirodiclofen, especially the control efficiency of compound 5b was comparable to that of spirodiclofen; against M. separata, compound 5j showed > 1.8-fold potent insecticidal activity of spirodiclofen; against A. citricola, compounds 5d and 5j displayed > 2.0-fold potent aphicidal activity of spirodiclofen. The relationships between their structures and agricultural activities were also discussed. CONCLUSION Compounds 5b and 5d could be further studied as acaricidal and aphicidal agents, respectively; compound 5j can be considered as a lead compound for the insecticidal and aphicidal activities. This will pave the way for future application of these derivatives as pesticide substitutes for spirodiclofen. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaochen Li
- College of Plant Protection, Northwest A&F University, Yangling, P. R. China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling, P. R. China
| | - Tianze Li
- College of Plant Protection, Northwest A&F University, Yangling, P. R. China
| | - Meng Hao
- College of Plant Protection, Northwest A&F University, Yangling, P. R. China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling, P. R. China
- School of Marine Sciences, Ningbo University, Ningbo, P. R. China
| |
Collapse
|
32
|
Xue W, Mermans C, Papapostolou KM, Lamprousi M, Christou IK, Inak E, Douris V, Vontas J, Dermauw W, Van Leeuwen T. Untangling a Gordian knot: the role of a GluCl3 I321T mutation in abamectin resistance in Tetranychus urticae. PEST MANAGEMENT SCIENCE 2021; 77:1581-1593. [PMID: 33283957 DOI: 10.1002/ps.6215] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The cys-loop ligand-gated ion channels, including the glutamate-gated chloride channel (GluCl) and GABA-gated chloride channel (Rdl) are important targets for drugs and pesticides. The macrocyclic lactone abamectin primarily targets GluCl and is commonly used to control the spider mite Tetranychus urticae, an economically important crop pest. However, abamectin resistance has been reported for multiple T. urticae populations worldwide, and in several cases was associated with the mutations G314D in GluCl1 and G326E in GluCl3. Recently, an additional I321T mutation in GluCl3 was identified in several abamectin resistant T. urticae field populations. Here, we aim to functionally validate this mutation and determine its phenotypic strength. RESULTS The GluCl3 I321T mutation was introgressed into a T. urticae susceptible background by marker-assisted backcrossing, revealing contrasting results in phenotypic strength, ranging from almost none to 50-fold. Next, we used CRISPR-Cas9 to introduce I321T, G314D and G326E in the orthologous Drosophila GluCl. Genome modified flies expressing GluCl I321T were threefold less susceptible to abamectin, while CRISPRed GluCl G314D and G326E flies were lethal. Last, functional analysis in Xenopus oocytes revealed that the I321T mutation might reduce GluCl3 sensitivity to abamectin, but also suggested that all three T. urticae Rdls are affected by abamectin. CONCLUSION Three different techniques were used to characterize the role of I321T in GluCl3 in abamectin resistance and, combining all results, our analysis suggests that the I321T mutation has a complex role in abamectin resistance. Given the reported subtle effect, additional synergistic factors in resistance warrant more investigation. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenxin Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Catherine Mermans
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kyriaki-Maria Papapostolou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Mantha Lamprousi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Iason-Konstantinos Christou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Emre Inak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Hillary VE, Ceasar SA. Genome engineering in insects for the control of vector borne diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 179:197-223. [PMID: 33785177 DOI: 10.1016/bs.pmbts.2020.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insects cause many vector-borne infectious diseases and have become a major threat to human health. Although many control measures are undertaken, some insects are resistant to it, exacerbated by environmental changes which is a major challenge for control measures. Genetic studies by targeting the genomes of insects may offer an alternative strategy. Developments with novel genome engineering technologies have stretched our ability to target and modify any genomic sequence in Eukaryotes including insects. Genome engineering tools such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and most recently discovered, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) systems hold the potential to control the vector-borne diseases. In this chapter, we review the vector control strategy undertaken by employing three major genome engineering tools (ZFNs, TALENs, and CRISPR/Cas9) and discuss the future prospects of this system to control insect vectors. Finally, we also discuss the CRISPR-based gene drive system and its concerns due to ecological impacts.
