1
|
Liu C, Wu MZ, Zheng ZJ, Fan ST, Tan JF, Jiao Y, Palli SR, Zhu GH. Knockout BR-C induces premature expression of E93 thus triggering adult differentiation under larval morphology. PEST MANAGEMENT SCIENCE 2024. [PMID: 39641237 DOI: 10.1002/ps.8592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Holometabolan pupal-specifier broad-complex (BR-C) and adult specifier ecdysone-induced protein 93F (E93) are essential for metamorphosis; however, their interaction and effects on programmed cell death and cell differentiation during pupation remain unclear. RESULTS Here, multiple single-guide RNA (sgRNA)-mediated mosaic knockout of BR-C induced a deformed larva/pupa intermediate phenotype in Spodoptera frugiperda. Quantitative real-time polymerase chain reaction (qPCR) analysis showed that the adult specifier E93 was prematurely expressed in the BR-C mutants during the penultimate and last instar larval stages. Additionally, histological observation and TUNEL assay showed that apoptosis in the fat body and midgut was activated in the larval tissues; astonishingly, the adult midgut appeared in the pupae of BR-C mutants. CONCLUSION Overall, the results demonstrated that the premature expression of E93 induced by lack of BR-C triggers adult differentiation during the larval stages, which revealed the inhibitory effect of BR-C on E93 during metamorphosis in S. frugiperda. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chang Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Mian-Zhi Wu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Zi-Jing Zheng
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Shu-Ting Fan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Jin-Fang Tan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Yaoyu Jiao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Guan-Heng Zhu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Yan X, Zhao Z, Feng S, Zhang Y, Wang Z, Li Z. Multi-omics analysis reveal the fall armyworm Spodoptera frugiperda tolerate high temperature by mediating chitin-related genes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104192. [PMID: 39401552 DOI: 10.1016/j.ibmb.2024.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Climate change facilitates the rapid invasion of agricultural pests, threatening global food security. The fall armyworm Spodoptera frugiperda is a highly polyphagous migratory pest tolerant to high temperatures, allowing its proliferation in harsh thermal environments. We aimed to demonstrate mechanisms of its high-temperature tolerance, particularly transcriptional and metabolic regulation, which are poorly understood. To achieve the aim, we examined the impact and mechanism of heat events on S. frugiperda by using multiple approaches: ecological measurements, transcriptomics, metabolomics, RNAi, and CRISPR/Cas9 technology. We observed that several physiological indices (larval survival rate, larval period, pupation rate, pupal weight, eclosion rate, and average fecundity) decreased as the temperature increased, with the 32 °C treatment displaying a significant difference from the control group at 26 °C. Significantly upregulated expression of genes encoding endochitinase and chitin deacetylase was observed in the chitin-binding, extracellular region, and carbohydrate metabolic process GO terms of hemolymph, fat body, and brain, exhibiting a tissue-specific pattern. Significantly enriched pathways (e.g., cutin, suberin, and wax biosynthesis; oxidative phosphorylation and cofactor biosynthesis; diverse amino acid biosynthesis and degradation; carbon metabolism; and energy metabolism), all of which are essential for S. frugiperda larvae to tolerate temperature, were found in metabolites that were expressed differently. Successful RNA interference targeting of the three chitin-related genes reduced gene expression levels and larval survival rate. Knockout of the endochitinase gene by using the CRISPR/Cas9 system significantly reduced the relative gene expression and increased sensitivity to high-temperature exposure. On the basis of our findings, theoretical foundations for understanding the high-temperature tolerance of S. frugiperda populations and latent genetic control strategies were established.
Collapse
Affiliation(s)
- Xiaorui Yan
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Zihua Zhao
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Shiqian Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhihong Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572025, China.
| |
Collapse
|
3
|
Jangra S, Potts J, Ghosh A, Seal DR. Genome editing: A novel approach to manage insect vectors of plant viruses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104189. [PMID: 39341259 DOI: 10.1016/j.ibmb.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Insect vectors significantly threaten global agriculture by transmitting numerous plant viruses. Various measures, from conventional insecticides to genetic engineering, are used to mitigate this threat. However, none provide complete resistance. Therefore, researchers are looking for novel control options. In recent years with the advancements in genomic technologies, genomes and transcriptomes of various insect vectors have been generated. However, the lack of knowledge about gene functions hinders the development of novel strategies to restrict virus spread. RNA interference (RNAi) is widely used to elucidate gene functions, but its variable efficacy hampers its use in managing insect vectors and plant viruses. Genome editing has the potential to overcome these challenges and has been extensively used in various insect pest species. This review summarizes the progress and potential of genome editing in plant virus vectors and its application as a functional genomic tool to elucidate virus-vector interactions. We also discuss the major challenges associated with editing genes of interest in insect vectors.
Collapse
Affiliation(s)
- Sumit Jangra
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA.
| | - Jesse Potts
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dakshina R Seal
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| |
Collapse
|
4
|
Yogi D, Ashok K, Anu CN, Shashikala T, Pradeep C, Bhargava CN, Parvathy MS, Jithesh MN, Manamohan M, Jha GK, Asokan R. CRISPR/Cas12a ribonucleoprotein mediated editing of tryptophan 2,3-dioxygenase of Spodoptera frugiperda. Transgenic Res 2024; 33:369-381. [PMID: 39210187 DOI: 10.1007/s11248-024-00406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
In insect genome editing CRISPR/Cas9 is predominantly employed, while the potential of several classes of Cas enzymes such as Cas12a largely remain untested. As opposed to Cas9 which requires a GC-rich protospacer adjacent motif (PAM), Cas12a requires a T-rich PAM and causes staggered cleavage in the target DNA, opening possibilities for multiplexing. In this regard, the utility of Cas12a has been shown in only a few insect species such as fruit flies and the silkworm, but not in non-model insects such as the fall armyworm, Spodoptera frugiperda, a globally important invasive pest that defies most of the current management methods. In this regard, a more recent genetic biocontrol method known as the precision-guided sterile insect technique (pgSIT) has shown successful implementation in Drosophila melanogaster, with certain thematic adaptations required for application in agricultural pests. However, before the development of a controllable gene drive for a non-model species, it is important to validate the activity of Cas12a in that species. In the current study we have, for the first time, demonstrated the potential of Cas12a by editing an eye color gene, tryptophan 2,3-dioxygenase (TO) of S. frugiperda by microinjecting ribonucleoprotein complex into pre-blastoderm (G0) eggs. Analysis of G0 mutants revealed that all five mutants (two male and three female) exhibited distinct edits consisting of both deletion and insertion events. All five edits were further validated through in silico modeling to understand the changes at the protein level and further corroborate with the range of eye-color phenotypes observed in the present study.
Collapse
Affiliation(s)
- Dhawane Yogi
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
- Jain University, Bengaluru, Karnataka, 560069, India
| | - Karuppannasamy Ashok
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India.
