1
|
Sharma K, Rai P, Tapadia MG. Impaired insulin signaling and diet-induced type 3 diabetes pathophysiology increase amyloid β expression in the Drosophila model of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119875. [PMID: 39515664 DOI: 10.1016/j.bbamcr.2024.119875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Compelling evidence has strongly linked unregulated sugar levels to developing Alzheimer's disease, suggesting Alzheimer's to be 'diabetes of the brain or 'type 3 diabetes. Insulin resistance contributes to the pathogenesis of Alzheimer's disease due to uncontrolled and unchecked blood glucose, though the interrelatedness between Alzheimer's disease and type 2 diabetes is debatable. Here we describe the consequences of inducing type 3 diabetes by feeding Drosophila on a high sucrose diet, which effectively mimics the pathophysiology of diabetes. A high sucrose diet increases glycogen and lipid accumulation. Inducing type 3 diabetes worsened neurodegeneration and accelerated disease progression in Drosophila expressing the Alzheimer's Familial Arctic mutation. High sucrose milieu also negatively affected locomotor ability and reduced the lifespan in the Alzheimer's disease model of Drosophila. The results showed that creating diabetic conditions by using insulin receptor (InR) knockdown in the eyes of Drosophila led to a degenerative phenotype, indicating a genetic interaction between the insulin signaling pathway and Alzheimer's disease. The expression of PERK reflects disruption in the endoplasmic reticulum homeostasis due to amyloid-β (Aβ) under a high sucrose diet. These observations demonstrated an association between type 3 diabetes and Alzheimer's disease, and that a high sucrose environment has a degenerating effect on Alzheimer's disease condition.
Collapse
Affiliation(s)
- Khushboo Sharma
- Cytogenetics lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pooja Rai
- Cytogenetics lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India; Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, MA 01605, USA
| | - Madhu G Tapadia
- Cytogenetics lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
2
|
He T, Yuan Z, Chen Q, Luo J, Mao J, Yang Y, Cao K, Yang Z. Circular RNAs mediate the regulation of maternal placental nutrient transport and fetal development by sugar-sweetened beverages. Food Res Int 2024; 193:114856. [PMID: 39160047 DOI: 10.1016/j.foodres.2024.114856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
Epidemiological and experimental studies have demonstrated a strong association between maternal diet and fetal birth weight, obesity, and metabolic syndrome. We investigated the pathways and modes of action of circular RNAs (circRNAs) that mediate the regulation of maternal reproductive performance and fetal development by sugar-sweetened beverages (20 % sucrose water, SSBs) using C57BL/6J mice as a model. Results showed that SSBs significantly increased the reproductive performance (P<0.05), body weight (P<0.01), fetal birth weight (P<0.05), placental weight (P<0.01), and the expression of nutrient transporter genes in the placenta and fetal liver (P<0.05), mainly by accelerating the maternal energy metabolism during pregnancy. However, maternal serum biochemical indices, antioxidant indices, and pathological damage to the liver and placenta predicted that the mother would be at greater health risks during this period. Moreover, transcriptomics results indicated that the differentially expressed (DE) circRNAs in the placenta regulate the maternal multiple metabolic pathways and the placental nutrient transport efficiency by sponging miRNAs and forming growth factors and proteins, ultimately improving the maternal reproductive performance. In addition, we verified the reliability of the sequencing results using reverse transcription polymerase chain reaction and identified the possibility of DE circRNAs binding to nutrient transporter genes using targeting relationship prediction. Finally, we constructed a correlation network that regulates maternal placental nutrient transport based on DE circRNAs, targeted miRNAs and nutrient transport-related genes. This study will provide scientific dietary guidance for pregnant women and new research ideas for preventing and treating pregnancy complications.
Collapse
Affiliation(s)
- Tianle He
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Zhidong Yuan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China.