Collapse
Affiliation(s)
- V Edwin Hillary
- Division of Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, Tamil Nadu, India
| | - S Antony Ceasar
- Division of Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, Tamil Nadu, India; Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Kochi, India.
| |
Collapse
|
34
|
Papapostolou KM, Riga M, Charamis J, Skoufa E, Souchlas V, Ilias A, Dermauw W, Ioannidis P, Van Leeuwen T, Vontas J. Identification and characterization of striking multiple-insecticide resistance in a Tetranychus urticae field population from Greece. PEST MANAGEMENT SCIENCE 2021; 77:666-676. [PMID: 33051974 DOI: 10.1002/ps.6136] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Tetranychus urticae is a notorious crop pest with a worldwide distribution that has developed resistance to a wide range of acaricides. Here, we investigated the resistance levels of a T. urticae population collected from an ornamental greenhouse in Peloponnese, Greece, and analyzed its resistance mechanisms at the molecular level. RESULTS Toxicological assays showed resistance against compounds with different modes of action, with resistance ratios of: 89-fold for abamectin; > 1000-fold for clofentezine; > 5000-fold for etoxazole; 27-fold for fenpyroximate and pyridaben; 20- and 36-fold for spirodiclofen and spirotetramat, respectively; and 116- and > 500-fold for cyenopyrafen and cyflumetofen, respectively. Bioassays with synergists indicated the involvement of detoxification enzymes in resistance to abamectin, but not to cyflumetofen and spirodiclofen. RNA sequencing (RNA-seq) analysis showed significant over-expression of several genes encoding detoxification enzymes such as cytochrome P450 monooxygenases and UDP-glycosyltransferases, which have been previously associated with acaricide resistance. Known target-site resistance mutations were identified in acetyl-choline esterase, chitin synthase 1 and NDUFS7/psst, but putative novel resistance mutations were also discovered in targets such as glutamate-gated chloride channel subunit 3. Interestingly, target-site resistance mutations against pyrethroids or bifenazate were not identified, possibly indicating a recent reduced selection pressure in Greece, as well as a possible opportunity to rotate these chemistries. CONCLUSION We identified and characterized a striking case of multiple acaricide resistance in a field population of T. urticae. Exceptionally strong resistance phenotypes, with accumulation of multiple resistance mutations and over-expression of P450s and other detoxification genes in the same field population are reported.
Collapse
Affiliation(s)
- Kyriaki Maria Papapostolou
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Maria Riga
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
| | - Jason Charamis
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Evangelia Skoufa
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Vassilis Souchlas
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Aris Ilias
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Panagiotis Ioannidis
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
35
|
Che LR, He ZB, Liu Y, Yan ZT, Han BZ, Chen XJ, He XF, Zhang JJ, Chen B, Qiao L. Electroporation-mediated nucleic acid delivery during non-embryonic stages for gene-function analysis in Anopheles sinensis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 128:103500. [PMID: 33278627 DOI: 10.1016/j.ibmb.2020.103500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The delivery of exogenous nucleic acids to eggs or non-embryonic individuals by microinjection is a vital reverse genetics technique used to determine gene function in mosquitoes. However, DNA delivery to eggs is complex and time-consuming, and conventional, non-embryonic-injection techniques may result in unobvious phenotypes caused by insufficient absorption of nucleic acid fragments by cells at target body parts or tissues. In this study, we developed a set of electroporation-mediated non-embryonic microinjections for the delivery of exogenous nucleic acids in Anopheles sinensis. Gene silencing using this method led to down-regulation of target gene expression (AsCPR128) by 77% in targeted body parts, compared with only 10% in non-targeted body parts, thus increasing the defect-phenotype rate in the target area by 5.3-fold, compared with non-shock injected controls. Electroporation-mediated somatic transgenesis resulted in stable phenotypic characteristics of the reporter gene at the shocked body parts during the pupal-adult stages in about 69% of individuals. Furthermore, injecting plasmid DNA near the ovaries of female mosquitoes after a blood meal followed by electric shock produced three germline G1 transgenic lines, with a transformation rate of about 11.1% (calculated from ovulatory G0 females). Among the positive G1 lines, 42%, 40%, and 31% of individuals emitted red fluorescence in the larval stage. When the red fluorescent larvae developed into adults, green fluorescence was emitted from the ovaries of the females upon feeding. These results suggest that electroporation-mediated non-embryonic microinjection can be an efficient, rapid, and simple technique for analyzing gene function in non-model mosquitoes or other small insects.