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - Cholenahalli Narayanappa Anu
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
- University of Agricultural Sciences, Bengaluru, Karnataka, 560065, India
| | - Thalooru Shashikala
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
- University of Agricultural Sciences, Bengaluru, Karnataka, 560065, India
| | - Chalapathy Pradeep
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
- University of Agricultural Sciences, Bengaluru, Karnataka, 560065, India
| | - Chikmagalur Nagaraja Bhargava
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
- University of Agricultural Sciences, Bengaluru, Karnataka, 560065, India
| | - Madhusoodanan Sujatha Parvathy
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
- University of Agricultural Sciences, Bengaluru, Karnataka, 560065, India
| | - M N Jithesh
- Jain University, Bengaluru, Karnataka, 560069, India
| | | | - Girish Kumar Jha
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India.
| |
Collapse
|
5
|
Dayton JN, Tran TT, Saint-Denis E, Dopman EB. Efficient CRISPR/Cas9-mediated genome editing in the European corn borer, Ostrinia nubilalis. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39295240 DOI: 10.1111/imb.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024]
Abstract
The European corn borer (Ostrinia nubilalis) is an agricultural pest and burgeoning model for research on speciation, seasonal adaptation and insect resistance management. Although previous work in O. nubilalis has identified genes associated with differences in life cycle, reproduction, and resistance to Bt toxins, the general lack of a robust gene-editing protocol for O. nubilalis has been a barrier to functional validation of candidate genes. Here, we demonstrate an efficient and practical methodology for heritable gene mutagenesis in O. nubilalis using the CRISPR/Cas9 genome editing system. Precise loss-of-function (LOF) mutations were generated at two circadian clock genes, period (per) and pigment-dispersing factor receptor (pdfr), and a developmental gene, prothoracicotropic hormone (ptth). Precluding the need for a visible genetic marker, gene-editing efficiency remained high across different single guide RNAs (sgRNA) and germline transmission of mutations to F1 offspring approached 100%. When single or dual sgRNAs were injected at a high concentration, gene-specific phenotypic differences in behaviour and development were identified in F0 mutants. Specifically, F0 gene mutants demonstrated that PER, but not PDFR, is essential for normal timing of eclosion. PTTH F0 mutants were significantly heavier and exhibited a higher incidence of diapause. This work will accelerate future studies of gene function in O. nubilalis and facilitate the development of similar screens in other Lepidopteran and non-model insects.
Collapse
Affiliation(s)
- Jacob N Dayton
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Tammy T Tran
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Elisa Saint-Denis
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Erik B Dopman
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
6
|
Ray SS, Parihar K, Goyal N, Mahapatra DM. Synergistic insights into pesticide persistence and microbial dynamics for bioremediation. ENVIRONMENTAL RESEARCH 2024; 257:119290. [PMID: 38823612 DOI: 10.1016/j.envres.2024.119290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Rampant use of fertilizers and pesticides for boosting agricultural crop productivity has proven detrimental impact on land, water, and air quality globally. Although fertilizers and pesticides ensure greater food security, their unscientific management negatively impacts soil fertility, structure of soil microbiome and ultimately human health and hygiene. Pesticides exert varying impacts on soil properties and microbial community functions, contingent on factors such as their chemical structure, mode of action, toxicity, and dose-response characteristics. The diversity of bacterial responses to different pesticides presents a valuable opportunity for pesticide remediation. In this context, OMICS technologies are currently under development, and notable advancements in gene editing, including CRISPR technologies, have facilitated bacterial engineering, opening promising avenues for reducing toxicity and enhancing biological remediation. This paper provides a holistic overview of pesticide dynamics, with a specific focus on organophosphate, organochlorine, and pyrethroids. It covers their occurrence, activity, and potential mitigation strategies, with an emphasis on the microbial degradation route. Subsequently, the pesticide degradation pathways, associated genes and regulatory mechanisms, associated OMICS approaches in soil microbes with a special emphasis on CRISPR/Cas9 are also being discussed. Here, we analyze key environmental factors that significantly impact pesticide degradation mechanisms and underscore the urgency of developing alternative strategies to diminish our reliance on synthetic chemicals.
Collapse
Affiliation(s)
- Srishti Sinha Ray
- School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India
| | - Kashish Parihar
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Nishu Goyal
- School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India.
| | - Durga Madhab Mahapatra
- School of Engineering, UPES, Dehradun, 248007, Uttarakhand, India; Energy and Wetlands Research Group, Center for Ecological Sciences, Indian Institute of Science (IISc), Bangalore, 560012, India; Department of Biological and Ecological Engineering, Oregon State University, Corvallis, USA
| |
Collapse
|
7
|
Salum YM, Yin A, Zaheer U, Liu Y, Guo Y, He W. CRISPR/Cas9-Based Genome Editing of Fall Armyworm ( Spodoptera frugiperda): Progress and Prospects. Biomolecules 2024; 14:1074. [PMID: 39334840 PMCID: PMC11430287 DOI: 10.3390/biom14091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The fall armyworm (Spodoptera frugiperda) poses a substantial threat to many important crops worldwide, emphasizing the need to develop and implement advanced technologies for effective pest control. CRISPR/Cas9, derived from the bacterial adaptive immune system, is a prominent tool used for genome editing in living organisms. Due to its high specificity and adaptability, the CRISPR/Cas9 system has been used in various functional gene studies through gene knockout and applied in research to engineer phenotypes that may cause economical losses. The practical application of CRISPR/Cas9 in diverse insect orders has also provided opportunities for developing strategies for genetic pest control, such as gene drive and the precision-guided sterile insect technique (pgSIT). In this review, a comprehensive overview of the recent progress in the application of the CRISPR/Cas9 system for functional gene studies in S. frugiperda is presented. We outline the fundamental principles of applying CRISPR/Cas9 in S. frugiperda through embryonic microinjection and highlight the application of CRISPR/Cas9 in the study of genes associated with diverse biological aspects, including body color, insecticide resistance, olfactory behavior, sex determination, development, and RNAi. The ability of CRISPR/Cas9 technology to induce sterility, disrupt developmental stages, and influence mating behaviors illustrates its comprehensive roles in pest management strategies. Furthermore, this review addresses the limitations of the CRISPR/Cas9 system in studying gene function in S. frugiperda and explores its future potential as a promising tool for controlling this insect pest.
Collapse
Affiliation(s)
- Yussuf Mohamed Salum
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anyuan Yin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Uroosa Zaheer
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Guo
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Miyashita R, Ugajin A, Oda H, Ozaki K. Identification and in vivo functional analysis of furanocoumarin-responsive cytochrome P450s in a Rutaceae-feeding Papilio butterfly. J Exp Biol 2024; 227:jeb247791. [PMID: 39054940 DOI: 10.1242/jeb.247791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The Order Lepidoptera contains nearly 160,000 described species and most of them are specialist herbivores that use restricted plant species as hosts. Speciation that originated from host shift is one of the important factors for the diversification of Lepidoptera. Because plants prepare secondary metabolites for defense against herbivores, with varying profiles of the components among different plant taxa, the specialist herbivores need to be adapted to the toxic substances unique to their host plants. Swallowtail butterflies of the genus Papilio consist of over 200 species. Approximately 80% of them utilize Rutaceae plants, and among the remaining species, a specific subgroup uses phylogenetically distant Apiaceae plants as larval hosts. Rutaceae and Apiaceae commonly contain toxic secondary metabolites, furanocoumarins, and molecular phylogenetic studies support the concept that Apiaceae feeders were derived from Rutaceae feeders. Molecular mechanisms underlying furanocoumarin tolerance in Papilio butterflies have been investigated almost exclusively in an Apiaceae feeder by an in vitro assay. In contrast, there is little information regarding the Rutaceae feeders. Here, we focused on a Rutaceae feeder, Papilio xuthus, and identified two furanocoumarin-responsive cytochrome P450-6B (CYP6B) genes, of which one was an ortholog of a furanocoumarin-metabolizing enzyme identified in the Apiaceae-feeding Papilio while the other was previously unreported. We further conducted in vivo functional analysis using the CRISPR/Cas9 system, revealing a contribution of these CYP6Bs to furanocoumarin tolerance of P. xuthus larvae. Our findings suggest that co-option of furanocoumarin-metabolizing CYP6B enzymes at least partially contributed to the host shift from Rutaceae to Apiaceae in Papilio butterflies.
