1
|
Wu T, Dong Q, Tang X, Zhu X, Deng D, Ding Y, Ahmad S, Zhang W, Mao Z, Zhao X, Ge L. CYP303A1 regulates molting and metamorphosis through 20E signaling in Nilaparvata lugens Stål (Hemiptera: Delphacidae). Int J Biol Macromol 2024; 281:136234. [PMID: 39366602 DOI: 10.1016/j.ijbiomac.2024.136234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Cytochrome P450s play a crucial role in the breakdown of external substances and perform important activities in the hormone system of insects. It has been understood that P450s were essential in the metabolism of ecdysteroids. CYP303A1 is a highly conserved CYP in most insects, but its specific physiological functions remain poorly understood in Nilaparvata lugens Stål. In this study, NlCYP303A1 was identified and highly expressed in the pre-molt stages, predominantly in the cuticle-producing tissues. Silencing of NlCYP303A1 caused a lethal phenotype with a molting defect. Moreover, the 20E titers, the expression levels of Halloween genes, and critical genes associated with the 20E signaling pathway in N. lugens nymphs were significantly decreased with the silencing NlCYP303A1. We further performed additional backfilling of 20E to rescue the RNAi effects on NlCYP303A1. The gene expression levels that were previously reduced caused by silencing NlCYP303A1 were significantly elevated. However, the molting defects of nymphs were not effectively improved. The results demonstrated NlCYP303A1 plays a crucial role in the molting and metamorphosis of N. lugens by regulating the 20E signaling pathway and cuticular formation, enhances the understanding of the functional role of CYP 2 clans, and identifies candidate gene for RNAi-based control of N. lugens.
Collapse
Affiliation(s)
- Tao Wu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China
| | - Qiaoqiao Dong
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xingyu Tang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xuhui Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China
| | - Di Deng
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Yuting Ding
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Sheraz Ahmad
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Wen Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Ziyue Mao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xudong Zhao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| | - Linquan Ge
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Leyria J. Endocrine factors modulating vitellogenesis and oogenesis in insects: An update. Mol Cell Endocrinol 2024; 587:112211. [PMID: 38494046 DOI: 10.1016/j.mce.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The endocrine system plays a pivotal role in shaping the mechanisms that ensure successful reproduction. With over a million known insect species, understanding the endocrine control of reproduction has become increasingly complex. Some of the key players include the classic insect lipid hormones juvenile hormone (JH) and ecdysteroids, and neuropeptides such as insulin-like peptides (ILPs). Individual endocrine factors not only modulate their own target tissue but also play crucial roles in crosstalk among themselves, ensuring successful vitellogenesis and oogenesis. Recent advances in omics, gene silencing, and genome editing approaches have accelerated research, offering both fundamental insights and practical applications for studying in-depth endocrine signaling pathways. This review provides an updated and integrated view of endocrine factors modulating vitellogenesis and oogenesis in insect females.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
3
|
Lv J, He QH, Shi P, Zhou F, Zhang TT, Zhang M, Zhang XY. RNAi-mediated silencing of the neverland gene inhibits molting in the migratory locust, Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105845. [PMID: 38582577 DOI: 10.1016/j.pestbp.2024.105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/08/2024]
Abstract
7-dehydrocholesterol (7-DHC) is a key intermediate product used for biosynthesis of molting hormone. This is achieved through a series of hydroxylation reactions catalyzed by the Halloween family of cytochrome P450s. Neverland is an enzyme catalyzes the first reaction of the ecdysteroidogenic pathway, which converts dietary cholesterol into 7-DHC. However, research on the physiological function of neverland in orthopteran insects is lacking. In this study, neverland from Locusta migratoria (LmNvd) was cloned and analyzed. LmNvd was mainly expressed in the prothoracic gland and highly expressed on days 6 and 7 of fifth instar nymphs. RNAi-mediated silencing of LmNvd resulted in serious molting delays and abnormal phenotypes, which could be rescued by 7-DHC and 20-hydroxyecdysone supplementation. Hematoxylin and eosin staining results showed that RNAi-mediated silencing of LmNvd disturbed the molting process by both promoting the synthesis of new cuticle and suppressing the degradation of the old cuticle. Quantitative real-time PCR results suggested that the mRNA expression of E75 early gene and chitinase 5 gene decreased and that of chitin synthase 1 gene was markedly upregulated after knockdown of LmNvd. Our results suggest that LmNvd participates in the biosynthesis process of molting hormone, which is involved in regulating chitin synthesis and degradation in molting cycles.
Collapse
Affiliation(s)
- Jia Lv
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - Qi-Hui He
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - Peng Shi
- Shanxi Academy of Forestry and Grassland, China
| | - Feng Zhou
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ting-Ting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China.
| | - Xue-Yao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China.
| |
Collapse
|
4
|
Shu B, Lin Y, Huang Y, Liu L, Cai X, Lin J, Zhang J. Characterization and transcriptomic analyses of the toxicity induced by toosendanin in Spodoptera frugipreda. Gene 2024; 893:147928. [PMID: 37898452 DOI: 10.1016/j.gene.2023.147928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The fall armyworm, Spodoptera frugiperda, is a destructive agricultural pest that seriously threatens global food security. Insecticide resistance of this pest has gradually formed in recent years due to improper usage, and alternative methods are badly needed. Toosendanin (TSN) is a botanical compound with broad-spectrum insecticidal activities against many pests. However, the effects of TSN on S. frugiperda are still unclear. In this study, the growth inhibition phenomenon, including weight loss and prolonged developmental duration, in the larvae with TSN exposure was clearly observed. Compared to the control group, a total of 450 and 3314 differentially expressed genes (DEGs) were identified by RNA-Seq in the larvae groups treated with 10 and 20 mg/kg TSN, respectively. Furthermore, the DEGs involved in the juvenile hormone and ecdysone signal pathways and downstream processes, including detoxifying enzyme genes, chitin synthesis and metabolism genes, and cuticular protein genes, were found. Our findings suggest that TSN regulates the expression of key genes in juvenile hormone and ecdysone signal pathways and a series of downstream processes to alter the hormone balance and cuticle formation and eventually inhibit larval growth, which laid the foundation for the molecular toxicological mechanism research of TSN on S. frugiperda larvae.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yanzheng Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yuting Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueming Cai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Jingjing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Shaoguan University.
