1
|
Miranda-Ojeda R, Wickramasinghe A, Ntolkeras G, Castanho I, Yassin W. The Neurodiversity Framework in Medicine: On the Spectrum. Dev Neurobiol 2025; 85:e22960. [PMID: 39874176 DOI: 10.1002/dneu.22960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/28/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
The term "neurodiversity" refers to the natural heterogeneity in human neurological functioning, which includes neurodevelopmental differences and other mental health conditions (e.g., autism spectrum disorder [ASD], attention-deficit hyperactivity disorder [ADHD], dyslexia, bipolar disorder, schizophrenia, and depression). This new viewpoint has significant consequences for the future of medicine, specifically in psychiatry, neurology, and neurodevelopmental medicine, as it undermines established notions of these conditions as disorders/diseases that may be healed or corrected. The neurodiversity approach, on the other hand, acknowledges these divergences as natural variations, calling for tailored support and interventions that accommodate individual needs. Neurodiversity could impact current medical perspectives by supporting a shift from pathology to identity. Rather than focusing on the difficulties associated with a specific ailment, the neurodiversity approach stresses the strengths and distinct perspectives that come with neurodivergent identities. This shift has significant consequences for research and therapy by fostering the development of innovative treatments aimed at increasing quality of life and improving functional results. This new perspective advocates including neurodivergent people in all sectors of society, including research, clinical practice, and policymaking, by recognizing, accepting, and integrating natural variances in brain functioning. In this article, we review the development of the neurodiversity movement and propose "The Neurodiversity Framework in Medicine," which challenges traditional views by recognizing neurological differences as natural variations, advocating for inclusive, person-centered approaches in healthcare.
Collapse
Affiliation(s)
- Raul Miranda-Ojeda
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Medicine, Autonomous University of Mexico State, Toluca de Lerdo, Mexico, Mexico
| | | | - Georgios Ntolkeras
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Isabel Castanho
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Walid Yassin
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Sener EF, Dana H, Tahtasakal R, Taheri S, Rassoulzadegan M. Autism-Related Cc2d1a Heterozygous Mice: Increased Levels of miRNAs Retained in DNA/RNA Hybrid Profiles (R-Loop). Biomolecules 2024; 14:1183. [PMID: 39334949 PMCID: PMC11430583 DOI: 10.3390/biom14091183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a highly variable expression of phenotypes (restricted interest or activity and repetitive behavior in communication and social interactions), genes (mutation), markers (alteration of transcription) and pathways. Loss of function of the CC2D1A gene appears to primarily affect the brain, leading to a range of behavioral problems in humans. In our study published in 2020, we found that the expressions of miR-19a-3p, miR-361-5p, miR-150-5p, miR-3613-3p, miR-126-3p and miR-499a-5p were downregulated in the serum samples of autistic patients, their families and mouse models (Cc2d1a +/- and valproic acid treated males). Here, acquired non-Mendelian hereditary character in a genetically defined mouse model of autism (Cc2d1a +/-) correlates with the transcriptional alteration of five miRNAs. We seek to test the hypothesis that miRNA levels vary by changes in RNA/DNA structure during development, thereby creating transcription alteration and cell memory. Behavioral tests were conducted on the offspring of Cc2d1a (+/-) mutant and control mice, such as novel object, social interaction, marble burying and tail suspension behavior. Two RNA fractions were isolated from mouse hippocampal tissues and sperm cells via standard TRIzol extraction: free RNA and the fraction of RNA bound to DNA in the form of a DNA/RNA hybrid (R-loop). The expression levels of miR-19a-3p, miR-361-5p, miR-150-5p, miR-126-3p and miR-499a-5p were investigated by quantitative real-time RT-PCR. We report differences in the distribution of five miRNAs in the hippocampus between male and female mice, particularly in colonies of Cc2d1a (+/-) mice. Furthermore, the number of miRNAs engaged in the DNA/RNA hybrid fraction is generally higher in the mutant pedigree than in the control group. On the other hand, in sperm, both fractions are at lower levels than in controls. R-loops contribute to the physiology and pathology of organisms including human disease. Here, we report a variation in five miRNA levels between gender and tissue. Our results suggest that the transcription levels of these five miRNAs are directly regulated by their RNA.
Collapse
Affiliation(s)
- Elif Funda Sener
- Genome and Stem Cell Center (GENKOK), Erciyes University, 38039 Kayseri, Türkiye; (H.D.); (R.T.); (S.T.)
- Department of Medical Biology, Medical Faculty, Erciyes University, 38039 Kayseri, Türkiye
| | - Halime Dana
- Genome and Stem Cell Center (GENKOK), Erciyes University, 38039 Kayseri, Türkiye; (H.D.); (R.T.); (S.T.)
| | - Reyhan Tahtasakal
- Genome and Stem Cell Center (GENKOK), Erciyes University, 38039 Kayseri, Türkiye; (H.D.); (R.T.); (S.T.)
| | - Serpil Taheri
- Genome and Stem Cell Center (GENKOK), Erciyes University, 38039 Kayseri, Türkiye; (H.D.); (R.T.); (S.T.)