Collapse
Affiliation(s)
- Rei Miyashita
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Atsushi Ugajin
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Hiroki Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Katsuhisa Ozaki
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| |
Collapse
|
9
|
Karakkottil P, Pulamte L, Kumar V. Strategic Analysis of Collaborative Networks in Spodoptera frugiperda (Lepidoptera: Noctuidae) Research for Improved Pest Management Strategies. NEOTROPICAL ENTOMOLOGY 2024; 53:937-954. [PMID: 38691225 DOI: 10.1007/s13744-024-01146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/08/2024] [Indexed: 05/03/2024]
Abstract
The fall armyworm (FAW) poses a significant global threat to food security, and economics. Timely detection is crucial, and this research explores innovative techniques like data analysis, remote sensing, satellite imagery, and AI with machine learning algorithms for predicting and managing outbreaks. Emphasizing the importance of community engagement and international collaboration, social network analysis (SNA) is employed to uncover collaborative networks in FAW management research. The study analyzes a decade of research, revealing trends, influential institutions, authors, and countries, providing insights for efficient FAW management strategies. The research highlights a growing interest in Spodoptera frugiperda (Smith and Abbott 1797) research, focusing on biological control, chemical insecticides, plant extracts, and pest resistance. Co-Citation analysis identifies key research concepts, while collaboration analysis emphasizes the contributions of actors and institutions, such as China, the USA, and Brazil, with international collaboration playing a vital role. Current research trends involve evolving resistance, insecticidal protein gene discovery, and bio-control investigations. Leveraging insights from collaborative networks is essential for formulating effective strategies to manage fall armyworm and ensure global food security. This comprehensive analysis serves as a valuable resource for researchers and stakeholders, guiding efforts to combat this pervasive agricultural pest.
Collapse
Affiliation(s)
- Prajith Karakkottil
- CSIR-National Institute of Science Communication and Policy Research, Dr. K.S. Krishnan Marg,, New Delhi, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| | - Lalsiemlien Pulamte
- CSIR-National Institute of Science Communication and Policy Research, Dr. K.S. Krishnan Marg,, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vipan Kumar
- CSIR-National Institute of Science Communication and Policy Research, Dr. K.S. Krishnan Marg,, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Zhang MQ, Gong LL, Zhao YQ, Ma YF, Long GJ, Guo H, Liu XZ, Hull JJ, Dewer Y, Yang C, Zhang NN, He M, He P. Efficient DIPA-CRISPR-mediated knockout of an eye pigment gene in the white-backed planthopper, Sogatella furcifera. INSECT SCIENCE 2024; 31:1015-1025. [PMID: 37919237 DOI: 10.1111/1744-7917.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023]
Abstract
Although CRISPR/Cas9 has been widely used in insect gene editing, the need for the microinjection of preblastoderm embryos can preclude the technique being used in insect species with eggs that are small, have hard shells, and/or are difficult to collect and maintain outside of their normal environment. Such is the case with Sogatella furcifera, the white-backed planthopper (WBPH), a significant pest of Oryza sativa (rice) that oviposits inside rice stems. Egg extraction from the stem runs the risk of mechanical damage and hatching is heavily influenced by the micro-environment of the rice stem. To bypass these issues, we targeted embryos prior to oviposition via direct parental (DIPA)-CRISPR, in which Cas9 and single-guide RNAs (sgRNAs) for the WBPH eye pigment gene tryptophan 2,3-dioxygenase were injected into the hemocoel of adult females. Females at varying numbers of days posteclosion were evaluated to determine at what stage their oocyte might be most capable of taking up the gene-editing components. An evaluation of the offspring indicated that the highest G0 gene-edited efficacy (56.7%) occurred in females injected 2 d posteclosion, and that those mutations were heritably transmitted to the G1 generation. This study demonstrates the potential utility of DIPA-CRISPR for future gene-editing studies in non-model insect species and can facilitate the development of novel pest management applications.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Lang-Lang Gong
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ya-Qin Zhao
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yun-Feng Ma
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Gui-Jun Long
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Huan Guo
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xuan-Zheng Liu
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, Arizona, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Chao Yang
- Guizhou Jifeng Seed Industry Limited Liability Company, Xingyi, Guizhou Province, China
| | - Ning-Ning Zhang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang, Shandong Province, China
| | - Ming He
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Peng He
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Gouda MNR, Jeevan H, Shashank HG. CRISPR/Cas9: a cutting-edge solution for combatting the fall armyworm, Spodoptera frugiperda. Mol Biol Rep 2023; 51:13. [PMID: 38085335 DOI: 10.1007/s11033-023-08986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023]
Abstract
The utilization of CRISPR/Cas9 in Spodoptera frugiperda, commonly known as fall armyworm, presents a groundbreaking avenue for pest management. With its ability to precisely modify the insect's genome, CRISPR/Cas9 offers innovative strategies to combat this destructive pest. The application of CRISPR/Cas9 in S. frugiperda holds immense potential. It enables the identification and functional analysis of key genes associated with its behavior, development, and insecticide resistance. This knowledge can unveil novel target sites for more effective and specific insecticides. Additionally, CRISPR/Cas9 can facilitate the development of population control methods by disrupting vital genes essential for survival. However, challenges such as off-target effects and the efficient delivery of CRISPR/Cas9 components remain. Addressing these obstacles is vital to ensure accurate and reliable results. Furthermore, ethical considerations, biosafety protocols, and regulatory frameworks must be integral to the adoption of this technology. Looking forward, CRISPR/Cas9-based gene drive systems hold the potential to promulgate desirable genetic traits within S. frugiperda populations, offering a sustainable and eco-friendly approach. This could curtail their reproductive capabilities or make them more susceptible to certain interventions. In conclusion, CRISPR/Cas9 presents a transformative platform for precise and targeted pest management in S. frugiperda. By deciphering the insect's genetic makeup and developing innovative strategies, we can mitigate the devastating impact of fall armyworm on agriculture while ensuring environmental sustainability.
Collapse
Affiliation(s)
- M N Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - H Jeevan
- Division of Nematology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - H G Shashank
- Division of Plant Genetic Resources, Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
12
|
Yu B, Dong S, Jiang X, Qiao L, Chen J, Li T, Pan G, Zhou Z, Li C. Cas9-Mediated Gene Editing Using Receptor-Mediated Ovary Transduction of Cargo (ReMOT) Control in Bombyx mori. INSECTS 2023; 14:932. [PMID: 38132605 PMCID: PMC10743513 DOI: 10.3390/insects14120932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Lepidoptera is one of the most speciose insect orders, causing enormous damage to agricultural and forest crops. Although genome editing has been achieved in a few Lepidoptera for insect controls, most techniques are still limited. Here, by injecting female pupae of the Lepidoptera model species, Bombyx mori, gene editing was established using the Receptor-Mediated Ovary Transduction of Cargo (ReMOT) control technique. We identified a B. mori oocytes-targeting peptide ligand (BmOTP, a 29 aa of vitellogenin N-terminal of silkworms) with a highly conserved sequence in lepidopteran insects that could efficiently deliver mCherry into oocytes. When BmOTP was fused to CRISPR-associated protein 9 (Cas9) and the BmOTP-Cas9 ribonucleoprotein complex was injected into female pupae, heritable editing of the offspring was achieved in the silkworms. Compared with embryo microinjection, individual injection is more convenient and eliminates the challenge of injecting extremely small embryos. Our results will significantly facilitate the genetic manipulation of other lepidopteran insects, which is essential for advancing lepidopteran pest control.
