1
|
Isoe J, Riske BF, Dobson ME, Kaylor HL, Brady JC, Debebe Y, Saavedra LM, Luckhart S, Riehle MA. Characterization of the Sodium Multi-Vitamin Transporter in the Mosquito Anopheles stephensi and Its Capacity to Mobilize Pantothenate and Biotin. Biomolecules 2025; 15:59. [PMID: 39858453 PMCID: PMC11764013 DOI: 10.3390/biom15010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/10/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Pantothenate (Pan), or vitamin B5, is essential for the synthesis of co-enzyme A (CoA), acetyl-CoA, and numerous downstream physiological processes. We previously demonstrated that Pan is not only essential for mosquito survival, but also for the development of malaria parasites within the mosquito, suggesting that targeting Pan and CoA biosynthesis may be a novel approach for malaria control. However, little is known about how Pan is acquired and mobilized within the mosquito. In this work, we examined Pan levels in the important human malaria vector Anopheles stephensi, including the abundance of Pan during immature development and adulthood. We also assessed the distribution of Pan in various adult tissues and examined the impact of provisioning Pan to the mosquito via a sugar or blood meal on mosquito survival and reproduction. Furthermore, we examined how Pan was mobilized in the mosquito via a putative Pan transporter, the A. stephensi sodium multi-vitamin transporter. We demonstrated that this transporter is capable of mobilizing both Pan and biotin (vitamin B7) in a dose dependent manner. We also assessed the distribution of A. stephensi sodium multi-vitamin transporter in the mosquito and its capacity to transport vitamins. This work establishes the basic physiology of Pan uptake and mobilization in the mosquito, providing essential information for Pan based malaria control strategies.
Collapse
Affiliation(s)
- Jun Isoe
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (J.I.); (B.F.R.); (L.M.S.)
| | - Brendan F. Riske
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (J.I.); (B.F.R.); (L.M.S.)
| | - Megan E. Dobson
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.E.D.); (J.C.B.)
| | - Hannah L. Kaylor
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (H.L.K.); (Y.D.); (S.L.)
| | - Jessica C. Brady
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.E.D.); (J.C.B.)
| | - Yared Debebe
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (H.L.K.); (Y.D.); (S.L.)
| | - Laura M. Saavedra
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (J.I.); (B.F.R.); (L.M.S.)
| | - Shirley Luckhart
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.E.D.); (J.C.B.)
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (H.L.K.); (Y.D.); (S.L.)
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (J.I.); (B.F.R.); (L.M.S.)
| |
Collapse
|
2
|
Ghani MU, Yang Z, Feng T, Chen J, Khosravi Z, Wu Q, Cui H. Comprehensive review on glucose 6 phosphate dehydrogenase: A critical immunometabolic and redox switch in insects. Int J Biol Macromol 2024; 273:132867. [PMID: 38838892 DOI: 10.1016/j.ijbiomac.2024.132867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Mounting an active immune response is energy intensive and demands the reallocation of nutrients to maintain the body's resistance and tolerance against infections. Central to this metabolic adaptation is Glucose-6-phosphate dehydrogenase (G6PDH), a housekeeping enzyme involve in pentose phosphate pathway (PPP). PPP play an essential role in generating ribose, which is critical for nicotinamide adenine dinucleotide phosphate (NADPH). It is vital for physiological and cellular processes such as generating nucleotides, fatty acids and reducing oxidative stress. The G6PDH is extremely conserved enzyme across species in PP shunt. The deficiency of enzymes leads to serious consequences on organism, particularly on adaptation and development. Acute deficiency can lead to impaired cell development, halted embryonic growth, reduce sensitivity to insulin, hypertension and increase inflammation. Historically, research focusing on G6PDH and PPP have primarily targeted diseases on mammalian. However, our review has investigated the unique functions of the G6PDH enzyme in insects and greatly improved mechanistic understanding of its operations. This review explore how G6PDH in insects plays a crucial role in managing the redox balance and immune related metabolism. This study aims to investigate the enzyme's role in different metabolic adaptations.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Zihan Yang
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Tianxiang Feng
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zahra Khosravi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Qishu Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
3
|
