1
|
Hwang SP, Liao H, Barondeau K, Han X, Herbert C, McConie H, Shekar A, Pestov D, Limbach PA, Chang JT, Denicourt C. TRMT1L-catalyzed m 2 2G27 on tyrosine tRNA is required for efficient mRNA translation and cell survival under oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.591343. [PMID: 39416027 PMCID: PMC11482778 DOI: 10.1101/2024.05.02.591343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
tRNA modifications are critical for several aspects of their functions, including decoding, folding, and stability. Using a multifaceted approach encompassing eCLIP-seq and Nanopore tRNA-seq, we show that the human tRNA methyltransferase TRMT1L interacts with component of the Rix1 ribosome biogenesis complex and binds to the 28S rRNA, as well as to a subset of tRNAs. Mechanistically, we demonstrate that TRMT1L is responsible for catalyzing m2 2G solely at position 27 of tRNA-Tyr-GUA. Surprisingly, TRMT1L depletion also impaired the deposition of acp3U and dihydrouridine on tRNA-Tyr-GUA, Cys-GCA, and Ala-CGC. TRMT1L knockout cells have a marked decrease in tRNA-Tyr-GUA levels, coinciding with a reduction in global translation rates and hypersensitivity to oxidative stress. Our results establish TRMT1L as the elusive methyltransferase catalyzing the m2 2G27 modification on tRNA Tyr, resolving a long-standing gap of knowledge and highlighting its potential role in a tRNA modification circuit crucial for translation regulation and stress response.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Han Liao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Katherine Barondeau
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Xinyi Han
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hunter McConie
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Amirtha Shekar
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dimitri Pestov
- Department of Cell Biology and Neuroscience, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08028, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- Lead Contact
| |
Collapse
|
2
|
Wu D, Li X, Khan FA, Yuan C, Pandupuspitasari NS, Huang C, Sun F, Guan K. tRNA modifications and tRNA-derived small RNAs: new insights of tRNA in human disease. Cell Biol Toxicol 2024; 40:76. [PMID: 39276283 PMCID: PMC11401796 DOI: 10.1007/s10565-024-09919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
tRNAs are codon decoders that convert the transcriptome into the proteome. The field of tRNA research is excited by the increasing discovery of specific tRNA modifications that are installed at specific, evolutionarily conserved positions by a set of specialized tRNA-modifying enzymes and the biogenesis of tRNA-derived regulatory fragments (tsRNAs) which exhibit copious activities through multiple mechanisms. Dysregulation of tRNA modification usually has pathological consequences, a phenomenon referred to as "tRNA modopathy". Current evidence suggests that certain tRNA-modifying enzymes and tsRNAs may serve as promising diagnostic biomarkers and therapeutic targets, particularly for chemoresistant cancers. In this review, we discuss the latest discoveries that elucidate the molecular mechanisms underlying the functions of clinically relevant tRNA modifications and tsRNAs, with a focus on malignancies. We also discuss the therapeutic potential of tRNA/tsRNA-based therapies, aiming to provide insights for the development of innovative therapeutic strategies. Further efforts to unravel the complexities inherent in tRNA biology hold the promise of yielding better biomarkers for the diagnosis and prognosis of diseases, thereby advancing the development of precision medicine for health improvement.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | | | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Jiao Y, Palli SR. RNA modifications in insects. FRONTIERS IN INSECT SCIENCE 2024; 4:1448766. [PMID: 39253349 PMCID: PMC11381373 DOI: 10.3389/finsc.2024.1448766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
More than 100 RNA chemical modifications to cellular RNA have been identified. N 6-methyladenosine (m6A) is the most prevalent modification of mRNA. RNA modifications have recently attracted significant attention due to their critical role in regulating mRNA processing and metabolism. tRNA and rRNA rank among the most heavily modified RNAs, and their modifications are essential for maintaining their structure and function. With our advanced understanding of RNA modifications, increasing evidence suggests RNA modifications are important in regulating various aspects of insect life. In this review, we will summarize recent studies investigating the impact of RNA modifications in insects, particularly highlighting the role of m6A in insect development, reproduction, and adaptation to the environment.