Collapse
Affiliation(s)
- Bin Yu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Sichen Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Xiaoyu Jiang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Liang Qiao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China;
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China;
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| |
Collapse
|
13
|
Ma YF, Zhang MQ, Gong LL, Liu XZ, Long GJ, Guo H, Hull JJ, Dewer Y, He M, He P. Efficient nanoparticle-based CRISPR-Cas13d induced mRNA disruption of an eye pigmentation gene in the white-backed planthopper, Sogatella furcifera. INSECT SCIENCE 2023; 30:1552-1564. [PMID: 37202920 DOI: 10.1111/1744-7917.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/20/2023]
Abstract
The discovery of the clustered regularly interspaced short palindromic repeat (CRISPR) system has driven gene manipulation technology to a new era with applications reported in organisms that span the tree of life. The utility of CRISPR-mediated editing was further expanded to mRNA following identification of the RNA-targeting Cas13 family of smaller endonuclease proteins. Application of this family to insect research, however, has been more limited. In this study, the smallest Cas13 family member, Cas13d, and guide RNAs (gRNAs) were complexed with a versatile nanomaterial (star polycation, SPc) to generate a proof-of-concept RNA-editing platform capable of disrupting mRNA expression of the eye pigmentation gene tryptophan 2,3-dioxygenase (SfTO) in white-backed planthoppers (WBPHs). The resulting red-eye phenotype was present in 19.76% (with SPc) and 22.99% (without SPc) of the treatment groups and was comparable to the red-eye phenotype generated following conventional RNA interference knockdown (22.22%). Furthermore, the Cas13/gRNA phenotype manifested more quickly than RNA interference. Consistent with the expected Cas13d mechanism, SfTO transcript levels were significantly reduced. Taken together, the results indicate that the SPc-CRISPR-Cas13d/gRNA complex negatively impacted expression of the target gene. These findings confirm the utility of this novel mRNA disruption system in insects and lay the foundation for further development of these tools in the implementation of green agricultural pest management tactics.
Collapse
Affiliation(s)
- Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xuan-Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Gui-Jun Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Huan Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - J Joe Hull
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
14
|
Komal J, Desai HR, Samal I, Mastinu A, Patel RD, Kumar PVD, Majhi PK, Mahanta DK, Bhoi TK. Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:3961. [PMID: 38068598 PMCID: PMC10708123 DOI: 10.3390/plants12233961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024]
Abstract
Phytophagous insects pose a significant threat to global crop yield and food security. The need for increased agricultural output while reducing dependence on harmful synthetic insecticides necessitates the implementation of innovative methods. The utilization of CRISPR-Cas (Clustered regularly interspaced short palindromic repeats) technology to develop insect pest-resistant plants is believed to be a highly effective approach in reducing production expenses and enhancing the profitability of farms. Insect genome research provides vital insights into gene functions, allowing for a better knowledge of insect biology, adaptability, and the development of targeted pest management and disease prevention measures. The CRISPR-Cas gene editing technique has the capability to modify the DNA of insects, either to trigger a gene drive or to overcome their resistance to specific insecticides. The advancements in CRISPR technology and its various applications have shown potential in developing insect-resistant varieties of plants and other strategies for effective pest management through a sustainable approach. This could have significant consequences for ensuring food security. This approach involves using genome editing to create modified insects or crop plants. The article critically analyzed and discussed the potential and challenges associated with exploring and utilizing CRISPR-Cas technology for reducing insect pest pressure in crop plants.
Collapse
Affiliation(s)
- J. Komal
- Basic Seed Multiplication and Training Centre, Central Silk Board, Kharaswan 833216, Jharkhand, India;
| | - H. R. Desai
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Surat 395007, Gujarat, India; (H.R.D.); (R.D.P.)
| | - Ipsita Samal
- Indian Council of Agricultural Research-National Research Centre on Litchi, Mushahari, Ramna, Muzaffarpur 842002, Bihar, India;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy
| | - R. D. Patel
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Surat 395007, Gujarat, India; (H.R.D.); (R.D.P.)
| | - P. V. Dinesh Kumar
- Research Extension Centre, Central Silk Board, Hoshangabad 461001, Madhya Pradesh, India;
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India;
| | - Deepak Kumar Mahanta
- Forest Entomology Discipline, Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE)-Forest Research Institute (ICFRE-FRI), Dehradun 248006, Uttarakhand, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE)-Arid Forest Research Institute (ICFRE-AFRI), Jodhpur 342005, Rajasthan, India
| |
Collapse
|
15
|
Misra V, Mall AK, Pandey H, Srivastava S, Sharma A. Advancements and prospects of CRISPR/Cas9 technologies for abiotic and biotic stresses in sugar beet. Front Genet 2023; 14:1235855. [PMID: 38028586 PMCID: PMC10665535 DOI: 10.3389/fgene.2023.1235855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar beet is a crop with high sucrose content, known for sugar production and recently being considered as an emerging raw material for bioethanol production. This crop is also utilized as cattle feed, mainly when animal green fodder is scarce. Bioethanol and hydrogen gas production from this crop is an essential source of clean energy. Environmental stresses (abiotic/biotic) severely affect the productivity of this crop. Over the past few decades, the molecular mechanisms of biotic and abiotic stress responses in sugar beet have been investigated using next-generation sequencing, gene editing/silencing, and over-expression approaches. This information can be efficiently utilized through CRISPR/Cas 9 technology to mitigate the effects of abiotic and biotic stresses in sugar beet cultivation. This review highlights the potential use of CRISPR/Cas 9 technology for abiotic and biotic stress management in sugar beet. Beet genes known to be involved in response to alkaline, cold, and heavy metal stresses can be precisely modified via CRISPR/Cas 9 technology for enhancing sugar beet's resilience to abiotic stresses with minimal off-target effects. Similarly, CRISPR/Cas 9 technology can help generate insect-resistant sugar beet varieties by targeting susceptibility-related genes, whereas incorporating Cry1Ab and Cry1C genes may provide defense against lepidopteron insects. Overall, CRISPR/Cas 9 technology may help enhance sugar beet's adaptability to challenging environments, ensuring sustainable, high-yield production.