Collapse
Affiliation(s)
- Lin-Rong Che
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zheng-Bo He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yan Liu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Bao-Zhu Han
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Xiao-Jie Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Xing-Fei He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jia-Jun Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
36
|
Zhang S, Shen J, Li D, Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 2021; 11:614-648. [PMID: 33391496 PMCID: PMC7738854 DOI: 10.7150/thno.47007] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 genome editing has gained rapidly increasing attentions in recent years, however, the translation of this biotechnology into therapy has been hindered by efficient delivery of CRISPR/Cas9 materials into target cells. Direct delivery of CRISPR/Cas9 system as a ribonucleoprotein (RNP) complex consisting of Cas9 protein and single guide RNA (sgRNA) has emerged as a powerful and widespread method for genome editing due to its advantages of transient genome editing and reduced off-target effects. In this review, we summarized the current Cas9 RNP delivery systems including physical approaches and synthetic carriers. The mechanisms and beneficial roles of these strategies in intracellular Cas9 RNP delivery were reviewed. Examples in the development of stimuli-responsive and targeted carriers for RNP delivery are highlighted. Finally, the challenges of current Cas9 RNP delivery systems and perspectives in rational design of next generation materials for this promising field will be discussed.
Collapse
Affiliation(s)
- Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiangtao Shen
- The Second People's Hospital of Taizhou affiliated to Yangzhou University, Taizhou, 225500, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| |
Collapse
|
37
|
Chaverra-Rodriguez D, Dalla Benetta E, Heu CC, Rasgon JL, Ferree PM, Akbari OS. Germline mutagenesis of Nasonia vitripennis through ovarian delivery of CRISPR-Cas9 ribonucleoprotein. INSECT MOLECULAR BIOLOGY 2020; 29:569-577. [PMID: 32715554 DOI: 10.1111/imb.12663] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
CRISPR/Cas9 gene editing is a powerful technology to study the genetics of rising model organisms, such as the jewel wasp Nasonia vitripennis. However, current methods involving embryonic microinjection of CRISPR reagents are challenging. Delivery of Cas9 ribonucleoprotein into female ovaries is an alternative that has only been explored in a small handful of insects, such as mosquitoes, whiteflies and beetles. Here, we developed a simple protocol for germline gene editing by injecting Cas9 ribonucleoprotein in adult N. vitripennis females using either ReMOT control (Receptor-Mediated Ovary Transduction of Cargo) or BAPC (Branched Amphiphilic Peptide Capsules) as ovary delivery methods. For ReMOT Control we used the Drosophila melanogaster-derived peptide 'P2C' fused to EGFP to visualize the ovary delivery, and fused to Cas9 protein for gene editing of the cinnabar gene using saponin as an endosomal escape reagent. For BAPC we optimized the concentrations of protein, sgRNA and the transfection reagent. We demonstrate delivery of protein cargo such as EGFP and Cas9 into developing oocytes via P2C peptide and BAPC. Additionally, somatic and germline gene editing were demonstrated. This approach will greatly facilitate CRISPR-applied genetic manipulation in this and other rising model organisms.