Collapse
Affiliation(s)
- Yaoyu Jiao
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
- Department of Genetics, Yale School of Medicine, New Haven, CT, United States
| | - Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Kelley M, Holmes CJ, Herbert C, Rayhan A, Joves J, Uhran M, Klaus L, Frigard R, Singh K, Limbach PA, Addepalli B, Benoit JB. Tyrosine transfer RNA levels and modifications during blood-feeding and vitellogenesis in the mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39105593 DOI: 10.1111/imb.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post-blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codon decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we discovered that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Cassandra Herbert
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Asif Rayhan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Judd Joves
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Melissa Uhran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lucas Klaus
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ronja Frigard
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Khwahish Singh
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Patrick A Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Ryazansky SS, Chen C, Potters M, Naumenko AN, Lukyanchikova V, Masri RA, Brusentsov II, Karagodin DA, Yurchenko AA, Dos Anjos VL, Haba Y, Rose NH, Hoffman J, Guo R, Menna T, Kelley M, Ferrill E, Schultz KE, Qi Y, Sharma A, Deschamps S, Llaca V, Mao C, Murphy TD, Baricheva EM, Emrich S, Fritz ML, Benoit JB, Sharakhov IV, McBride CS, Tu Z, Sharakhova MV. The chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus uncovers patterns of genome evolution in mosquitoes. BMC Biol 2024; 22:16. [PMID: 38273363 PMCID: PMC10809549 DOI: 10.1186/s12915-024-01825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Understanding genome organization and evolution is important for species involved in transmission of human diseases, such as mosquitoes. Anophelinae and Culicinae subfamilies of mosquitoes show striking differences in genome sizes, sex chromosome arrangements, behavior, and ability to transmit pathogens. However, the genomic basis of these differences is not fully understood. METHODS In this study, we used a combination of advanced genome technologies such as Oxford Nanopore Technology sequencing, Hi-C scaffolding, Bionano, and cytogenetic mapping to develop an improved chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus. RESULTS We then used this assembly to annotate odorant receptors, odorant binding proteins, and transposable elements. A genomic region containing male-specific sequences on chromosome 1 and a polymorphic inversion on chromosome 3 were identified in the Cx. quinquefasciatus genome. In addition, the genome of Cx. quinquefasciatus was compared with the genomes of other mosquitoes such as malaria vectors An. coluzzi and An. albimanus, and the vector of arboviruses Ae. aegypti. Our work confirms significant expansion of the two chemosensory gene families in Cx. quinquefasciatus, as well as a significant increase and relocation of the transposable elements in both Cx. quinquefasciatus and Ae. aegypti relative to the Anophelines. Phylogenetic analysis clarifies the divergence time between the mosquito species. Our study provides new insights into chromosomal evolution in mosquitoes and finds that the X chromosome of Anophelinae and the sex-determining chromosome 1 of Culicinae have a significantly higher rate of evolution than autosomes. CONCLUSION The improved Cx. quinquefasciatus genome assembly uncovered new details of mosquito genome evolution and has the potential to speed up the development of novel vector control strategies.
Collapse
Affiliation(s)
- Sergei S Ryazansky
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Molecular Genetics of Cell, NRC "Kurchatov Institute", Moscow, Russia
| | - Chujia Chen
- Genetics, Bioinformatics, Computational Biology Program, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Mark Potters
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | - Anastasia N Naumenko
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Varvara Lukyanchikova
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Group of Genomic Mechanisms of Development, Institute of Cytology and Genetics, Novosibirsk, Russia
- Laboratory of Structural and Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
| | - Reem A Masri
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Ilya I Brusentsov
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Dmitriy A Karagodin
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Andrey A Yurchenko
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Vitor L Dos Anjos
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Yuki Haba
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Noah H Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jinna Hoffman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Rong Guo
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Theresa Menna
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Emily Ferrill
- County of San Diego Vector Control Program, San Diego, CA, USA
| | - Karen E Schultz
- Mosquito and Vector Management District of Santa Barbara County, Santa Barbara, CA, USA
| | - Yumin Qi
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | - Atashi Sharma
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | | | | | - Chunhong Mao
- Biocomplexity Institute & Initiative University of Virginia, Charlottesville, VA, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Elina M Baricheva
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Scott Emrich
- Department of Electrical Engineering & Computer Science, the University of Tennessee, Knoxville, TN, USA
| | - Megan L Fritz
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk, Russia
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zhijian Tu
- Genetics, Bioinformatics, Computational Biology Program, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Maria V Sharakhova
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA.
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia.
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA.
| |
Collapse
|
6
|
Kelley M, Holmes CJ, Herbert C, Rayhan A, Joves J, Uhran M, Frigard R, Singh K, Limbach PA, Addepalli B, Benoit JB. Tyrosine transfer RNA levels and modifications during blood-feeding and vitellogenesis in the mosquito, Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569187. [PMID: 38076852 PMCID: PMC10705485 DOI: 10.1101/2023.11.29.569187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA (mRNA) codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codons' decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we identified that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | | | - Cassandra Herbert
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45211
| | - Asif Rayhan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45211
| | - Judd Joves
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Melissa Uhran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Ronja Frigard
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Khwahish Singh
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | | | | | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| |
Collapse
|
7
|
Huang G, Zhang F, Xie D, Ma Y, Wang P, Cao G, Chen L, Lin S, Zhao Z, Cai Z. High-throughput profiling of RNA modifications by ultra-performance liquid chromatography coupled to complementary mass spectrometry: Methods, quality control, and applications. Talanta 2023; 263:124697. [PMID: 37262985 DOI: 10.1016/j.talanta.2023.124697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
Although next-generation sequencing technology has been used to delineate RNA modifications in recent years, the paucity of appropriate converting reactions or specific antibodies impedes the accurate characterization and quantification of numerous RNA modifications, especially when these modifications demonstrate wide variations across developmental stages and cell types. In this study, we developed a high-throughput analytical platform coupling ultra-performance liquid chromatograph (UPLC) with complementary mass spectrometry (MS) to identify and quantify RNA modifications in both synthetic and biological samples. Sixty-four types of RNA modifications, including positional isomers and hypermodified ribonucleosides, were successfully monitored within a 16-min single run of UPLC-MS. Two independent methods to cross-validate the purity of RNA extracted from Caenorhabditis elegans (C. elegans) were developed using the coexisting C. elegans and Escherichia coli (E. coli) as a surveillance system. To test the validity of the method, we investigated the RNA modification landscape of three model organisms, C. elegans, E. coli, and Arabidopsis thaliana (A. thaliana). Both the identity and molarity of modified ribonucleosides markedly varied among the species. Moreover, our platform is not only useful for exploring the dynamics of RNA modifications in response to environmental cues (e.g., cold shock) but can also help with the identification of RNA-modifying enzymes in genetic studies. Cumulatively, our method presents a novel platform for the comprehensive analysis of RNA modifications, which will be of benefit to both analytical chemists involved in biomarker discovery and biologists conducting functional studies of RNA modifications.
Collapse
Affiliation(s)
- Gefei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Feng Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Pengxi Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Leijian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Siyi Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|