Collapse
Affiliation(s)
- Varucha Misra
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - A. K. Mall
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Himanshu Pandey
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
- Khalsa College, Amritsar, India
| | | | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, India
| |
Collapse
|
16
|
Zhao J, Jiang Y, Hoffmann A, Tan Y, Xiao L. SeBLOS2 knockout via CRISPR/Cas9 leads to the loss of larval integument coloration in Spodoptera exigua (Lepidoptera: Noctuidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22040. [PMID: 37622407 DOI: 10.1002/arch.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023]
Abstract
CRISPR/Cas9 technology is a precise and powerful tool for functionally exploring insect genes. The present study tested CRISPR/Cas9 as a way of undertaking effective gene mutagenesis in an important agricultural pest, the beet armyworm Spodoptera exigua. Based on a S. exigua transcriptome database, the entire complementary DNA sequence of SeBLOS2 encoding 140 amino acid residues was cloned. The gene was highly expressed in late larval stages (L3-L5). Using the CRISPR/Cas9 method, SeBLOS2 was knocked out by altering two sites in the coding region. This resulted in 70%-74% of the G0 generation (L4-L5) larvae displaying mosaic translucent integument. Four different mutations occurred at SeBLOS2-specific target sites, as demonstrated by further polymerase chain reaction-based genotypic analysis. Homozygote mutant L3 larvae were obtained in the G1 generation, with complete loss of white stripes and spots on their larval integument. These results demonstrate a crucial role of SeBLOS2 in integument pigmentation and suggest that the gene can act as a suitable nonlethal marker for functional research on genes in S. exigua and other Lepidopteran pests.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Yiping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ary Hoffmann
- Faculty of Science, Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liubin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
17
|
Lu Y, Tian J, Ullah F, Desneux N, Guo J, Wang S, Xu H, Lu Z. Sublethal and transgenerational effects of lufenuron on biological characteristics and expression of reproductive related genes in the fall armyworm, Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105593. [PMID: 37945243 DOI: 10.1016/j.pestbp.2023.105593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 11/12/2023]
Abstract
The fall armyworm, Spodoptera frugiperda, is a notorious polyphagous pest that causes serious economic losses in crucial crops and has invaded Africa and Asia. Lufenuron is widely used for controlling S. frugiperda in China, owing to its high toxicity against this key pest, and less pollution and little impact on natural enemies. In the present study, the sublethal and transgenerational effects of lufenuron on S. frugiperda were investigated to provide in-depth information for the rational use of lufenuron. Results showed that the development time and pupae weight were not significantly affected following exposure of females to LC10 and LC25 and male S. frugiperda to the LC10 of lufenuron. However, LC25 exposure significantly reduced pupal and total development time and pupae weight of male S. frugiperda. The longevity of S. frugiperda adults was prolonged by lufenuron and the fecundity of S. frugiperda treated with LC10 of lufenuron was significantly increased by 40% compared to the control. In addition, our study demonstrated that the LC25 of lufenuron had transgenerational effects on the progeny generation. The development time of female S. frugiperda whose parents were exposed to LC25 of lufenuron was significantly decreased compared to the control. And then, the expression profiles of Vg, VgR, JHEH, JHE, JHAMT, JHBP, CYP307A1, CYP306A1, CYP302A1 and CYP314A1 genes involved in insect reproduction and development were analyzed using Quantitative Real-Time PCR (RT-qPCR). Results showed that Vg, VgR, JHE, JHAMT, and CYP306A1 were significantly upregulated at the LC10 of lufenuron, which revealed that these upregulated genes might be linked with increased fecundity of S. frugiperda. Taken together, these findings highlighted the importance of sublethal and transgenerational effects under laboratory conditions and these effects may change the population dynamics in the field. Therefore, our study provided valuable information for promoting the rational use of lufenuron for controlling S. frugiperda.
Collapse
Affiliation(s)
- Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junce Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, Nice 06000, France.
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shanshan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
18
|
Ashok K, Bhargava CN, Asokan R, Pradeep C, Pradhan SK, Kennedy JS, Balasubramani V, Murugan M, Jayakanthan M, Geethalakshmi V, Manamohan M. CRISPR/Cas9 mediated editing of pheromone biosynthesis activating neuropeptide ( PBAN) gene disrupts mating in the Fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). 3 Biotech 2023; 13:370. [PMID: 37849767 PMCID: PMC10577122 DOI: 10.1007/s13205-023-03798-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The Fall armyworm, Spodoptera frugiperda, is a globally important invasive pest, primarily on corn, causing severe yield loss. Overuse of synthetic chemicals has caused significant ecological harm, and in many instances control has failed. Therefore, developing efficient, environmentally friendly substitutes for sustainable management of this pest is of high priority. CRISPR/Cas9-mediated gene editing causes site-specific mutations that typically result in loss-of-function of the target gene. In this regard, identifying key genes that govern the reproduction of S. frugiperda and finding ways to introduce mutations in the key genes is very important for successfully managing this pest. In this study, the pheromone biosynthesis activator neuropeptide (PBAN) gene of S. frugiperda was cloned and tested for its function via a loss-of-function approach using CRISPR/Cas9. Ribonucleoprotein (RNP) complex (single guide RNA (sgRNA) targeting the PBAN gene + Cas9 protein) was validated through in vitro restriction assay followed by embryonic microinjection into the G0 stage for in vivo editing of the target gene. Specific suppression of PBAN by CRISPR/Cas9 in females significantly affected mating. Mating studies between wild males and mutant females resulted in no fecundity. This was in contrast to when mutant males were crossed with wild females, which resulted in reduced fecundity. These results suggest that mating disruption is more robust where PBAN is edited in females. The behavioural bioassay using an olfactometer revealed that mutant females were less attractive to wild males compared to wild females. This study is the first of its kind, supporting CRISPR/Cas9 mediating editing of the PBAN gene disrupting mating in S. frugiperda. Understanding the potential use of these molecular techniques may help develop novel management strategies that target other key functional genes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03798-3.
Collapse
Affiliation(s)
- Karuppannasamy Ashok
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu India
| | - Chikmagalur Nagaraja Bhargava
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- University of Agricultural Sciences, Bangalore, Karnataka India
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
| | - Chalapathi Pradeep
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- University of Agricultural Sciences, Bangalore, Karnataka India
| | - Sanjay Kumar Pradhan
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- University of Agricultural Sciences, Bangalore, Karnataka India
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Fan ST, Wu MZ, Liu C, Li HH, Huang SH, Zheng ZJ, Ye XY, Tan JF, Zhu GH. Azadirachtin Inhibits Nuclear Receptor HR3 in the Prothoracic Gland to Block Larval Ecdysis in the Fall Armyworm, Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15497-15505. [PMID: 37843053 DOI: 10.1021/acs.jafc.3c05508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Azadirachtin has been used to control agricultural pests for a long time; however, the molecular mechanism of azadirachtin on lepidopterans is still not clear. In this study, the fourth instar larvae of fall armyworm were fed with azadirachtin, and then the ecdysis was blocked in the fourth instar larval stage (L4). The prothoracic glands (PGs) of the treated larvae were dissected for RNA sequencing to determine the effect of azadirachtin on ecdysis inhibition. Interestingly, one of the PG-enriched genes, the nuclear hormone receptor 3 (HR3), was decreased after azadirachtin treatment, which plays a critical role in the 20-hydroxyecdysone action during ecdysis. To deepen the understanding of azadirachtin on ecdysis, the HR3 was knocked out by using the CRISPR/Cas9 system, while the HR3 mutants displayed embryonic lethal phenotype; thus, the stage-specific function of HR3 during larval molting was not enabled to unfold. Hence, the siRNA was injected into the 24 h L4 larvae to knock down HR3. After 96 h, the injected larvae were blocked in the old cuticle during ecdysis which is consistent with the azadirachtin-treated larvae. Taken together, we envisioned that the inhibition of ecdysis in the fall armyworm after the azadirachtin treatment is due to an interference with the expression of HR3 in PG, resulting in larval mortality. The results in this study specified the understanding of azadirachtin on insect ecdysis and the function of HR3 in lepidopteran in vivo.