| | - Qingyun Chen
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Ju Luo
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Jiani Mao
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Yulian Yang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Kai Cao
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Zhenguo Yang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Liu J, Xia W, Wu Q, Zhang Y, Wu Y, Li B, Chen F, Du X, Wu S, Yang Y, Gao Y, Wu M, Su L, Tong H. Fucoidan alleviates high sucrose-induced metabolic disorders and enhances intestinal homeostasis through modulation of Notch signaling. J Adv Res 2024:S2090-1232(24)00224-8. [PMID: 38825316 DOI: 10.1016/j.jare.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
INTRODUCTION The therapeutic potential of fucoidan (FUC), a natural polysaccharide, in metabolic disorders is recognized, yet its underlying mechanisms remain unclear. METHODS We conducted investigations into the therapeutic mechanisms of FUC sourced from Sargassum fulvellum concerning metabolic disorders induced by a high-sucrose diet (HSD), employing Drosophila melanogaster and mice models. Drosophila larvae were subjected to HSD exposure to monitor growth inhibition, reduced pupation, and developmental delays. Additionally, we examined the impact of FUC on growth- and development-related hormones in Drosophila. Furthermore, we assessed the modulation of larval intestinal homeostasis by FUC, focusing on the regulation of Notch signaling. In mice, we evaluated the effects of FUC on HSD-induced impairments in intestinal epithelial barrier integrity and gut hormone secretion. RESULTS FUC supplementation significantly enhanced pupal weight in Drosophila larvae and effectively countered HSD-induced elevation of glucose and triglyceride levels. It notably influenced the expression of growth- and development-related hormones, particularly augmenting insulin-like peptides production while mitigating larval growth retardation. FUC also modulated larval intestinal homeostasis by negatively regulating Notch signaling, thereby protecting against HSD-induced metabolic stress. In mice, FUC ameliorated HSD-induced impairments in ileum epithelial barrier integrity and gut hormone secretion. CONCLUSIONS Our findings demonstrate the multifaceted therapeutic effects of FUC in mitigating metabolic disorders and maintaining intestinal health. FUC holds promise as a therapeutic agent, with its effects attributed partly to the sulfate group and its ability to regulate Notch signaling, emphasizing its potential for addressing metabolic disorders.
Collapse
Affiliation(s)
- Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; Jiangxi Institute of Traditional Chinese Medicine Health Industry, Nanchang 330115, China
| | - Weiqiang Xia
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Fangyu Chen
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xueting Du
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Siya Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yue Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Laijin Su
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| |
Collapse
|
4
|
Loreto JS, Ferreira SA, de Almeida P, da Rocha JBT, Barbosa NV. Screening for Differentially Expressed Memory Genes on a Diabetes Model Induced by High-Sugar Diet in Drosophila melanogaster: Potential Markers for Memory Deficits. Mol Neurobiol 2024; 61:1225-1236. [PMID: 37698834 DOI: 10.1007/s12035-023-03598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has been shown to affect a series of cognitive processes including memory, increasing the risk for dementia, particularly Alzheimer's disease (AD). Although increasing evidence has supported that both diseases share common features, the pathophysiological mechanisms connecting these two disorders remain to be fully elucidated. Herein, we used Drosophila melanogaster fed on a high-sugar diet (HSD) to mimic T2DM, and investigate its effects on memory as well as identify potential molecular players associated with the memory deficits induced by HSD. Flies hatched from and reared on HSD for 7 days had a substantial decrease in short-term memory (STM). The screening for memory-related genes using transcriptome data revealed that HSD altered the expression of 33% of memory genes in relation to the control. Among the differentially expressed genes (DEGs) with a fold change (FC) higher than two, we found five genes, related to synapse and memory trace formation, that could be considered strong candidates to underlie the STM deficits in HSD flies: Abl tyrosine kinase (Abl), bruchpilot (Brp), minibrain (Mnb), shaker (Sh), and gilgamesh (Gish). We also analyzed genes from the dopamine system, one of the most relevant signaling pathways for olfactory memory. Interestingly, the flies fed on HSD presented a decreased expression of the Tyrosine hydroxylase (Ple) and Dopa decarboxylase (Ddc) genes, signals of a possible dopamine deficiency. In this work, we present promising biomarkers to investigate molecular networks shared between T2DM and AD.
Collapse
Affiliation(s)
- Julia Sepel Loreto
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil
| | - Sabrina Antunes Ferreira
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil
| | - Pâmela de Almeida
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil
| | - João Batista Teixeira da Rocha
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil
| | - Nilda Vargas Barbosa
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil.