| |
Collapse
|
5
|
Huang HJ, Li YY, Ye ZX, Li LL, Hu QL, He YJ, Qi YH, Zhang Y, Li T, Lu G, Mao QZ, Zhuo JC, Lu JB, Xu ZT, Sun ZT, Yan F, Chen JP, Zhang CX, Li JM. Co-option of a non-retroviral endogenous viral element in planthoppers. Nat Commun 2023; 14:7264. [PMID: 37945658 PMCID: PMC10636211 DOI: 10.1038/s41467-023-43186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Non-retroviral endogenous viral elements (nrEVEs) are widely dispersed throughout the genomes of eukaryotes. Although nrEVEs are known to be involved in host antiviral immunity, it remains an open question whether they can be domesticated as functional proteins to serve cellular innovations in arthropods. In this study, we found that endogenous toti-like viral elements (ToEVEs) are ubiquitously integrated into the genomes of three planthopper species, with highly variable distributions and polymorphism levels in planthopper populations. Three ToEVEs display exon‒intron structures and active transcription, suggesting that they might have been domesticated by planthoppers. CRISPR/Cas9 experiments revealed that one ToEVE in Nilaparvata lugens, NlToEVE14, has been co-opted by its host and plays essential roles in planthopper development and fecundity. Large-scale analysis of ToEVEs in arthropod genomes indicated that the number of arthropod nrEVEs is currently underestimated and that they may contribute to the functional diversity of arthropod genes.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yi-Yuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Li-Li Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qing-Ling Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yu-Juan He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ting Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhong-Tian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
6
|
Wang L, Li Z, Yi T, Li G, Smagghe G, Jin D. Ecdysteroid Biosynthesis Halloween Gene Spook Plays an Important Role in the Oviposition Process of Spider Mite, Tetranychus urticae. Int J Mol Sci 2023; 24:14797. [PMID: 37834248 PMCID: PMC10573261 DOI: 10.3390/ijms241914797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
In insects, the ecdysteroid hormone regulates development and reproduction. However, its function in the reproduction process of spider mites is still unclear. In this study, we investigated the effect of the Halloween gene Spook on the oviposition of the reproduction process in a spider mite, Tetranychus urticae. The expression patterns of the ecdysteroid biosynthesis and signaling pathway genes, as analyzed by RT-qPCR, showed that the expression pattern of the Halloween genes was similar to the oviposition pattern of the female mite and the expression patterns of the vitellogenesis-related genes TuVg and TuVgR, suggesting that the Halloween genes are involved in the oviposition of spider mites. To investigate the function of the ecdysteroid hormone on the oviposition of the reproduction process, we carried out an RNAi assay against the Halloween gene Spook by injection in female mites. Effective silencing of TuSpo led to a significant reduction of oviposition. In summary, these results provide an initial study on the effect of Halloween genes on the reproduction in T. urticae and may be a foundation for a new strategy to control spider mites.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Zhuo Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Daochao Jin
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| |
Collapse
|
7
|
Nair SNA, Johnson AJ, Sabu T, Gokul BS, Yeshwanth HM, Sabulal B. 'Sharpshooter' in Botanic Garden: the tale of a rare plant-insect interaction. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:603-611. [PMID: 36876401 DOI: 10.1111/plb.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/26/2023] [Indexed: 05/17/2023]
Abstract
Here we report a unique plant-insect interaction between the leafhopper Aloka depressa (tribe Phlogisini) and the host liana, Diploclisia glaucescens, from a Botanic Garden located at the southern edge of Western Ghats in India. Field observations and SEM micrographs were employed to derive evidences on this rare plant-insect interaction. 20-Hydroxyecdysone (20E), insect moulting hormone, was detected and quantified in the host plant D. glaucescens using HPTLC-densitometry. 20E was isolated and characterized from D. glaucescens using column chromatography, 1H-, 13C-NMR and HR-MS. 20E was also detected in A. depressa excrement using HPTLC-densitometry. The leafhopper A. depressa is functioning as a 'sharpshooter' drawing nutrients from the host liana, D. glaucescens, and flinging the waste fluid as droplets through their tail ends. SEM micrographs of A. depressa revealed its external morphological features, characteristic of a sharpshooter. We quantified 20E (0.44-1.44%, dry wt.) in various parts of D. glaucescens. 20E (1.47%, dry wt.) was also detected in the excrement of A. depressa. This plant (D. glaucescens)-insect (A. depressa) association crucially is not damaging the host liana. Considering the diseases caused by sharpshooting leafhoppers in the Americas, this association and the survival of the host plant (D. glaucescens) is illustrating a unique plant-insect interaction.
Collapse
Affiliation(s)
- S N A Nair
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - A J Johnson
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - T Sabu
- Garden Management Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - B S Gokul
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
- University of Kerala, Thiruvananthapuram, Kerala, India
| | - H M Yeshwanth
- National Centre for Biological Sciences, Bangalore, Karnataka, India
| | - B Sabulal
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| |
Collapse
|
8
|
Wang J, Jiang S, Zhang W, Xiong Y, Jin S, Cheng D, Zheng Y, Qiao H, Fu H. Function Analysis of Cholesterol 7-Desaturase in Ovarian Maturation and Molting in Macrobrachium nipponense: Providing Evidence for Reproductive Molting Progress. Int J Mol Sci 2023; 24:ijms24086940. [PMID: 37108104 PMCID: PMC10138363 DOI: 10.3390/ijms24086940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The Cholesterol 7-desaturase gene plays an important role in insect ecdysone synthesis, but its role in ovarian development has not been reported. In this study, characteristics and the phylogenetic relationship of Cholesterol 7-desaturase were identified by bioinformatics. qPCR showed that the Mn-CH7D gene was highly expressed in the ovary, which was much higher than that in other tissues, and the expression level of Mn-CH7D reached the highest level at the third stage of the ovarian development stage (O-III). During embryonic development, the Mn-CH7D gene expression was highest in the zoea stage. The function of the Mn-CH7D gene was explored by RNA interference. The experimental group was injected with Mn-CH7D dsRNA through the pericardial cavity of M. nipponense, while the control group was injected with the same volume of dsGFP. Statistical analysis of gonadal development and GSI calculation showed that the silencing of Mn-CH7D resulted in the suppression of gonadal development. In addition, the molting frequency of the experimental group was significantly lower than that of the control group during the second molting cycle after silencing Mn-CH7D. On the seventh day after silencing, ecdysone content in the experimental group was significantly reduced. These results demonstrated that the Mn-CH7D gene played a dual role in ovarian maturation and molting of M. nipponense.
Collapse
Affiliation(s)
- Jisheng Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Sufei Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Dan Cheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yalu Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hui Qiao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
9
|
Cai Y, Ren Z, Li C, Cai T, Yu C, Zeng Q, He S, Li J, Wan H. The insecticidal activity and mechanism of tebuconazole on Nilaparvata lugens (Stål). PEST MANAGEMENT SCIENCE 2023. [PMID: 37013938 DOI: 10.1002/ps.7493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Previous studies have shown that fungicides have insecticidal activity that can potentially be used as an insecticide resistance management strategy in the brown planthopper Nilaparvata lugens (Stål). However, the mechanism that induces mortality of N. lugens remains elusive. RESULTS In the present study, the insecticidal activities of 14 fungicides against N. lugens were determined, of which tebuconazole had the highest insecticidal activity compared with the other fungicides. Furthermore, tebuconazole significantly inhibited the expression of the chitin synthase gene NlCHS1; the chitinase genes NlCht1, NlCht5, NlCht7, NlCht9, and NlCht10; and the β-N-acetylhexosaminidase genes NlHex3, NlHex4, NlHex5 and NlHex6; it significantly suppressed the expression of ecdysteroid biosynthetic genes as well, including SDR, CYP307A2, CYP307B1, CYP306A2, CYP302A1, CYP315A1 and CYP314A1 of N. lugens. Additionally, tebuconazole affected the diversity, structure, composition, and function of the symbiotic fungi of N. lugens, as well as the relative abundance of saprophytes and pathogens, suggesting that tebuconazole reshapes the diversity and function of symbiotic fungi of N. lugens. CONCLUSION Our findings illustrate the insecticidal mechanism of tebuconazole, possibly by inhibiting normal molting or disrupting microbial homeostasis in N. lugens, and provide an important rationale for developing novel insect management strategies to delay escalating insecticide resistance. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongfeng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhijie Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chengyue Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingwei Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chang Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qinghong Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Zhang C, Wan B, Jin MR, Wang J, Xin TR, Zou ZW, Xia B. The loss of Halloween gene function seriously affects the development and reproduction of Diaphorina citri (Hemiptera: Liviidae) and increases its susceptibility to pesticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105361. [PMID: 36963933 DOI: 10.1016/j.pestbp.2023.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The citrus industry has suffered severe losses as a result of Huanglongbing spread by Diaphorina citri. Controlling the population of D. citri is the key to preventing and controlling the spread of Huanglongbing. Ecdysteroids are key hormones that regulate insect development and reproduction. Therefore, the Halloween gene family involved in the ecdysone synthesis of D. citri is an ideal target for controlling the population growth of this insect. In this study, we successfully cloned four Halloween genes expressed during D. citri development. Silencing of one of the four genes resulted in a significant decrease in 20E titers in nymphs and significant decreases in the developmental, survival and emergence rates. Inhibiting Halloween gene expression in adults impeded the growth of the female ovary, diminished yolk formation, lowered vitellogenin transcription levels, and hence impaired female fecundity. This showed that Halloween genes were required for D. citri development and reproduction. DcCYP315A1 and DcCYP314A1 were highly expressed when D. citri was exposed to thiamethoxam and cypermethrin, and silencing these two genes made D. citri more sensitive to these two pesticides. Inhibition of DcCYP315A1 and DcCYP314A1 expression not only significantly delayed the development and reproduction of D. citri but also increased its susceptibility to pesticides. Therefore, these two genes are more suitable as potential target genes for controlling D. citri.