Collapse
Affiliation(s)
- Shu-Ting Fan
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Mian-Zhi Wu
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Chang Liu
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Hua-Hong Li
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Shang-Huan Huang
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Zi-Jing Zheng
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Xi-Yu Ye
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Jin-Fang Tan
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Guan-Heng Zhu
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
20
|
Han WK, Tang FX, Gao HL, Wang Y, Yu N, Jiang JJ, Liu ZW. Co-CRISPR: A valuable toolkit for mutation enrichment in the gene editing of Spodoptera frugiperda. INSECT SCIENCE 2023; 30:625-636. [PMID: 36169087 DOI: 10.1111/1744-7917.13122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The CRISPR/Cas9 system has been successfully applied in dozens of diverse species; although the screening of successful CRISPR/Cas9 editing events remains particularly laborious, especially for those that occur at relatively low frequency. Recently, a co-CRISPR strategy was proved to enrich the desired CRISPR events. Here, the co-CRISPR strategy was developed in the Fall armyworm, Spodoptera frugiperda, with kynurenine 3-monooxygenase gene (kmo) as a marker. The kmo mosaics induced by single-guide RNAs (sgRNAs)/Cas9 displayed the darker green color phenotype in larvae, compared with wild type (brown), and mosaic-eye adults were significantly acquired from the mosaic larvae group. In the kmo knockout strain, no significant difference was observed in larval development and adult reproduction. Acetylcholinesterase 2 (ace2) and Wnt1 were selected as target genes to construct the co-CRISPR strategy using kmo marker. By co-injection of kmo and ace2 sgRNAs, the mutant efficiency of ace2 was significantly increased in the kmo mosaic (larvae or adults) groups. Similarly, more malformed pupae with Wnt1 mutations were observed in the darker green larvae group. Taken together, these results demonstrated that kmo was a suitable visible marker gene for the application and extension of co-CRISPR strategy in Fall armyworm. Using darker green color in larvae or mosaic-eye in adults from kmo knockout as a marker, the mutant efficiency of a target gene could be enriched in a Fall armyworm group consisting of marked individuals. The co-CRISPR strategy is helpful for gene function studies by the knockout technique with no or lethal phenotypes.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Xian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hao-Li Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Jun Jiang
- Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
CRISPR-Cas Genome Editing for Insect Pest Stress Management in Crop Plants. STRESSES 2022. [DOI: 10.3390/stresses2040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global crop yield and food security are being threatened by phytophagous insects. Innovative methods are required to increase agricultural output while reducing reliance on hazardous synthetic insecticides. Using the revolutionary CRISPR-Cas technology to develop insect-resistant plants appears to be highly efficient at lowering production costs and increasing farm profitability. The genomes of both a model insect, Drosophila melanogaster, and major phytophagous insect genera, viz. Spodoptera, Helicoverpa, Nilaparvata, Locusta, Tribolium, Agrotis, etc., were successfully edited by the CRISPR-Cas toolkits. This new method, however, has the ability to alter an insect’s DNA in order to either induce a gene drive or overcome an insect’s tolerance to certain insecticides. The rapid progress in the methodologies of CRISPR technology and their diverse applications show a high promise in the development of insect-resistant plant varieties or other strategies for the sustainable management of insect pests to ensure food security. This paper reviewed and critically discussed the use of CRISPR-Cas genome-editing technology in long-term insect pest management. The emphasis of this review was on the prospective uses of the CRISPR-Cas system for insect stress management in crop production through the creation of genome-edited crop plants or insects. The potential and the difficulties of using CRISPR-Cas technology to reduce pest stress in crop plants were critically examined and discussed.
Collapse
|
22
|
Samantsidis GR, Fotiadou M, Tzavellas S, Geibel S, Nauen R, Swevers L, Denecke S, Vontas J. Functional characterization of putative ecdysone transporters in lepidopteran pests. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103830. [PMID: 36064128 DOI: 10.1016/j.ibmb.2022.103830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The insect steroid hormone ecdysone plays a critical role in insect development. Several recent studies have shown that ecdysone enters cells through Organic Anion Transporting Polypeptides (OATPs) in insects such as flies and mosquitoes. However, the conservation of this mechanism across other arthropods and the role of this transporter in canonical ecdysone pathways are less well studied. Herein we functionally characterized the putative ecdysone importer (EcI) from two major agricultural moth pests: Helicoverpa armigera (cotton bollworm) and Spodoptera frugiperda (fall armyworm). Phylogenetic analysis of OATP transporters across the superphylum Ecdysozoa revealed that EcI likely appeared only at the root of the arthropod lineage. Partial disruption of EcI in S. frugiperda decreased embryo hatching rate and larval survival, suggesting that this gene is essential for development in vivo. Depletion and re-expression of EcI in the lepidoptera cell line RP-HzGUT-AW1(MG) demonstrated this protein's ability to control ecdysone mediated signaling in gene regulation, its role in ecdysone mediated cell death, and its sensitivity to rifampicin, a well-known organic anion transporter inhibitor. Overall, this work sheds light on ecdysone uptake mechanisms across insect species and broadens our knowledge of the physiological roles of OATPs in the transportation of endogenous substrates.
Collapse
Affiliation(s)
- George-Rafael Samantsidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Crete, Greece
| | - Melina Fotiadou
- Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Crete, Greece
| | - Savvas Tzavellas
- Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Crete, Greece
| | - Sven Geibel
- R&D Pest Control, Bayer AG, Crop Science Division, Monheim, Germany
| | - Ralf Nauen
- R&D Pest Control, Bayer AG, Crop Science Division, Monheim, Germany
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, 15310, Athens, Greece
| | - Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Department of Pathobiology, University of Pennsylvania, Philadelphia, United States.
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Pesticide Science Lab, Department of Crop Science, Agricultural University of Athens, Greece.