Collapse
Affiliation(s)
- D Chaverra-Rodriguez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - E Dalla Benetta
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| | - C C Heu
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - J L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - P M Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| | - O S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| |
Collapse
|
38
|
Environmental RNA interference in two-spotted spider mite, Tetranychus urticae, reveals dsRNA processing requirements for efficient RNAi response. Sci Rep 2020; 10:19126. [PMID: 33154461 PMCID: PMC7644771 DOI: 10.1038/s41598-020-75682-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Comprehensive understanding of pleiotropic roles of RNAi machinery highlighted the conserved chromosomal functions of RNA interference. The consequences of the evolutionary variation in the core RNAi pathway genes are mostly unknown, but may lead to the species-specific functions associated with gene silencing. The two-spotted spider mite, Tetranychus urticae, is a major polyphagous chelicerate pest capable of feeding on over 1100 plant species and developing resistance to pesticides used for its control. A well annotated genome, susceptibility to RNAi and economic importance, make T. urticae an excellent candidate for development of an RNAi protocol that enables high-throughput genetic screens and RNAi-based pest control. Here, we show that the length of the exogenous dsRNA critically determines its processivity and ability to induce RNAi in vivo. A combination of the long dsRNAs and the use of dye to trace the ingestion of dsRNA enabled the identification of genes involved in membrane transport and 26S proteasome degradation as sensitive RNAi targets. Our data demonstrate that environmental RNAi can be an efficient reverse genetics and pest control tool in T. urticae. In addition, the species-specific properties together with the variation in the components of the RNAi machinery make T. urticae a potent experimental system to study the evolution of RNAi pathways.
Collapse
|
39
|
Koidou V, Denecke S, Ioannidis P, Vlatakis I, Livadaras I, Vontas J. Efficient genome editing in the olive fruit fly, Bactrocera oleae. INSECT MOLECULAR BIOLOGY 2020; 29:363-372. [PMID: 32141659 DOI: 10.1111/imb.12640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The olive fruit fly, Bactrocera oleae, causes great damage to the quality and quantity of olive production worldwide. Pest management approaches have proved difficult for a variety of reasons, a fact that has brought about a need for alternative tools and approaches. Here we report for the first time in B. oleae the development of the clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) gene editing tool, using the well-known eye colour marker gene scarlet. Two synthetic guide RNAs targeting the coding region of the scarlet gene were synthesized and shown to work efficiently in vitro. These reagents were then microinjected along with purified Cas9 protein into early-stage embryos. Successful CRISPR-induced mutations of both copies of the scarlet gene showed a striking yellow eye phenotype, indicative of gene disruption. Multiple successful CRISPR events were confirmed by PCR and sequencing. The establishment of an efficient CRISPR-based gene editing tool in B. oleae will enable the study of critical molecular mechanisms in olive fruit fly biology and physiology, including the analysis of insecticide resistance mechanisms and the discovery of novel insecticide targets, as well as facilitate the development of novel biotechnology-based pest control strategies.
Collapse
Affiliation(s)
- V Koidou
- Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, Heraklion, Crete, Greece
| | - S Denecke
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, Heraklion, Crete, Greece
| | - P Ioannidis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, Heraklion, Crete, Greece
| | - I Vlatakis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, Heraklion, Crete, Greece
| | - I Livadaras
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, Heraklion, Crete, Greece
| | - J Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, Heraklion, Crete, Greece
- Laboratory of Pesticide Science, Faculty of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
40
|
Douris V, Denecke S, Van Leeuwen T, Bass C, Nauen R, Vontas J. Using CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance: Drosophila and beyond. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104595. [PMID: 32527434 DOI: 10.1016/j.pestbp.2020.104595] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Chemical insecticides are a major tool for the control of many of the world's most damaging arthropod pests. However, their intensive application is often associated with the emergence of resistance, sometimes with serious implications for sustainable pest control. To mitigate failure of insecticide-based control tools, the mechanisms by which insects have evolved resistance must be elucidated. This includes both identification and functional characterization of putative resistance genes and/or mutations. Research on this topic has been greatly facilitated by using powerful genetic model insects like Drosophila melanogaster, and more recently by advances in genome modification technology, notably CRISPR/Cas9. Here, we present the advances that have been made through the application of genome modification technology in insecticide resistance research. The majority of the work conducted in the field to date has made use of genetic tools and resources available in D. melanogaster. This has greatly enhanced our understanding of resistance mechanisms, especially those mediated by insensitivity of the pesticide target-site. We discuss this progress for a series of different insecticide targets, but also report a number of unsuccessful or inconclusive attempts that highlight some inherent limitations of using Drosophila to characterize resistance mechanisms identified in arthropod pests. We also discuss an experimental framework that may circumvent current limitations while retaining the genetic versatility and robustness that Drosophila has to offer. Finally, we describe examples of direct CRISPR/Cas9 use in non-model pest species, an approach that will likely find much wider application in the near future.