Collapse
Affiliation(s)
- Cong Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Bin Wan
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Meng-Ru Jin
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Jing Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Tian-Rong Xin
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zhi-Wen Zou
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Bin Xia
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
11
|
Gao H, Zhang H, Yuan X, Lin X, Zou J, Yu N, Liu Z. Knockdown of the salivary protein gene NlG14 caused displacement of the lateral oviduct secreted components and inhibited ovulation in Nilaparvata lugens. PLoS Genet 2023; 19:e1010704. [PMID: 37011098 PMCID: PMC10101634 DOI: 10.1371/journal.pgen.1010704] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/13/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Saliva plays important roles in insect feeding, but its roles in insect reproduction were rarely reported. Here we reported that the knockdown of a salivary gland-specific gene NlG14 disrupted the reproduction through inhibiting the ovulation of the brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most devastating rice pests in Asia. NlG14 knockdown caused the displacement of the lateral oviduct secreted components (LOSC), leading to the ovulation disorder and the accumulation of mature eggs in the ovary. The RNAi-treated females laid much less eggs than their control counterparts, though they had the similar oviposition behavior on rice stems as controls. NlG14 protein was not secreted into the hemolymph, indicating an indirect effect of NlG14 knockdown on BPH reproduction. NlG14 knockdown caused the malformation of A-follicle of the principal gland and affected the underlying endocrine mechanism of salivary glands. NlG14 reduction might promote the secretion of insulin-like peptides NlILP1 and NlILP3 from the brain, which up-regulated the expression of Nllaminin gene and then caused the abnormal contraction of lateral oviduct muscle. Another explanation was NlG14 reduction disrupted the ecdysone biosynthesis and action through the insulin-PI3K-Akt signaling in ovary. Altogether, this study indicated that the salivary gland specific protein NlG14 indirectly mediated BPH ovulation process, which established a connexon in function between insect salivary gland and ovary.
Collapse
Affiliation(s)
- Haoli Gao
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Huihui Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Xiaowei Yuan
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Xumin Lin
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Jianzheng Zou
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Na Yu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, China
| |
Collapse
|
12
|
Li K, Liu K, Wang X, Ma M, Luo X, Chen W, Chen A, Peng Z, Zhang D. Role of nuclear receptors NlHR3 and NlFTZ-F1 in regulating molting and reproduction in Nilaparvata lugens (stål). Front Physiol 2023; 14:1123583. [PMID: 37008006 PMCID: PMC10050704 DOI: 10.3389/fphys.2023.1123583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
The nuclear receptors HR3 and FTZ-F1 are highly conserved and function to regulate molting and reproduction in both hemimetabolous and holometabolous insects. However, their roles in Nilaparvata lugens are largely unknown. In the present study, we discover that NlHR3 and NlFTZ-F1 are activated in the nymph stages by ecdysone signaling. Transcription disruption of NlHR3 and NlFTZ-F1 expression prevents nymph ecdysis and metamorphosis, which leads to abnormal appearance, malformed ovaries, and lethal phenotypes. In addition, we demonstrate that NlHR3 and NlFTZ-F1 regulate molting and reproduction by interacting with the intrinsic 20E and JH signaling pathways. Our work offers a deep insight into the action mechanisms of HR3 and FTZ-F1 in insects. Moreover, NlHR3 and NlFTZ-F1 could properly be exploited as potential target genes for developing RNAi-based pesticides to control N. lugens.
Collapse
Affiliation(s)
- Kailong Li
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Kanghong Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Xing Wang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Mingyong Ma
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Xiangwen Luo
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Wuying Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Ang Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Zhaopu Peng
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Deyong Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, China
| |
Collapse
|
13
|
Xie YC, Zhang HH, Li HJ, Zhang XY, Luo XM, Jiang MX, Zhang CX. Molting-related proteases in the brown planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103893. [PMID: 36513274 DOI: 10.1016/j.ibmb.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Digestion and absorption of old cuticles during insect molting are necessary for new cuticle formation, during which complicated enzyme catalysis is essential. To date, a few carboxypeptidases, aminopeptidases and serine proteases (mostly trypsins) connected with cuticle digestion, zymogen activation and histological differentiation during the ecdysis of lepidopteran, dipteran and hymenopteran insects have been identified. However, little is known about these proteins in hemimetabolous insects. In this study, we identified 33 candidate trypsin and trypsin-like homologs, 14 metallocarboxypeptidase and 32 aminopeptidase genes in the brown planthopper Nilaparvata lugens, a hemipteran rice pest. Among the proteins encoded by these genes, 9 trypsin-like proteases, 3 metallocarboxypeptidases and 1 aminopeptidase were selected as potential procuticle hydrolases by bioinformatics analysis and in vivo validation. RNA interference targeting these genes demonstrated that 3 trypsin-like proteases (NlTrypsin-8, NlTrypsin-29 and NlTrypsin-32) genes and 1 metallocarboxypeptidase (NlCpB) gene were found to be essential for ecdysis in N. lugens; specifically, gene silencing led to incomplete cuticle degradation and arrested ecdysis, causing lethal morphological phenotype acquisition. Spatiotemporal expression profiling by quantitative PCR and western blotting revealed their specific expression in the integument and their periodic expression during each stadium, with a peak before ecdysis and eclosion. Transmission electron microscopy demonstrated corresponding ultrastructural defects after RNAi targeting, with NlCpB-silenced specimens having the most undigested old procuticles. Immunohistochemical staining revealed that NlTrypsin-8, NlTrypsin-29 and NlCpB were predominantly located in the exuvial space. This research further adds to our understanding of proteases and its potential role in insect ecdysis.