Zhang K, Wang S, Li Y, Yin Y, Zhang X, Zhang Q, Kong X, Liu W, Yao D, Zhang R, Zhang Z. Application of bacteria and bacteriophage cocktails for biological control of houseflies. Parasit Vectors 2024; 17:22. [PMID: 38233948 PMCID: PMC10795258 DOI: 10.1186/s13071-023-06082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Houseflies, Musca domestica L., are an ubiquitous pest that can transmit numerous diseases and threaten human health. Increasing insecticide resistance shown by houseflies necessitates the develop new control alternatives. The housefly gut is densely colonized with microorganisms that interact with each other dynamically and benefit the host's health. However, the impact of multiple symbiotic bacteria on the composition of housefly gut microbiota and the host's activities remains unclear. METHODS We isolated and cultured 12 bacterial species from the intestines of housefly larvae. We also isolated seven bacteriophages to precisely target the regulation of certain bacterial species. Using 16S rRNA high-throughput gene sequencing, we analyzed the bacterial diversity after orally administering bacteria/phage cocktails to houseflies. RESULTS Our results showed that larval growth was promoted, the abundance of beneficial bacteria, such as Klebsiella and Enterobacter, was increased and the abundance of harmful bacteria, such as Providencia, Morganella and Pseudomonas, was decreased in housefly larvae fed with the beneficial bacteria cocktail. However, oral administration of both beneficial and harmful bacterial phage cocktails inhibited larval growth, probably due to the drastic alteration of gut flora. Untargeted metabolomics using liquid chromatography-mass spectrometry showed that disturbances in gut microbiota changed the larval metabolite profiles. Feeding experiments revealed that disrupting the intestinal flora suppressed the beneficial bacteria and increased the harmful bacteria, causing changes in the metabolites and inhibiting larval growth. CONCLUSIONS Based on our results, bacteria/phage cocktails are effective tools for regulating the intestinal flora of insects and have a high potential as a biological control agent for incorporation into an integrated pest management program.
Collapse
Affiliation(s)
- Kexin Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Shumin Wang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Ying Li
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yansong Yin
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xinyu Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xinxin Kong
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenjuan Liu
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Department of Laboratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Dawei Yao
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China.
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China.
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Zhong Zhang
- School of Life Science, Weifang Medical University, Weifang, China.
- Medical Science and Technology Innovation Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
4
|
Riske BF, Luckhart S, Riehle MA. Starving the Beast: Limiting Coenzyme A Biosynthesis to Prevent Disease and Transmission in Malaria. Int J Mol Sci 2023; 24:13915. [PMID: 37762222 PMCID: PMC10530615 DOI: 10.3390/ijms241813915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Malaria parasites must acquire all necessary nutrients from the vertebrate and mosquito hosts to successfully complete their life cycle. Failure to acquire these nutrients can limit or even block parasite development and presents a novel target for malaria control. One such essential nutrient is pantothenate, also known as vitamin B5, which the parasite cannot synthesize de novo and is required for the synthesis of coenzyme A (CoA) in the parasite. This review examines pantothenate and the CoA biosynthesis pathway in the human-mosquito-malaria parasite triad and explores possible approaches to leverage the CoA biosynthesis pathway to limit malaria parasite development in both human and mosquito hosts. This includes a discussion of sources for pantothenate for the mosquito, human, and parasite, examining the diverse strategies used by the parasite to acquire substrates for CoA synthesis across life stages and host resource pools and a discussion of drugs and alternative approaches being studied to disrupt CoA biosynthesis in the parasite. The latter includes antimalarial pantothenate analogs, known as pantothenamides, that have been developed to target this pathway during the human erythrocytic stages. In addition to these parasite-targeted drugs, we review studies of mosquito-targeted allosteric enzymatic regulators known as pantazines as an approach to limit pantothenate availability in the mosquito and subsequently deprive the parasite of this essential nutrient.
Collapse
Affiliation(s)
- Brendan F. Riske
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA;
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|