| |
Collapse
|
5
|
Huang WH, Kajal K, Wibowo RH, Amartuvshin O, Kao SH, Rastegari E, Lin CH, Chiou KL, Pi HW, Ting CT, Hsu HJ. Excess dietary sugar impairs Drosophila adult stem cells via elevated reactive oxygen species-induced JNK signaling. Development 2024; 151:dev201772. [PMID: 38063853 DOI: 10.1242/dev.201772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
High-sugar diets (HSDs) often lead to obesity and type 2 diabetes, both metabolic syndromes associated with stem cell dysfunction. However, it is unclear whether excess dietary sugar affects stem cells. Here, we report that HSD impairs stem cell function in the intestine and ovaries of female Drosophila prior to the onset of insulin resistance, a hallmark of type 2 diabetes. Although 1 week of HSD leads to obesity, impaired oogenesis and altered lipid metabolism, insulin resistance does not occur. HSD increases glucose uptake by germline stem cells (GSCs) and triggers reactive oxygen species-induced JNK signaling, which reduces GSC proliferation. Removal of excess sugar from the diet reverses these HSD-induced phenomena. A similar phenomenon is found in intestinal stem cells (ISCs), except that HSD disrupts ISC maintenance and differentiation. Interestingly, tumor-like GSCs and ISCs are less responsive to HSD, which may be because of their dependence on glycolytic metabolism and high energy demand, respectively. This study suggests that excess dietary sugar induces oxidative stress and damages stem cells before insulin resistance develops, a mechanism that may also occur in higher organisms.
Collapse
Affiliation(s)
- Wei-Hao Huang
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Department of Life Science, National Taiwan University, Taipei 10917
| | - Kreeti Kajal
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227
| | | | - Oyundari Amartuvshin
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490
| | - Shih-Han Kao
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
| | - Elham Rastegari
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490
| | - Kuan-Lin Chiou
- Department of Biomedical Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Hai-Wei Pi
- Department of Biomedical Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Chau-Ti Ting
- Department of Life Science, National Taiwan University, Taipei 10917
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529
| |
Collapse
|
6
|
Saini S, Rani L, Shukla N, Thakur RS, Patel DK, Ansari MS, Banerjee M, Gautam NK. Hsp27 over expression protect against cadmium induced nephrotoxicity in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109716. [PMID: 37586579 DOI: 10.1016/j.cbpc.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/27/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Cadmium (Cd) exposure to the animals including humans is reported as nephrotoxic compounds i.e., disturbing redox status (increase oxidative stress), mitochondrial dysfunction, renal cell death and altered transporters in the renal system. Hsp27 (a small heat shock protein) has been shown as one of the modulators in the renal dysfunction and increased against the Cd induced toxicity. However, no studies are reported on the genetic modulation of stress protein against the Cd-induced nephrotoxicity. The current study aimed to examine the protective role of hsp27 overexpression against the Cd-induced nephrotoxicity using Drosophila melanogaster as an animal model. D. melanogaster renal system includes nephrocytes and Malpighian tubules (MTs) that show the functional similarity with mammalian kidney nephron. Overexpression of the hsp27 was found to reduce the Cd induced oxidative stress, rescue cell death in MTs of Cd exposed D. melanogaster larvae. The rescued GSH level, NADPH level and glucose 6 phosphate dehydrogenase (G6PD) activity were also observed in the MTs of the Cd exposed organism. Function (efflux activity and fluid secretion rate) of the MTs was restored in Cd exposed hsp27 overexpressed larvae. Further, results were confirmed by restored brush border microvilli density and reduced uric acid level. Tissue specific knockdown of hsp27 developed Cd like phenotypes in MTs and the phenotypes enhanced in Cd exposed condition. The present study clearly shows the role of hsp27 overexpression in restoration of the MTs function and protection against the Cd induced renal toxicity.