Collapse
Affiliation(s)
- Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Hou-Hong Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Han-Jing Li
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Mei Luo
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Xing Jiang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
14
|
Benrabaa S, Orchard I, Lange AB. A critical role for ecdysone response genes in regulating egg production in adult female Rhodnius prolixus. PLoS One 2023; 18:e0283286. [PMID: 36940230 PMCID: PMC10027210 DOI: 10.1371/journal.pone.0283286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/03/2023] [Indexed: 03/21/2023] Open
Abstract
Ecdysteroids control ovary growth and egg production through a complex gene hierarchy. In the female Rhodnius prolixus, a blood-gorging triatomine and the vector of Chagas disease, we have identified the ecdysone response genes in the ovary using transcriptomic data. We then quantified the expression of the ecdysone response gene transcripts (E75, E74, BR-C, HR3, HR4, and FTZ-F1) in several tissues, including the ovary, following a blood meal. These results confirm the presence of these transcripts in several tissues in R. prolixus and show that the ecdysone response genes in the ovary are mostly upregulated during the first three days post blood meal (PBM). Knockdown of E75, E74, or FTZ-F1 transcripts using RNA interference (RNAi) was used to understand the role of the ecdysone response genes in vitellogenesis and egg production. Knockdown significantly decreases the expression of the transcripts for the ecdysone receptor and Halloween genes in the fat body and the ovaries and reduces the titer of ecdysteroid in the hemolymph. Knockdown of each of these transcription factors typically alters the expression of the other transcription factors. Knockdown also significantly decreases the expression of vitellogenin transcripts, Vg1 and Vg2, in the fat body and ovaries and reduces the number of eggs produced and laid. Some of the laid eggs have an irregular shape and smaller volume, and their hatching rate is decreased. Knockdown also influences the expression of the chorion gene transcripts Rp30 and Rp45. The overall effect of knockdown is a decrease in number of eggs produced and a severe reduction in number of eggs laid and their hatching rate. Clearly, ecdysteroids and ecdysone response genes play a significant role in reproduction in R. prolixus.
Collapse
Affiliation(s)
- Samiha Benrabaa
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
15
|
Wu L, Li L, Xu Y, Li Q, Liu F, Zhao H. Identification and characterization of CYP307A1 as a molecular target for controlling the small hive beetle, Aethina tumida. PEST MANAGEMENT SCIENCE 2023; 79:37-44. [PMID: 36054776 DOI: 10.1002/ps.7146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The molting hormone 20-hydroxyecdysone (20E) plays a key role in insect development, metamorphosis, and reproduction. Previous studies have shown that ecdysteroid metabolism is regulated by a series of CYP genes in most of the insect species. However, the roles of these CYP genes in a Coleopteran beetle, Aethina tumida (small hive beetle, SHB) have not yet been explored. RESULTS In the current study, we identified seven CYP genes (six Halloween genes and one AtCYP18A1 gene) related to 20E metabolism. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) showed that AtCYP307A1 and AtCYP307B1 were primarily expressed in the embryonic stage and in the cephalothorax of larvae. RNA interference (RNAi) screening revealed that suppression of AtCYP307A1 expression caused a lethal phenotype during the larval-pupal metamorphosis. Furthermore, Hematoxylin and Eosin staining of the integument showed that the RNAi of AtCYP307A1 inhibited the apolysis and degradation of the old cuticle. In addition, silencing of AtCYP307A1 resulted in significant down-regulation of 20E titers and the expression levels of 20E signaling pathway genes. Finally, the AtCYP307A1 RNAi phenotype was rescued by topical application of 20E. CONCLUSION Our studies suggest that AtCYP307A1 involved in 20E synthesis is indispensable during the larval-pupal metamorphosis of beetles, which could serve as a putative insecticide target for pest control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixian Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Liangbin Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yajing Xu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Qiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Fang Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Crosstalk between Nutrition, Insulin, Juvenile Hormone, and Ecdysteroid Signaling in the Classical Insect Model, Rhodnius prolixus. Int J Mol Sci 2022; 24:ijms24010007. [PMID: 36613451 PMCID: PMC9819625 DOI: 10.3390/ijms24010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel aspects of insect metabolism and physiology. Our recent work has shown that nutrition, insulin signaling, and two main types of insect lipophilic hormones, juvenile hormone (JH) and ecdysteroids, are essential for successful reproduction in R. prolixus; however, the interplay behind these endocrine signals has not been established. We used a combination of hormone treatments, gene expression analyses, hormone measurements, and ex vivo experiments using the corpus allatum or the ovary, to investigate how the interaction of these endocrine signals might define the hormone environment for egg production. The results show that after a blood meal, circulating JH levels increase, a process mainly driven through insulin and allatoregulatory neuropeptides. In turn, JH feeds back to provide some control over its own biosynthesis by regulating the expression of critical biosynthetic enzymes in the corpus allatum. Interestingly, insulin also stimulates the synthesis and release of ecdysteroids from the ovary. This study highlights the complex network of endocrine signals that, together, coordinate a successful reproductive cycle.
Collapse
|
17
|
Zhang L, Cheng X, Tao S, Peng LY, Zhu Z, Bao YY. Neuronal calcium sensor 2 is key to moulting and oocyte development in the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2022; 31:722-733. [PMID: 35789509 DOI: 10.1111/imb.12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Intracellular calcium (Ca2+ ) is vital for signal transduction in many cellular events. Several Ca2+ -binding proteins mediate the transduction of intracellular calcium signals. The EF-hand motifs containing neuronal calcium sensor (NCS) proteins are mainly expressed in the nervous system, where they have important roles in the regulation of a variety of neuronal functions. NCS1 has four EF-hand motifs and well-defined neuronal development functions in a variety of eukaryotes. However, NCS2 has only been identified in invertebrates such as insects and nematodes thus far. The functions of NCS2 remain largely unknown. Here, we identified an orthologous NCS2 in the hemipteran Nilaparvata lugens. Based on qRT-PCR, this gene was found to be primarily expressed in the brain. Knockdown of NCS2 in each nymphal instar by RNA interference led to lethality and caused aggradation and disordered arrangement of lipid droplets in the ovaries and testes of adults, which were associated with the absence of mature oocytes in female ovaries and reduction of spermiation in male adults. Our findings revealed a novel function for NCS2 as a regulator in development and reproduction and suggested that this protein had an important role in modulating lipid droplet remodelling in ovary and testis of N. lugens adults.