- Department of Medical Biology, Medical Faculty, Erciyes University, 38039 Kayseri, Türkiye
| | - Minoo Rassoulzadegan
- Genome and Stem Cell Center (GENKOK), Erciyes University, 38039 Kayseri, Türkiye; (H.D.); (R.T.); (S.T.)
- The National Institute of Health and Medical Research (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Côte d’Azur, Inserm, 06000 Nice, France
| |
Collapse
|
3
|
Al-Beltagi M, Saeed NK, Bediwy AS, Bediwy EA, Elbeltagi R. Decoding the genetic landscape of autism: A comprehensive review. World J Clin Pediatr 2024; 13:98468. [PMID: 39350903 PMCID: PMC11438927 DOI: 10.5409/wjcp.v13.i3.98468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings. Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD, influencing both diagnosis and therapeutic strategies. AIM To explore the genetic architecture of ASD, elucidate mechanistic insights into genetic mutations, and examine gene-environment interactions. METHODS A comprehensive systematic review was conducted, integrating findings from studies on genetic variations, epigenetic mechanisms (such as DNA methylation and histone modifications), and emerging technologies [including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and single-cell RNA sequencing]. Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar. RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD, yet many cases remain unexplained by known factors, suggesting undiscovered genetic components. Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving. Epigenetic modifications, particularly DNA methylation and non-coding RNAs, also play significant roles in ASD pathogenesis. Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data. CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments. Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice. Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies, ultimately enhancing outcomes for individuals affected by ASD.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Eman A Bediwy
- Internal Medicine, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| |
Collapse
|
4
|
Bhor S, Tonny SH, Dinesh S, Sharma S. Computational screening of damaging nsSNPs in human SOD1 genes associated with amyotrophic lateral sclerosis identifies destabilising effects of G38R and G42D mutations through in silico evaluation. In Silico Pharmacol 2024; 12:20. [PMID: 38559706 PMCID: PMC10973320 DOI: 10.1007/s40203-024-00191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/14/2024] [Indexed: 04/04/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a complicated neurodegenerative disorder affected by hereditary and environmental variables, is a condition. In this study, the genetic makeup of ALS is investigated, with a focus on the SOD1 gene's single-nucleotide polymorphisms (SNPs) and their ability to affect disease risk. Eleven high-risk missense variations that may impair the functionality of the SOD1 protein were discovered after a thorough examination of SNPs in the SOD1 gene. These mutations were chosen using a variety of prediction approaches, highlighting their importance in the aetiology of ALS. Notably, it was discovered that the stability of the SOD1 wild-type protein structure was compromised by the G38R and G42D SOD1 variants. Additionally, Edaravone, a possible ALS medication, showed a greater affinity for binding mutant SOD1 structures, pointing to potential personalised treatment possibilities. The high-risk SNPs discovered in this investigation seem to have functional effects, especially on the stability of proteins and their interactions with other molecules. This study clarifies the complex genetics of ALS and offers insights into how these genetic variations may affect the effectiveness of therapeutic interventions, particularly in the context of edaravone. In this study advances our knowledge of the genetic mechanisms causing ALS vulnerability and prospective therapeutic strategies. Future studies are necessary to confirm these results and close the gap between individualised clinical applications and improved ALS care.
Collapse
Affiliation(s)
- Samiksha Bhor
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka 560043 India
| | - Sadia Haque Tonny
- Department of Plant Pathology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka 560043 India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka 560043 India
| |
Collapse
|
5
|
Stancioiu F, Bogdan R, Dumitrescu R. Neuron-Specific Enolase (NSE) as a Biomarker for Autistic Spectrum Disease (ASD). Life (Basel) 2023; 13:1736. [PMID: 37629593 PMCID: PMC10455327 DOI: 10.3390/life13081736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Autistic spectrum disease (ASD) is an increasingly common diagnosis nowadays with a prevalence of 1-2% in most countries. Its complex causality-a combination of genetic, immune, metabolic, and environmental factors-is translated into pleiomorphic developmental disorders of various severity, which have two main aspects in common: repetitive, restrictive behaviors and difficulties in social interaction varying from awkward habits and verbalization to a complete lack of interest for the outside world. The wide variety of ASD causes also makes it very difficult to find a common denominator-a disease biomarker and medication-and currently, there is no commonly used diagnostic and therapeutic strategy besides clinical evaluation and psychotherapy. In the CORDUS clinical study, we have administered autologous cord blood to ASD kids who had little or no improvement after other treatments and searched for a biomarker which could help predict the degree of improvement in each patient. We have found that the neuron-specific enolase (NSE) was elevated above the normal clinical range (less than 16.3 ng/mL) in the vast majority of ASD kids tested in our study (40 of 41, or 97.5%). This finding opens up a new direction for diagnostic confirmation, dynamic evaluation, and therapeutic intervention for ASD kids.
Collapse
Affiliation(s)
| | - Raluca Bogdan
- Medicover Hospital Bucharest, 013982 Bucharest, Romania
| | | |
Collapse
|