Collapse
Affiliation(s)
- Sanjay Saini
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), C, Lucknow 226 001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Lavi Rani
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), C, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Neha Shukla
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), C, Lucknow 226 001, Uttar Pradesh, India
| | - Ravindra Singh Thakur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - M S Ansari
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Naveen Kumar Gautam
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
7
|
Nafis MMH, Quach ZM, Al-Shaarani AAQA, Muafa MHM, Pecoraro L. Pathogenicity of Aspergillus Airborne Fungal Species Collected from Indoor and Outdoor Public Areas in Tianjin, China. Pathogens 2023; 12:1154. [PMID: 37764962 PMCID: PMC10534727 DOI: 10.3390/pathogens12091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Airborne fungi play an important role in air pollution and may have various negative effects on human health. In particular, Aspergillus fungi are pathogenic to humans and several domestic animals. In this work, Aspergillus strains isolated from airborne fungal communities sampled from different indoor and outdoor environments in Tianjin University were tested for pathogenicity on Drosophila melanogaster. Airborne fungi were sampled using an HAS-100B air sampler, over a one-year sampling period. Isolated fungal strains were identified based on morphological and molecular analysis. The Aspergillus-centered study was conducted as part of a larger work focusing on the total airborne fungal community in the analyzed environments, which yielded 173 fungal species. In this context, the genus Aspergillus showed the second-highest species richness, with 14 isolated species. Pathogenicity tests performed on male adults of Drosophila melanogaster through a bodily contact bioassay showed that all analyzed airborne Aspergillus species were pathogenic to fruit flies, with high insect mortality rates and shortened lifespan. All the studied fungi induced 100% mortality of fruit flies within 30 culture days, with one exception constituted by A. creber (39 days), while the shortest lifespan (17 days) was observed in fruit flies treated with A. tubingensis. Our results allow us to hypothesize that the studied airborne fungal species may have a pathogenic effect on humans, given the affinity between fruit flies and the human immune system, and may help to explain the health risk linked with Aspergillus fungi exposure in densely populated environments.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
8
|
Anti-Hyperuricemic Effect of Anserine Based on the Gut-Kidney Axis: Integrated Analysis of Metagenomics and Metabolomics. Nutrients 2023; 15:nu15040969. [PMID: 36839325 PMCID: PMC9964072 DOI: 10.3390/nu15040969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Nowadays, developing effective intervention substances for hyperuricemia has become a public health issue. Herein, the therapeutic ability of anserine, a bioactive peptide, was validated through a comprehensive multiomics analysis of a rat model of hyperuricemia. Anserine was observed to improve liver and kidney function and modulate urate-related transporter expressions in the kidneys. Urine metabolomics showed that 15 and 9 metabolites were significantly increased and decreased, respectively, in hyperuricemic rats after the anserine intervention. Key metabolites such as fructose, xylose, methionine, erythronic acid, glucaric acid, pipecolic acid and trans-ferulic acid were associated with ameliorating kidney injury. Additionally, anserine regularly changed the gut microbiota, thereby ameliorating purine metabolism abnormalities and alleviating inflammatory responses. The integrated multiomics analysis indicated that Saccharomyces, Parasutterella excrementihominis and Emergencia timonensis were strongly associated with key differential metabolites. Therefore, we propose that anserine improved hyperuricemia via the gut-kidney axis, highlighting its potential in preventing and treating hyperuricemia.
Collapse
|
9
|
Liu H, Li J, Chang X, He F, Ma J. Modeling Obesity-Associated Ovarian Dysfunction in Drosophila. Nutrients 2022; 14:nu14245365. [PMID: 36558524 PMCID: PMC9783805 DOI: 10.3390/nu14245365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
We perform quantitative studies to investigate the effect of high-calorie diet on Drosophila oogenesis. We use the central composite design (CCD) method to obtain quadratic regression models of body fat and fertility as a function of the concentrations of protein and sucrose, two major macronutrients in Drosophila diet, and treatment duration. Our results reveal complex interactions between sucrose and protein in impacting body fat and fertility when they are considered as an integrated physiological response. We verify the utility of our quantitative modeling approach by experimentally confirming the physiological responses-including increased body fat, reduced fertility, and ovarian insulin insensitivity-expected of a treatment condition identified by our modeling method. Under this treatment condition, we uncover a Drosophila oogenesis phenotype that exhibits an accumulation of immature oocytes and a halt in the production of mature oocytes, a phenotype that bears resemblance to key aspects of the human condition of polycystic ovary syndrome (PCOS). Our analysis of the dynamic progression of different aspects of diet-induced pathophysiology also suggests an order of the onset timing for obesity, ovarian dysfunction, and insulin resistance. Thus, our study documents the utility of quantitative modeling approaches toward understanding the biology of Drosophila female reproduction, in relation to diet-induced obesity and type II diabetes, serving as a potential disease model for human ovarian dysfunction.