Collapse
Affiliation(s)
- Lu Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xu Cheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shuai Tao
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lu-Yao Peng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhen Zhu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yan-Yuan Bao
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Liu K, Yuan L, Yue L, Chen W, Kang K, Lv J, Zhang W, Pang R. Population density modulates insect progenitive plasticity through the regulation of dopamine biosynthesis. INSECT SCIENCE 2022; 29:1773-1789. [PMID: 35230747 DOI: 10.1111/1744-7917.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Insect fecundity is a quantitative phenotype strongly affected by genotypes and the environment. However, interactions between genotypes and environmental factors in modulating insect fecundity remain largely unknown. This study investigated the impact of population density on the fecundity of Nilaparvata lugens (brown planthopper; BPH) carrying homozygous high- (HFG) or low- (LFG) fecundity homozygous genotypes. Under low population densities, the fecundity and population growth rate of both genotypes showed similar increasing trends across generations, while the trends between HFG and LFG under high population densities were opposite. Through a combination of temporal analysis and weighted gene co-expression network analyses on RNA-seq data of HFG and LFG under low and high population densities in the 1st, 3rd, and 5th generations, we identified 2 gene modules that were associated with these density-dependent progenitive phenotypes. Four pathways related to the neural system were simultaneously enriched by the 2 gene modules. Furthermore, Nlpale, which encodes a tyrosine hydroxylase, was identified as a key gene. The RNA interference of this gene and manipulation of its downstream product dopamine significantly affected the basic and density-dependent progenitive phenotypes of BPH. These findings indicated that dopamine biosynthesis is the key regulatory factor that determines fecundity in response to density changes in different BPH genotypes. Thus, this study provides insights into the interaction of a typical environmental factor and insect genotype during the process of population regulation.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Longyu Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Yue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiwen Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kui Kang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Lv
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
19
|
Knockdown of the Halloween Genes spook, shadow and shade Influences Oocyte Development, Egg Shape, Oviposition and Hatching in the Desert Locust. Int J Mol Sci 2022; 23:ijms23169232. [PMID: 36012497 PMCID: PMC9408901 DOI: 10.3390/ijms23169232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Ecdysteroids are widely investigated for their role during the molting cascade in insects; however, they are also involved in the development of the female reproductive system. Ecdysteroids are synthesized from cholesterol, which is further converted via a series of enzymatic steps into the main molting hormone, 20-hydoxyecdysone. Most of these biosynthetic conversion steps involve the activity of cytochrome P450 (CYP) hydroxylases, which are encoded by the Halloween genes. Three of these genes, spook (spo), phantom (phm) and shade (shd), were previously characterized in the desert locust, Schistocerca gregaria. Based on recent sequencing data, we have now identified the sequences of disembodied (dib) and shadow (sad), for which we also analyzed spatiotemporal expression profiles using qRT-PCR. Furthermore, we investigated the possible role(s) of five different Halloween genes in the oogenesis process by means of RNA interference mediated knockdown experiments. Our results showed that depleting the expression of SchgrSpo, SchgrSad and SchgrShd had a significant impact on oocyte development, oviposition and hatching of the eggs. Moreover, the shape of the growing oocytes, as well as the deposited eggs, was very drastically altered by the experimental treatments. Consequently, it can be proposed that these three enzymes play an important role in oogenesis.
Collapse
|
20
|
Shahzad MF, Idrees A, Afzal A, Iqbal J, Qadir ZA, Khan AA, Ullah A, Li J. RNAi-Mediated Silencing of Putative Halloween Gene Phantom Affects the Performance of Rice Striped Stem Borer, Chilo suppressalis. INSECTS 2022; 13:731. [PMID: 36005356 PMCID: PMC9409148 DOI: 10.3390/insects13080731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The physiological and biochemical characterization of the "Halloween" genes has fundamental importance in the biosynthesis pathway of ecdysteroids. These genes were found to catalyze the final phases of ecdysteroid biosynthesis from dietary cholesterol to the molting hormone 20-hydroxyecdysone. We report the characterization of the Cs-Phm in a major insect pest in agriculture, the rice striped stem borer, Chilo suppressalis (C. suppressalis). A full-length transcript of Cs-Phm was amplified with an open reading frame (ORF) of 478 amino acids through 5' and 3' RACE. Cs-Phm shows five insect-conserved P450 motifs: Helix-C, Helix-I, Helix-K, PERF, and heme-binding motifs. Phylogenetic analysis clearly shows high similarity to Lepidoptera and evolutionary conservation in insects. The relative spatial and temporal transcript profile shows that Cs-Phm is highly expressed in the prothoracic glands and appears throughout the larval development, but with low expression at the start of the larval instar. It seems to peak in 3-4 days and decreases again before the larvae molt. Double-stranded RNA (dsRNA) injection of Cs-Phm at the larval stage efficiently knocked down the target gene and decreased its expression level. The dsRNA-treated group showed significantly decreased ecdysteroid titers, which leads to delayed larval development and higher larval mortality. Negative effects of larval development were rescued by treating 20E in the dsRNA-treated group. Thus, in conclusion, our results suggest that Cs-Phm is functionally conserved in C. suppressalis and encodes functional CYP that contributes to the biogenesis of 20E.
Collapse
Affiliation(s)
- Muhammad Faisal Shahzad
- Department of Entomology, Faculty of Agriculture, Gomal University, Dera Ismail Khan 29220, Pakistan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Atif Idrees
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Ayesha Afzal
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1-Km Defense Road, Lahore 54000, Pakistan
| | - Jamshaid Iqbal
- Department of Entomology, Faculty of Agriculture, Gomal University, Dera Ismail Khan 29220, Pakistan
| | - Ziyad Abdul Qadir
- Honeybee Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716, USA
| | - Azhar Abbas Khan
- College of Agriculture, Bahadur Sub Campus Layyah, Bahauddin Zakariya University, Multan 31200, Pakistan
| | - Ayat Ullah
- Department of Entomology, Faculty of Agriculture, Gomal University, Dera Ismail Khan 29220, Pakistan
| | - Jun Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| |
Collapse
|
21
|
Wang N, Zhang C, Chen M, Shi Z, Zhou Y, Shi X, Zhou W, Zhu Z. Characterization of MicroRNAs Associated with Reproduction in the Brown Planthopper, Nilaparvata lugens. Int J Mol Sci 2022; 23:7808. [PMID: 35887156 PMCID: PMC9316625 DOI: 10.3390/ijms23147808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Insects have a robust capacity to produce offspring for propagation, and the reproductive events of female insects have been achieved at the molecular and physiological levels via regulatory gene pathways. However, the roles of MicroRNAs (miRNAs) in the reproductive development of the brown planthopper (BPH), Nilaparvata lugens, remain largely unexplored. To understand the roles of miRNAs in reproductive development, miRNAs were identified by Solexa sequencing in short-winged (SW) female adults of BPH. Small RNA libraries derived from three developmental phases (1 day, 3 days, and 5 days after emergence) were constructed and sequenced. We identified 905 miRNAs, including 263 known and 642 novel miRNAs. Among them, a total of 43 miRNAs were differentially expressed in the three developmental phases, and 14,568 putative targets for 43 differentially expressed miRNAs (DEMs) were predicted by TargetScan and miRanda. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the predicted miRNA targets illustrated the putative roles for these DEMs in reproduction. The progress events were annotated, including oogenesis, lipid biosynthetic process, and related pathways such as apoptosis, ABC transporters, and amino acid metabolism. Four highly abundant DEMs (miR-9a-5p, miR-34-5p, miR-275-3p, and miR-317-3p) were further screened, and miR-34-5p was confirmed to be involved in the regulation of reproduction. Overexpression of miR-34-5p via injecting its mimics reduced fecundity and decreased Vg expression. Moreover, target genes prediction for miR-34-5p showed they might be involved in 20E signaling cascades, apoptosis, and gonadal development, including hormone receptor 4 (HR4), caspase-1 (Cp-1), and spermatogenesis-associated protein 20 (SPATA20). These findings provide a valuable resource for future studies on the role of miRNAs in BPH reproductive development.