| |
Collapse
|
23
|
Zhu GH, Gaddelapati SC, Jiao Y, Koo J, Palli SR. CRISPR-Cas9 Genome Editing Uncovers the Mode of Action of Methoprene in the Yellow Fever Mosquito, Aedes aegypti. CRISPR J 2022; 5:813-824. [PMID: 36374965 PMCID: PMC9805843 DOI: 10.1089/crispr.2022.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methoprene, a juvenile hormone (JH) analog, is widely used for insect control, but its mode of action is not known. To study methoprene action in the yellow fever mosquito, Aedes aegypti, the E93 (ecdysone-induced transcription factor) was knocked out using the CRISPR-Cas9 system. The E93 mutant pupae retained larval tissues similar to methoprene-treated insects. These insects completed pupal ecdysis and died as pupa. In addition, the expression of transcription factors, broad complex and Krüppel homolog 1 (Kr-h1), increased and that of programmed cell death (PCD) and autophagy genes decreased in E93 mutants. These data suggest that methoprene functions through JH receptor, methoprene-tolerant, and induces the expression of Kr-h1, which suppresses the expression of E93, resulting in a block in PCD and autophagy of larval tissues. Failure in the elimination of larval tissues and the formation of adult structures results in their death. These results answered long-standing questions on the mode of action of methoprene.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Sharath Chandra Gaddelapati
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Yaoyu Jiao
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Jinmo Koo
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA.,Address correspondence to: Subba Reddy Palli, Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
24
|
Singh S, Rahangdale S, Pandita S, Saxena G, Upadhyay SK, Mishra G, Verma PC. CRISPR/Cas9 for Insect Pests Management: A Comprehensive Review of Advances and Applications. AGRICULTURE 2022; 12:1896. [DOI: 10.3390/agriculture12111896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Insect pests impose a serious threat to agricultural productivity. Initially, for pest management, several breeding approaches were applied which have now been gradually replaced by genome editing (GE) strategies as they are more efficient and less laborious. CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-associated system) was discovered as an adaptive immune system of bacteria and with the scientific advancements, it has been improvised into a revolutionary genome editing technique. Due to its specificity and easy handling, CRISPR/Cas9-based genome editing has been applied to a wide range of organisms for various research purposes. For pest control, diverse approaches have been applied utilizing CRISPR/Cas9-like systems, thereby making the pests susceptible to various insecticides, compromising the reproductive fitness of the pest, hindering the metamorphosis of the pest, and there have been many other benefits. This article reviews the efficiency of CRISPR/Cas9 and proposes potential research ideas for CRISPR/Cas9-based integrated pest management. CRISPR/Cas9 technology has been successfully applied to several insect pest species. However, there is no review available which thoroughly summarizes the application of the technique in insect genome editing for pest control. Further, authors have highlighted the advancements in CRISPR/Cas9 research and have discussed its future possibilities in pest management.
Collapse
Affiliation(s)
- Sanchita Singh
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Department of Botany, University of Lucknow, Lucknow 226007, UP, India
| | - Somnath Rahangdale
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Shivali Pandita
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Department of Zoology, University of Lucknow, Lucknow 226007, UP, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow 226007, UP, India
| | | | - Geetanjali Mishra
- Department of Zoology, University of Lucknow, Lucknow 226007, UP, India
| | - Praveen C. Verma
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| |
Collapse
|
25
|
Luo GH, Chen XE, Jiao YY, Zhu GH, Zhang R, Dhandapani RK, Fang JC, Palli SR. SoxC is Required for Ecdysteroid Induction of Neuropeptide Genes During Insect Eclosion. Front Genet 2022; 13:942884. [PMID: 35899187 PMCID: PMC9309532 DOI: 10.3389/fgene.2022.942884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023] Open
Abstract
In insects, the shedding of the old exoskeleton is accomplished through ecdysis which is typically followed by the expansion and tanning of the new cuticle. Four neuropeptides, eclosion hormone (EH), ecdysis triggering hormone (ETH), crustacean cardioactive peptide (CCAP) and bursicon (Bur) are known to control ecdysis. However, the regulation of these neuropeptide genes is still poorly understood. Here, we report that in the red flour beetle (RFB) Tribolium castaneum and the fall armyworm (FAW) Spodoptera frugiperda, knockdown or knockout of the SoxC gene caused eclosion defects. The expansion and tanning of wings were not complete. In both RFB and FAW, the knockdown or knockout of SoxC resulted in a decrease in the expression of EH gene. Electrophoretic mobility shift assays revealed that the SfSoxC protein directly binds to a motif present in the promoter of SfEH. The luciferase reporter assays in Sf9 cells confirmed these results. These data suggest that transcription factor SoxC plays a key role in ecdysteroid induction of genes coding for neuropeptides such as EH involved in the regulation of insect eclosion.
Collapse
Affiliation(s)
- Guang-Hua Luo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Xi-En Chen
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Yao-Yu Jiao
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States,School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Ru Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Ramesh Kumar Dhandapani
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Ji-Chao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,*Correspondence: Ji-Chao Fang, ; Subba Reddy Palli,
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States,*Correspondence: Ji-Chao Fang, ; Subba Reddy Palli,
| |
Collapse
|
26
|
Ji SX, Bi SY, Wang XD, Wu Q, Tang YH, Zhang GF, Wan FH, Lü ZC, Liu WX. First Report on CRISPR/Cas9-Based Genome Editing in the Destructive Invasive Pest Tuta Absoluta (Meyrick) (Lepidoptera: Gelechiidae). Front Genet 2022; 13:865622. [PMID: 35664294 PMCID: PMC9160428 DOI: 10.3389/fgene.2022.865622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The tomato leaf miner Tuta absoluta (Meyrick) is one of the world’s most destructive pests of tomato, and because of its severe economic impacts, as well as the development of pesticide resistance, the species has been intensively studied, especially in regard to the identification of targets for T. absoluta control. However, functional genomic studies of T. absoluta have been constrained by a lack of effective genetic tools. Therefore, the aim of the present study was to develop a CRISPR/Cas9 zygote microinjection protocol for generating heritable mutations in T. absoluta, using the ommochrome synthesis gene cinnabar as an easily evaluated target gene. The injection of fertilised eggs with Cas9 protein and four sgRNAs, which targeted cinnabar exon 3, resulted in a mutagenesis rate of 31.9% for eggs reaching adulthood, and cinnabar mutagenesis resulted in either red or mosaic eye colour phenotypes. As such, this study is the first to report a complete and detailed CRISPR/Cas9 workflow for the efficient genome editing of the globally important invasive pest T. absoluta. The application of this robust genome-editing tool to T. absoluta will greatly facilitate the discovery of suitable RNAi control targets and the subsequent development of novel control strategies.
Collapse
Affiliation(s)
- Shun-Xia Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Si-Yan Bi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Di Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan-Hong Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Fen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhi-Chuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zhi-Chuang Lü,
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Eychenne M, Girard PA, Frayssinet M, Lan L, Pagès S, Duvic B, Nègre N. Mutagenesis of both prophenoloxidases in the fall armyworm induces major defects in metamorphosis. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104399. [PMID: 35568240 DOI: 10.1016/j.jinsphys.2022.104399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Upon infection, the phenoloxidase system in arthropods is rapidly mobilized and constitutes a major defense system against invaders. The activation of the key enzymes prophenoloxidase (PPO) and their action in immunity through melanization and encapsulation of foreign bodies in hemolymph has been described in many insects. On the other hand, little is known about PPOs involvement in other essential functions related to insect development. In this paper, we investigated the function of the two PPOs of the crop pest, Spodoptera frugiperda (PPO1 and PPO2). We show that PPOs are mainly expressed in hemocytes with the PPO2 expressed at higher levels than the PPO1. In addition, these two genes are expressed in the same tissue and at the same stages of insect development. Through the generation of loss-of-function mutants by CRISPR/Cas9 method, we show that the presence of PPOs is essential for the normal development of the pupa and the survival of the insect.