Collapse
Affiliation(s)
- Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13 Heraklion, Crete, Greece; Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece.
| | - Shane Denecke
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13 Heraklion, Crete, Greece
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Ralf Nauen
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13 Heraklion, Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Greece.
| |
Collapse
|
41
|
Lueke B, Douris V, Hopkinson JE, Maiwald F, Hertlein G, Papapostolou KM, Bielza P, Tsagkarakou A, Van Leeuwen T, Bass C, Vontas J, Nauen R. Identification and functional characterization of a novel acetyl-CoA carboxylase mutation associated with ketoenol resistance in Bemisia tabaci. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104583. [PMID: 32448413 DOI: 10.1016/j.pestbp.2020.104583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Insecticides of the tetronic/tetramic acid family (cyclic ketoenols) are widely used to control sucking pests such as whiteflies, aphids and mites. They act as inhibitors of acetyl-CoA carboxylase (ACC), a key enzyme for lipid biosynthesis across taxa. While it is well documented that plant ACCs targeted by herbicides have developed resistance associated with mutations at the carboxyltransferase (CT) domain, resistance to ketoenols in invertebrate pests has been previously associated either with metabolic resistance or with non-validated candidate mutations in different ACC domains. A recent study revealed high levels of spiromesifen and spirotetramat resistance in Spanish field populations of the whitefly Bemisia tabaci that was not thought to be associated with metabolic resistance. We confirm the presence of high resistance levels (up to >640-fold) against ketoenol insecticides in both Spanish and Australian B. tabaci strains of the MED and MEAM1 species, respectively. RNAseq analysis revealed the presence of an ACC variant bearing a mutation that results in an amino acid substitution, A2083V, in a highly conserved region of the CT domain. F1 progeny resulting from reciprocal crosses between susceptible and resistant lines are almost fully resistant, suggesting an autosomal dominant mode of inheritance. In order to functionally investigate the contribution of this mutation and other candidate mutations previously reported in resistance phenotypes, we used CRISPR/Cas9 to generate genome modified Drosophila lines. Toxicity bioassays using multiple transgenic fly lines confirmed that A2083V causes high levels of resistance to commercial ketoenols. We therefore developed a pyrosequencing-based diagnostic assay to map the spread of the resistance alleles in field-collected samples from Spain. Our screening confirmed the presence of target-site resistance in numerous field-populations collected in Sevilla, Murcia and Almeria. This emphasizes the importance of implementing appropriate resistance management strategies to prevent or slow the spread of resistance through global whitefly populations.
Collapse
Affiliation(s)
- Bettina Lueke
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece
| | - Jamie E Hopkinson
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD 4350, Australia
| | - Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Gillian Hertlein
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany
| | - Kyriaki-Maria Papapostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece; Laboratory of Molecular Entomology, Department of Biology, University of Crete, 70013 Heraklion, Greece
| | - Pablo Bielza
- Department of Agricultural Engineering, Cartagena Polytechnical University, 30203 Cartagena, Spain
| | - Anastasia Tsagkarakou
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization "DEMETER", 70013 Heraklion, Greece
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Chris Bass
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB/FORTH), 70013 Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim, Germany.
| |
Collapse
|