Collapse
Affiliation(s)
- Ni Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Chao Zhang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Min Chen
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Zheyi Shi
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Ying Zhou
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Xiaoxiao Shi
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Zengrong Zhu
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| |
Collapse
|
22
|
Cheng X, Wang W, Zhang L, Yang RR, Ma Y, Bao YY. ATPase subunits of the 26S proteasome are important for oocyte maturation in the brown planthopper. INSECT MOLECULAR BIOLOGY 2022; 31:317-333. [PMID: 35084067 DOI: 10.1111/imb.12761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The 26S proteasome is the major engine of protein degradation in all eukaryotic cells. Adenosine triphosphatase (ATPase) regulatory subunits (Rpts) are constituents of the proteasome that are involved in the unfolding and translocation of substrate proteins into the core particle. In this study, by using the brown planthopper Nilaparvata lugens as a model insect, we report the biological importance of Rpts in female reproduction. We identified six homologous Rpt genes (Rpt1-6) in N. lugens. These genes were detected at high transcript levels in eggs and ovaries of females but at low transcript levels in males. RNA interference-mediated knockdown of N. lugens Rpt genes significantly decreased the proteolytic activity of the proteasome and impeded the transcription of triacylglycerol lipase and vitellogenin genes in the fat bodies and ovaries of adult females and reduced the triglyceride content in the ovaries. The decrease in the proteolytic activity of the proteasome via knockdown of Rpts also downregulated the transcription of the CYP307A2 gene encoding an important rate-limiting enzyme in the 20-hydroxyecdysone biosynthetic pathway in the ovaries, reduced 20E production in adult females and impaired ovarian development and oocyte maturation, leading to the failure of egg production and egg-laying. These novel findings indicate that Rpts are required for the proteolytic activity of the proteasome, which is important for female reproductive success in N. lugens.
Collapse
Affiliation(s)
- Xu Cheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wei Wang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lu Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Rui-Rui Yang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ya Ma
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yan-Yuan Bao
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Sun R, Xu Y, Liu J, Yang L, Cui G, Zhong G, Yi X. Proteomic profiling for ovarian development and azadirachtin exposure in Spodoptera litura during metamorphosis from pupae to adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113548. [PMID: 35487172 DOI: 10.1016/j.ecoenv.2022.113548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Azadirachtin is one of the most successful botanical pesticides in agricultural pest control. To build a repertoire of proteins and pathways in response to azadirachtin exposure during ovarian development, iTRAQ-based comparative proteomic was conducted. 1423 and 1686 proteins were identified as differentially accumulated proteins (DAPs) by comparing the protein abundance in adult ovary with that in pupal ovary under normal and azadirachtin exposure condition, respectively. Bioinformatics analysis indicated that pupae-to-adult transition requires proteins related to proteasome and branched chain amino acids (BCAAs) degradation for ovary development. Azadirachtin exposure strongly affected glycosylation-related pathway. And proteins related to vitamin B6 synthesis were necessary for ovary development under normal and AZA-exposure condition. RNAi assays confirmed the essential roles of DAPs related to glycosylation and vitamin B6 synthesis in moth growth and ovary development. The results enhance our understanding of the molecular regulatory network for ovary development and provide valuable resources for using AZA-responsive proteins to develop novel bio-rational insecticides.
Collapse
Affiliation(s)
- Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Yuanhao Xu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Jin Liu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Liying Yang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
24
|
Wei Q, Zhu XH, Wan PJ, He JC, Wang WX, Lai FX, Fu Q. Knockdown of the chromatin remodeling ATPase gene Brahma impairs the reproductive potential of the brown planthopper, Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105106. [PMID: 35715045 DOI: 10.1016/j.pestbp.2022.105106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most destructive pests in rice-growing regions of Asia. Extensive studies have suggested that SWI/SNF chromatin remodeling ATPase Brahma (BRM) plays multiple roles in the insect model Drosophila. Yet much less is known about the physiological properties for NlBRM. In the present study, the cloned full-length cDNA of NlBRM was 5637 bp and contained an ORF of 5292 bp encoding a 194.53 kD protein. The spatiotemporal dynamics of NlBRM was investigated by qPCR, which showed that it was abundantly expressed in the egg and ovary. Then significant downregulation of NlBRM by dsRNA injection had a relatively greater impact on female survival than male. Moreover, the number of oviposition marks of the NlBRM-RNAi females were declined by 61.11% - 73.33% compared with the controls during the subsequent 5 days after dsRNA injection. Meanwhile, the number of newly hatched BPH nymphs also decreased correspondingly by 93.56% - 100%. Phenotypic analysis revealed that none of normally banana-shaped eggs were discernable in the ovaries of NlBRM-deficient females, where mRNA expression of N. lugens vitellogenin gene was also reduced. Our results demonstrated that NlBRM played a crucial role in ovarian development and fecundity of BPH, likely by regulating the vitellogenin gene in vivo, which could be as a promising target for parental RNAi-based control of this serious rice pest.
Collapse
Affiliation(s)
- Qi Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xu-Hui Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Pin-Jun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jia-Chun He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wei-Xia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Feng-Xiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| |
Collapse
|
25
|
Lv B, Zhuo JZ, Peng YD, Wang Z. Comparative analysis of cadmium-induced toxicity and survival responses in the wolf spider Pirata subpiraticus under low-temperature treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32832-32844. [PMID: 35020152 DOI: 10.1007/s11356-022-18548-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) pollution is a serious heavy metal pollution in paddy fields, but its effect and underlying mechanism on soil arthropod overwintering and cold resistance are still unclear. In the present study, adult females of the wolf spider Pirata subpiraticus exposed to Cd stress underwent a simulated temperature process (25℃ → 16℃ → 8℃ → 4℃). The mortality rate and content of nutrients in the Cd-treated spiders were dramatically elevated after low-temperature treatment compared to those in the Cd-free control spiders under the same temperature condition. To uncover the putative modulatory mechanism of Cd on cold tolerance in P. subpiraticus, we employed an in-depth RNA sequencing analysis and yielded a total of 888 differentially expressed genes (DEGs). Besides, we characterized genes that participate in multiple cryoprotectant syntheses, including arginine, cysteine, glucose, glycerol, heat shock protein, and mannose. The enrichment analyses found that most of the DEGs involved in biological processes and pathways were related to carbohydrate, lipid, and protein metabolism. Notably, ten Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as starch and sucrose metabolism, arachidonic acid metabolism, amino acid metabolism, mineral absorption, and vitamin digestion and absorption, were distinctively enriched with downregulated genes. Meanwhile, we also identified that seven DEGs might inhibit the KEGG pathway of ovarian steroidogenesis and potentially cripple ovarian function and fecundity in the spider. The decreased egg sac weight, number of hatched spiderlings, and vitellin concentration further supported the view that Cd exposure vitiates the overwintering spider's fecundity. Collectively, the comparative analysis provides a novel perspective regarding the survival response and fecundity on the cold tolerance of spiders under Cd stress and offers a profound insight for evaluating Cd-induced toxicity on overwintering arthropods.