Collapse
Affiliation(s)
- Huanju Liu
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
| | - Jiajun Li
- ZJU-UOE Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Xinyue Chang
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
| | - Feng He
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
- Correspondence: (F.H.); (J.M.)
| | - Jun Ma
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
- Women’s Reproductive Health Research Laboratory of Zhejiang Province, Hangzhou 310006, China
- Zhejiang University-University of Toronto Joint Institute of Genetics and Genome Medicine, Hangzhou 310058, China
- Correspondence: (F.H.); (J.M.)
| |
Collapse
|
10
|
Rani L, Saini S, Thakur RS, Patel DK, Chowdhuri DK, Gautam NK. Single and combined effect of bisphenol A with high sucrose diet on the diabetic and renal tubular dysfunction phenotypes in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103977. [PMID: 36210596 DOI: 10.1016/j.etap.2022.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
In the present study, effect of exposure of bisphenol A (BPA) and combined exposure of BPA + HSD has been investigated on the glucose homeostasis and associated renal complications in Drosophila. Exposure of 1.0 mM BPA alone induced type 2 diabetes like condition (T2D) in adult male D. melanogaster via oxidative stress. Elevated TGF-β signaling was evident by increased expression of baboon (babo) in BPA exposed organism that stimulated the modulation of extracellular matrix (ECM) component collagen IV resulting in the fibrosis of the Malpighian tubules (MTs). Combined exposure of BPA + HSD (high sucrose diet) resulted in the increased magnitude of T2D and MTs dysfunction parameters. Taken together, the study illustrates that BPA has diabetogenic potential in exposed Drosophila that caused adverse effects on their MTs and combined exposure with BPA and HSD could aggravate the renal tubular dysfunction. The study further suggests the use of Drosophila model to study the environmental chemicals induced diabetes mediated renal dysfunction.
Collapse
Affiliation(s)
- Lavi Rani
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Sanjay Saini
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Ravindra Singh Thakur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| | - Naveen Kumar Gautam
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
11
|
Abstract
Acetobacter species are a major component of the gut microbiome of the fruit fly Drosophila melanogaster, a widely used model organism. While a range of studies have illuminated impacts of Acetobacter on their hosts, less is known about how association with the host impacts bacteria. A previous study identified that a purine salvage locus was commonly found in Acetobacter associated with Drosophila. In this study, we sought to verify the functions of predicted purine salvage genes in Acetobacter fabarum DsW_054 and to test the hypothesis that these bacteria can utilize host metabolites as a sole source of nitrogen. Targeted gene deletion and complementation experiments confirmed that genes encoding xanthine dehydrogenase (xdhB), urate hydroxylase (urhA), and allantoinase (puuE) were required for growth on their respective substrates as the sole source of nitrogen. Utilization of urate by Acetobacter is significant because this substrate is the major nitrogenous waste product of Drosophila, and its accumulation in the excretory system is detrimental to both flies and humans. The potential significance of our findings for host purine homeostasis and health are discussed, as are the implications for interactions among microbiota members, which differ in their capacity to utilize host metabolites for nitrogen. IMPORTANCEAcetobacter are commonly found in the gut microbiota of fruit flies, including Drosophila melanogaster. We evaluated the function of purine salvage genes in Acetobacter fabarum to test the hypothesis that this bacterium can utilize host metabolites as a source of nitrogen. Our results identify functions for three genes required for growth on urate, a major host waste product. The utilization of this and other Drosophila metabolites by gut bacteria may play a role in their survival in the host environment. Future research into how microbial metabolism impacts host purine homeostasis may lead to therapies because urate accumulation in the excretory system is detrimental to flies and humans.
Collapse
|
12
|
Eickelberg V, Lüersen K, Staats S, Rimbach G. Phenotyping of Drosophila Melanogaster-A Nutritional Perspective. Biomolecules 2022; 12:221. [PMID: 35204721 PMCID: PMC8961528 DOI: 10.3390/biom12020221] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The model organism Drosophila melanogaster was increasingly applied in nutrition research in recent years. A range of methods are available for the phenotyping of D. melanogaster, which are outlined in the first part of this review. The methods include determinations of body weight, body composition, food intake, lifespan, locomotor activity, reproductive capacity and stress tolerance. In the second part, the practical application of the phenotyping of flies is demonstrated via a discussion of obese phenotypes in response to high-sugar diet (HSD) and high-fat diet (HFD) feeding. HSD feeding and HFD feeding are dietary interventions that lead to an increase in fat storage and affect carbohydrate-insulin homeostasis, lifespan, locomotor activity, reproductive capacity and stress tolerance. Furthermore, studies regarding the impacts of HSD and HFD on the transcriptome and metabolome of D. melanogaster are important for relating phenotypic changes to underlying molecular mechanisms. Overall, D. melanogaster was demonstrated to be a valuable model organism with which to examine the pathogeneses and underlying molecular mechanisms of common chronic metabolic diseases in a nutritional context.