Collapse
Affiliation(s)
| | | | | | - Laijiao Lan
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Sylvie Pagès
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Bernard Duvic
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| | - Nicolas Nègre
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| |
Collapse
|
28
|
Heryanto C, Hanly JJ, Mazo-Vargas A, Tendolkar A, Martin A. Mapping and CRISPR homology-directed repair of a recessive white eye mutation in Plodia moths. iScience 2022; 25:103885. [PMID: 35243245 PMCID: PMC8861637 DOI: 10.1016/j.isci.2022.103885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
The pantry moth Plodia interpunctella is a worldwide pest of stored food products and a promising laboratory model system for lepidopteran functional genomics. Here we describe efficient methods for precise genome editing in this insect. A spontaneous recessive white-eyed phenotype maps to a frameshift deletion (c.737delC) in the white gene. CRISPR NHEJ mutagenesis of white replicates this phenotype with high rates of somatic biallelic knockout. G0 individuals with mutant clones on both eyes produced 100% mutant progeny, making white an ideal marker for co-conversion when targeting other genes. CRISPR HDR experiments corrected c.737delC and reverted white eyes to a pigmented state in 37% of G0 mosaic adults. These repaired alleles showed practical rates of germline transmission in backcrosses, demonstrating the potential of the technique for precise genome editing. Plodia offers a promising avenue for research in this taxon because of its lab-ready features, egg injectability, and editability. Plodia pantry moths are an emerging model organism for functional genomics in Lepidoptera Spontaneous and CRISPR-induced white mutations yield recessive-white eye phenotypes CRISPR HDR repair with ssODN donor result in practical rates of base editing We provide optimized protocols for Plodia handling and genome editing
Collapse
|
29
|
Zhu GH, Albishi NM, Chen X, Brown RL, Palli SR. Expanding the Toolkit for Genome Editing in a Disease Vector, Aedes aegypti: Transgenic Lines Expressing Cas9 and Single Guide RNA Induce Efficient Mutagenesis. CRISPR J 2021; 4:846-853. [PMID: 33450159 PMCID: PMC8742270 DOI: 10.1089/crispr.2020.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
CRISPR-Cas9 mediated genome editing methods are being used for the analysis of gene function. However, it is hard to identify gene knockout mutants for genes whose knockout does not cause distinct phenotypes. To overcome this issue in the disease vector, Aedes aegypti, a transgenic Cas9/single guide RNA (sgRNA) method, was used to knock out the eye marker gene, kynurenine 3-monooxygenase (kmo), and the juvenile hormone receptor, Methoprene-tolerant (Met). PiggyBac transformation vectors were prepared to express sgRNAs targeting kmo and Met under the control of the U6 promoter. Transgenic Ae. aegypti expressing kmo-sgRNA or Met-sgRNA under the control of the U6 promoter and enhanced green fluorescent protein (eGFP) under the control of the hr5ie1 promoter were produced. The U6-sgRNA adults were mated with AAEL010097-Cas9 adults. The progeny were screened, and the insects expressing eGFP and DsRed were selected and evaluated for mutations in target genes. About 77% and 78% of the progeny that were positive for both eGFP and DsRed in kmo-sgRNA and Met-sgRNA groups, respectively, showed mutations in their target genes.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Najla M. Albishi
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Xien Chen
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Rachel L. Brown
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
30
|
Li JJ, Shi Y, Wu JN, Li H, Smagghe G, Liu TX. CRISPR/Cas9 in lepidopteran insects: Progress, application and prospects. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104325. [PMID: 34743972 DOI: 10.1016/j.jinsphys.2021.104325] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Clustered regularly spaced short palindrome repeats (CRISPR) structure family forms the acquired immune system in bacteria and archaea. Recent advances in CRISPR/Cas genome editing as derived from prokaryotes, confirmed the characteristics of robustness, high target specificity and programmability, and also revolutionized the insect sciences field. The successful application of CRISPR in a wide variety of lepidopteran insects, with a high genetic diversity, provided opportunities to explore gene functions, insect modification and pest control. In this review, we present a detailed overview on the recent progress of CRISPR in lepidopteran insects, and described the basic principles of the system and its application. Major interest is on wing development, pigmentation, mating, reproduction, sex determination, metamorphosis, resistance and silkworm breeding innovation. Finally, we outlined the limitations of CRISPR/Cas system and discussed its application prospects in lepidopteran insects.
Collapse
Affiliation(s)
- Jiang-Jie Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Yan Shi
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Ji-Nan Wu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Hao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China.
| |
Collapse
|
31
|
Martín D, Chafino S, Franch-Marro X. How stage identity is established in insects: the role of the Metamorphic Gene Network. CURRENT OPINION IN INSECT SCIENCE 2021; 43:29-38. [PMID: 33075581 DOI: 10.1016/j.cois.2020.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Proper formation of adult insects requires the integration of spatial and temporal regulatory axes. Whereas spatial information confers identity to each tissue, organ and appendage, temporal information specifies at which stage of development the animal is. Regardless of the type of post-embryonic development, either hemimetabolous or holometabolous, temporal specificity is achieved through interactions between the temporal identity genes Kr-h1, E93 and Br-C, whose sequential expression is controlled by the two major developmental hormones, 20-hydroxyecdysone and Juvenile hormone. Given the intimate regulatory connection between these three factors to specify life stage identity, we dubbed the regulatory axis that comprises these genes as the Metamorphic Gene Network (MGN). In this review, we survey the molecular mechanisms underlying the control by the MGN of stage identity and progression in hemimetabolous and holometabolous insects.
Collapse
Affiliation(s)
- David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Silvia Chafino
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
32
|
Chen X, Koo J, Gurusamy D, Mogilicherla K, Reddy Palli S. Caenorhabditis elegans systemic RNA interference defective protein 1 enhances RNAi efficiency in a lepidopteran insect, the fall armyworm, in a tissue-specific manner. RNA Biol 2020; 18:1291-1299. [PMID: 33111632 DOI: 10.1080/15476286.2020.1842632] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
RNA interference (RNAi) is an important tool for gene function studies in insects, especially in non-model insects. This technology is also being developed for pest control. However, variable RNAi efficiency among insects is limiting its use in insects. Systemic RNAi in Caenorhabditis elegans requires systemic RNA interference defective protein 1 (CeSid1). The expression of CeSid1 in insect cell lines was shown to improve RNAi. However, the mechanisms through which this double-stranded RNA (dsRNA) transporter improves RNAi efficiency in insects is not known. We stably expressed CeSid1 in two Spodoptera frugiperda cell lines, Sf9 and Sf17 cells derived from ovary and midgut, respectively. Expression of CeSid1 enhanced RNAi efficiency in ovarian Sf9 cells, but not in midgut Sf17 cells. Reduced accumulation of dsRNA in late endosomes and successful processing dsRNA to siRNA contribute to enhanced RNAi efficiency in Sf9 cells. Transgenic S. frugiperda expressing CeSid1 were produced and tested for RNAi efficiency. RNAi efficiency enhancement due to CeSid1 expression showed tissue specificity. Compared to RNAi efficiency in wild-type S. frugiperda, CeSid1 expressing transgenic S. frugiperda showed a significant improvement of RNAi in tissues such as Verson's glands. In contrast, no improvement in RNAi was observed in tissues such as midgut. The in vitro cell-type specific and in vivo tissue-specific enhancement of RNAi efficiency by CeSid1 in S. frugiperda provides valuable information for improving RNAi in insects such as those belonging to order Lepidoptera where RNAi is variable and inefficient.
Collapse
Affiliation(s)
- Xien Chen
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY USA
| | - Jinmo Koo
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY USA
| | - Dhandapani Gurusamy
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY USA.,Department of Botany, Kongunadu Arts and Science College (Autonomous), Bharathiar University, Coimbatore, India
| | - Kanakachari Mogilicherla
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY USA.,Division of Molecular Genetics, ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - Subba Reddy Palli
- Department of Botany, Kongunadu Arts and Science College (Autonomous), Bharathiar University, Coimbatore, India
| |
Collapse
|