Collapse
Affiliation(s)
- Bo Lv
- College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun-Zhe Zhuo
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, 410128, Hunan, China
| | - Yuan-de Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
26
|
Hu K, Fu B, Wang C, Liu J, Tang Y, Zhang W, Zhu J, Li Y, Pan Q, Liu F. The role of 20E biosynthesis relative gene Shadow in the reproduction of the predatory mirid bug, Cyrtorhinus lividipennis (Hemiptera: Miridae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21854. [PMID: 34783381 DOI: 10.1002/arch.21854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Cytorhinus lividipennis is a natural enemy of rice planthoppers and leafhoppers. Improving the fecundity of C. lividipennis will be helpful to improve its control effect on pests. However, little is known about the hormonal regulatory mechanism of reproduction in C. lividipennis. In the current study, we examined the role of 20-hydroxyecdysone (20E) biosynthesis relative gene Shadow in the reproduction of C. lividipennis. The complementary DNA sequence of ClSad is 2018 -bp in length with an open reading frame of 1398-bp encoding 465 amino acid residues. ClSad was readily detected in nymphal and adult stages, and highly expressed in the adult stage. ClSad was highly expressed in the midgut and ovaries of adult females. Moreover, RNA interference-mediated knockdown of ClSad reduced the 20E titers and ClVg transcript level, resulting in fewer fully developed eggs and a decrease in the number of eggs laid by dsSad-injected adult females within 15 days. These results suggest that ClSad plays a critical role in the reproduction of C. lividipennis. The present study provides insights into the molecular mechanism of the ClSad gene for the reproduction of C. lividipennis.
Collapse
Affiliation(s)
- Kui Hu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Baobao Fu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuchu Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqi Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingying Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wendan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yao Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qinjian Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
27
|
Wang W, Ma Y, Yang RR, Cheng X, Huang HJ, Zhang CX, Bao YY. An MD-2-related lipid-recognition protein is required for insect reproduction and integument development. Open Biol 2021; 11:210170. [PMID: 34905699 PMCID: PMC8670961 DOI: 10.1098/rsob.210170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The myeloid differentiation factor 2 (MD-2)-related lipid-recognition protein is involved in immune responses through recognizing bacteria lipopolysaccharide in mammals, arthropods and plants. However, the physiological roles of MD-2 in other biological processes are largely unknown. Here, we identified three homologue MD-2 genes (NlML1, NlML2 and NlML3) by searching the genome and transcriptome databases of the brown planthopper Nilaparvata lugens, a hemipteran insect species. Temporospatial analysis showed that the NlML1 gene was highly expressed in the fat body but much less so in the other tissues, while the NlML2 and NlML3 genes were highly expressed in the testis or digestive tract. RNA interference-mediated depletion of the NlML1 gene significantly downregulated the transcription of numerous integument protein genes. The NlML1 knockdown led to moulting failure and mortality at the nymph-adult transition phase, impaired egg laying and hatching, and reduced 20-hydroxyecdysone (20E) production in the nymphs. 20E could rescue the deficient moulting phenotypes derived from dsNlML1 RNAi. These novel findings indicate that NlML1 is required for nymphal moulting and female reproductive success as it plays an important role in regulating 20E synthesis, lipid and chitin metabolisms in N. lugens, thus contributing to our understanding of developmental and reproductive mechanisms in insects.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ya Ma
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Rui-Rui Yang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xu Cheng
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, People's Republic of China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
28
|
Pezenti LF, Levy SM, de Souza RF, Sosa-Gómez DR, da Rosa R. Testes morphology and the identification of transcripts of the hormonal pathways of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Erebidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 65:101111. [PMID: 34571334 DOI: 10.1016/j.asd.2021.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Anticarsia gemmatalis is one of the main defoliating pests of soybeans in Brazil. In the current study, we characterized the histomorphology of the testes and the spermatogenesis process in A. gemmatalis. We also identified transcripts involved in the biosynthesis, metabolism, and signaling of juvenile and ecdysteroid hormones, in order to provide information about potential mechanisms of regulation of hormonal pathways in this species. Our analyses revealed that the A. gemmatalis larvae have a pair of kidney-shaped testicles. These are divided into four testicular follicles, where there are germ cell cysts at different stages of development. In the pupal stage, the testicles are fused, so adults have a single spherical testis, with a variable number of follicles. The A. gemmatalis has centripetal spermatogenesis and exhibits spermatic dimorphism. We identified 31 transcripts that encode proteins involved in juvenile hormone and ecdysteroid pathways, such as mevalonate kinase, CYP14A1, ecdysone receptor, among others. Our results on the morphology of the testes and spermatogenesis process, as well as identification of the genes involved in hormonal pathways in A. gemmatalis, provide important data for understanding the biology of this agricultural pest, which can be used as a basis for further research in other economically important lepidopterans.
Collapse
Affiliation(s)
- Larissa Forim Pezenti
- Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil; Laboratório de Bioinformática, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Sheila Michele Levy
- Laboratório de Insetos, Departamento de Histologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Rogério Fernandes de Souza
- Laboratório de Bioinformática, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Daniel Ricardo Sosa-Gómez
- Empresa Brasileira de Pesquisa Agropecuária/Centro Nacional de Pesquisa de Soja (Embrapa Soja), Londrina, Paraná, Brazil.
| | - Renata da Rosa
- Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
29
|
Wang W, Yang RR, Peng LY, Zhang L, Yao YL, Bao YY. Proteolytic activity of the proteasome is required for female insect reproduction. Open Biol 2021; 11:200251. [PMID: 33622101 PMCID: PMC8061697 DOI: 10.1098/rsob.200251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Non-ATPase regulatory subunits (Rpns) are components of the 26S proteasome involved in polyubiquitinated substrate recognition and deubiquitination in eukaryotes. Here, we identified 15 homologues sequences of Rpn and associated genes by searching the genome and transcriptome databases of the brown planthopper, Nilaparvata lugens, a hemipteran rice pest. Temporospatial analysis showed that NlRpn genes were significantly highly expressed in eggs and ovaries but were less-highly expressed in males. RNA interference-mediated depletion of NlRpn genes decreased the proteolytic activity of proteasome and impeded the transcription of lipase and vitellogenin genes in the fat bodies and ovaries in adult females, and reduced the triglyceride content in the ovaries. Decrease of the proteolytic activity of the proteasome via knockdown of NlRpns also inhibited the transcription of halloween genes, including NlCYP307A2, NlCYP306A2 and NlCYP314A1, in the 20-hydroxyecdysone (20E) biosynthetic pathway in the ovaries, reduced 20E production in adult females, and impaired ovarian development and oocyte maturation, resulting in reduced fecundity. These novel findings indicate that the proteolytic activity of the proteasome is required for female reproductive processes in N. lugens, thus furthering our understanding of the reproductive and developmental strategies in insects.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Rui-Rui Yang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lu-Yao Peng
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lu Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yue-Lin Yao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.,School of Biological Science, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
30
|
Dermauw W, Van Leeuwen T, Feyereisen R. Diversity and evolution of the P450 family in arthropods. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103490. [PMID: 33169702 DOI: 10.1016/j.ibmb.2020.103490] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 05/13/2023]
Abstract
The P450 family (CYP genes) of arthropods encodes diverse enzymes involved in the metabolism of foreign compounds and in essential endocrine or ecophysiological functions. The P450 sequences (CYPome) from 40 arthropod species were manually curated, including 31 complete CYPomes, and a maximum likelihood phylogeny of nearly 3000 sequences is presented. Arthropod CYPomes are assembled from members of six CYP clans of variable size, the CYP2, CYP3, CYP4 and mitochondrial clans, as well as the CYP20 and CYP16 clans that are not found in Neoptera. CYPome sizes vary from two dozen genes in some parasitic species to over 200 in species as diverse as collembolans or ticks. CYPomes are comprised of few CYP families with many genes and many CYP families with few genes, and this distribution is the result of dynamic birth and death processes. Lineage-specific expansions or blooms are found throughout the phylogeny and often result in genomic clusters that appear to form a reservoir of catalytic diversity maintained as heritable units. Among the many P450s with physiological functions, six CYP families are involved in ecdysteroid metabolism. However, five so-called Halloween genes are not universally represented and do not constitute the unique pathway of ecdysteroid biosynthesis. The diversity of arthropod CYPomes has only partially been uncovered to date and many P450s with physiological functions regulating the synthesis and degradation of endogenous signal molecules (including ecdysteroids) and semiochemicals (including pheromones and defense chemicals) remain to be discovered. Sequence diversity of arthropod P450s is extreme, and P450 sequences lacking the universally conserved Cys ligand to the heme have evolved several times. A better understanding of P450 evolution is needed to discern the relative contributions of stochastic processes and adaptive processes in shaping the size and diversity of CYPomes.