Collapse
Affiliation(s)
- Virginia Eickelberg
- Department of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany; (K.L.); (S.S.); (G.R.)
| | | | | | | |
Collapse
|
13
|
Doğan C, Güney G, Güzel KK, Can A, Hegedus DD, Toprak U. What You Eat Matters: Nutrient Inputs Alter the Metabolism and Neuropeptide Expression in Egyptian Cotton Leaf Worm, Spodoptera littoralis (Lepidoptera: Noctuidae). Front Physiol 2021; 12:773688. [PMID: 34803746 PMCID: PMC8600137 DOI: 10.3389/fphys.2021.773688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Lipids and carbohydrates are the two primary energy sources for both animals and insects. Energy homeostasis is under strict control by the neuroendocrine system, and disruption of energy homeostasis leads to the development of various disorders, such as obesity, diabetes, fatty liver syndrome, and cardiac dysfunction. One critical factor in this respect is feeding habits and diet composition. Insects are good models to study the physiological and biochemical background of the effect of diet on energy homeostasis and related disorders; however, most studies are based on a single model species, Drosophila melanogaster. In the current study, we examined the effects of four different diets, high fat (HFD), high sugar (HSD), calcium-rich (CRD), and a plant-based (PBD) on energy homeostasis in younger (third instar) and older (fifth instar) larvae of the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae) in comparison to a regular artificial bean diet. Both HSD and HFD led to weight gain, while CRD had the opposite effect and PBD had no effect in fifth instar larvae and pupae. The pattern was the same for HSD and CRD in third instar larvae while a reduction in weight was detected with HFD and PBD. Larval development was shortest with the HSD, while HFD, CRD, and PBD led to retardation compared to the control. Triglyceride (TG) levels were higher with HFD, HSD, and PBD, with larger lipid droplet sizes, while CRD led to a reduction of TG levels and lipid droplet size. Trehalose levels were highest with HSD, while CRD led to a reduction at third instar larvae, and HFD and PBD had no effect. Fifth instar larvae had similar levels of trehalose with all diets. There was no difference in the expression of the genes encoding neuropeptides SpoliAKH and SpoliILP1-2 with different diets in third instar larvae, while all three genes were expressed primarily with HSD, and SpolisNPF was primarily expressed with HFD in fifth instar larvae. In summary, different diet treatments alter the development of insects, and energy and metabolic pathways through the regulation of peptide hormones.
Collapse
Affiliation(s)
- Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Kardelen K Güzel
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Alp Can
- Laboratory for Stem Cells and Reproductive Cell Biology, Department of Histology and Embryology, School of Medicine, Ankara University, Ankara, Turkey
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.,Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
14
|
Liguori F, Mascolo E, Vernì F. The Genetics of Diabetes: What We Can Learn from Drosophila. Int J Mol Sci 2021; 22:ijms222011295. [PMID: 34681954 PMCID: PMC8541427 DOI: 10.3390/ijms222011295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is a heterogeneous disease characterized by hyperglycemia due to impaired insulin secretion and/or action. All diabetes types have a strong genetic component. The most frequent forms, type 1 diabetes (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM), are multifactorial syndromes associated with several genes’ effects together with environmental factors. Conversely, rare forms, neonatal diabetes mellitus (NDM) and maturity onset diabetes of the young (MODY), are caused by mutations in single genes. Large scale genome screenings led to the identification of hundreds of putative causative genes for multigenic diabetes, but all the loci identified so far explain only a small proportion of heritability. Nevertheless, several recent studies allowed not only the identification of some genes as causative, but also as putative targets of new drugs. Although monogenic forms of diabetes are the most suited to perform a precision approach and allow an accurate diagnosis, at least 80% of all monogenic cases remain still undiagnosed. The knowledge acquired so far addresses the future work towards a study more focused on the identification of diabetes causal variants; this aim will be reached only by combining expertise from different areas. In this perspective, model organism research is crucial. This review traces an overview of the genetics of diabetes and mainly focuses on Drosophila as a model system, describing how flies can contribute to diabetes knowledge advancement.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Elisa Mascolo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00185 Rome, Italy;
| | - Fiammetta Vernì
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00185 Rome, Italy;
- Correspondence:
| |
Collapse
|