Collapse
Affiliation(s)
- Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
31
|
Silva-Oliveira G, De Paula IF, Medina JM, Alves-Bezerra M, Gondim KC. Insulin receptor deficiency reduces lipid synthesis and reproductive function in the insect Rhodnius prolixus. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158851. [PMID: 33160077 DOI: 10.1016/j.bbalip.2020.158851] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
Rhodnius prolixus, a vector of Chagas disease, is a hematophagous insect that feeds exclusively on blood. Each blood meal is digested within the first fourteen days after feeding, providing substrates for lipid synthesis for storage and egg production. These events are precisely regulated and emerging evidence points to a key function of insulin-like peptides (ILPs) in this control. Here we investigated the role of insulin receptor in the regulation of nutrient metabolism in fed adult females. The expression of insulin receptor (RhoprIR) gene was determined in adult organs, and it was highest in ovaries and previtellogenic follicles. We generated insects with RNAi-mediated knockdown of RhoprIR to address the physiological role of this receptor. RhoprIR deficiency improved longevity and reduced triacylglycerol storage in the fat body, whereas blood digestion remained unchanged for seven days after blood meal. The lower lipid content was attributable to decreased de novo lipogenesis as well as reduced incorporation of hemolymph-derived fatty acids into newly synthesized lipids within this organ. Consistent with that, fat bodies from RhoprIR-deficient insects exhibited decreased gene expression levels of lipophorin receptor (RhoprLpR), glycerol-3-phosphate acyltransferase 1 and 4 (RhoprGpat1 and RhoprGpat4), and carnitine palmitoyltransferase 1 (RhoprCpt1). Although hemolymph lipid profile was not affected by RhoprIR disruption, the concentration of circulating vitellogenin was increased. In line with these changes, RhoprIR-deficient females exhibited smaller ovaries and a marked reduction in oviposition. Taken together, these findings support a key role of insulin receptor in nutrient homeostasis, lipid synthesis and egg production following a blood meal.
Collapse
Affiliation(s)
- Gleidson Silva-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Iron F De Paula
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Jorge M Medina
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Michele Alves-Bezerra
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
32
|
Leyria J, Orchard I, Lange AB. What happens after a blood meal? A transcriptome analysis of the main tissues involved in egg production in Rhodnius prolixus, an insect vector of Chagas disease. PLoS Negl Trop Dis 2020; 14:e0008516. [PMID: 33057354 PMCID: PMC7591069 DOI: 10.1371/journal.pntd.0008516] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/27/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The blood-sucking hemipteran Rhodnius prolixus is a vector of Chagas disease, one of the most neglected tropical diseases affecting several million people, mostly in Latin America. The blood meal is an event with a high epidemiological impact since adult mated females feed several times, with each meal resulting in a bout of egg laying, and thereby the production of hundreds of offspring. By means of RNA-Sequencing (RNA-Seq) we have examined how a blood meal influences mRNA expression in the central nervous system (CNS), fat body and ovaries in order to promote egg production, focusing on tissue-specific responses under controlled nutritional conditions. We illustrate the cross talk between reproduction and a) lipids, proteins and trehalose metabolism, b) neuropeptide and neurohormonal signaling, and c) the immune system. Overall, our molecular evaluation confirms and supports previous studies and provides an invaluable molecular resource for future investigations on different tissues involved in successful reproductive events. These analyses serve as a starting point for new investigations, increasing the chances of developing novel strategies for vector population control by translational research, with less impact on the environment and more specificity for a particular organism.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
33
|
Peng LY, Dai ZW, Yang RR, Zhu Z, Wang W, Zhou X, Bao YY. NADPH Oxidase 5 Is Essential for Molting and Oviposition in a Rice Planthopper Nilaparvata lugens. INSECTS 2020; 11:insects11090642. [PMID: 32962025 PMCID: PMC7564065 DOI: 10.3390/insects11090642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
The brown planthopper Nilaparvata lugens is a typical monophagous insect herbivore that feeds exclusively on rice sap. This insect pest causes serious damage to rice crops throughout East Asian countries. Chemical control remains the first choice for managing N. lugens populations; however, the use of insecticides has given rise to planthopper resurgence and additional environmental risks. Nilaparvata lugens is a model insect of Hemiptera because its whole genome sequence has been elucidated and is susceptible to RNA interference. In this study, our findings revealed that a superoxide-generating gene, NADPH oxidase 5 (Nox5), is essential for molting and oviposition in a Hemipteran insect Nilaparvata lugens. Knockdown of Nox5 transcript levels by RNA interference in 2nd-5th-instar nymphs results in significantly lethal deficits in the molting transitions from nymph-nymph and nymph-adult. Nox5 knockdown leads to a reduction of hydrogen peroxide in female ovaries and failure of oviposition from the insect ovipositor into the rice leaf sheath. Here, we provide in vivo evidence demonstrating that Nox5 is a key enzyme for regulating molting and oviposition in this insect species.
Collapse
Affiliation(s)
- Lu-Yao Peng
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.-Y.P.); (Z.-W.D.); (R.-R.Y.); (Z.Z.); (W.W.); (X.Z.)
| | - Zhen-Wei Dai
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.-Y.P.); (Z.-W.D.); (R.-R.Y.); (Z.Z.); (W.W.); (X.Z.)
| | - Rui-Rui Yang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.-Y.P.); (Z.-W.D.); (R.-R.Y.); (Z.Z.); (W.W.); (X.Z.)
| | - Zhen Zhu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.-Y.P.); (Z.-W.D.); (R.-R.Y.); (Z.Z.); (W.W.); (X.Z.)
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Wei Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.-Y.P.); (Z.-W.D.); (R.-R.Y.); (Z.Z.); (W.W.); (X.Z.)
| | - Xiang Zhou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.-Y.P.); (Z.-W.D.); (R.-R.Y.); (Z.Z.); (W.W.); (X.Z.)
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.-Y.P.); (Z.-W.D.); (R.-R.Y.); (Z.Z.); (W.W.); (X.Z.)
- Correspondence: ; Tel.: +86-571-88982995; Fax: +86-571-88982991
| |
Collapse
|