1
|
Wei L, Wu S, Li C, Liu C, Chen H, Zhang YB, Zheng F, Ma Y, Zhao Y. Dimensionality and Molecular Packing Control of Covalent Organic Frameworks through Pendant Group Design. J Am Chem Soc 2024; 146:31384-31390. [PMID: 39503737 DOI: 10.1021/jacs.4c11409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Tuning the dimensions and molecular packing geometry of crystalline organic frameworks and polymers represents an important challenge for reticular chemistry. Here we show that for extended structures made of 1,3,6,8-tetrakis(4-aminophenyl)pyrene (PyTTA) linked with methoxy group functionalized terephthalaldehyde aldehydes, simple substituents on the aldehyde linker can have profound structure directing effects due to noncovalent interactions. Specifically, reacting 2,3-dimethoxyterephthalaldehyde with PyTTA gives a 2D covalent organic framework with unique AA-inclined-AA stacking and bilayer pyrene motifs, whereas reacting 2,5-dimethoxyterephthalaldehyde with PyTTA gives a 1D crystalline polymer with AB stacking and isolated pyrene motifs. Both materials show high crystallinity, allowing for atomic resolution structure determination using three-dimensional electron diffraction, and the similarity of their fluorescence properties shows the electronic structures of pyrene-based extended structures mostly depends on the in-plane structures, which is supported by density functional theory calculations. These two pyrene-based extended structures also show different fluorescence responses to organic vapors due to different pore environments. The current work shows the potential of noncovalent interactions in the reticular design of functional organic materials.
Collapse
Affiliation(s)
- Lei Wei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shitao Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chengji Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenyu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hao Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Fan Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Lambert S, Carpentier R, Lepeintre M, Testa C, Pappalardo A, Bartik K, Jabin I. Development of a Cone Homooxacalix[3]arene-Based Fluorescent Chemosensor for the Selective Detection of Biogenic Ammonium Ions in Protic Solvents. J Org Chem 2024; 89:10903-10911. [PMID: 39034591 DOI: 10.1021/acs.joc.4c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
We report here on the development of a fluorescent cone homooxacalix[3]arene-based receptor with a pyrene unit on the wide rim of the macrocycle (Ox3F) for the selective detection of primary ammonium ions, including those of biological importance. Ox3F was synthesized efficiently via an innovative strategy that enables the regio- and iteroselective wide rim functionalization of the readily available p-tBu-substituted homooxacalix[3]arene precursor. Nuclear magnetic resonance studies and in silico methods highlighted the endo-complexation of primary ammonium ions, including the protonated form of biogenic dopamine, tryptamine, serotonin, mexamine, and 3-iodothyronamine. The binding mode is similar for all guests with the ion deeply inserted into the polyaromatic cavity, enabling the NH3+ head to establish three hydrogen bonds with the ethereal oxygens of the macrocycle. Fluorescence quenching of the pyrene unit was observed following the π-π interaction between the pyrene moiety and the aromatic groups of serotonin, mexamine, and 3-iodothyronamine. No quenching was observed upon complexation of the smaller aromatic neurotransmitter dopamine as well as aliphatic amines and polyamines. This study presents a novel approach for biologically relevant ammonium ion chemosensing with ongoing efforts focused on translating these systems for aqueous environment applications.
Collapse
Affiliation(s)
- Simon Lambert
- Ecole Polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 ,CP165/64, Brussels B-1050, Belgium
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 ,CP160/06, Brussels B-1050, Belgium
| | - Romain Carpentier
- Ecole Polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 ,CP165/64, Brussels B-1050, Belgium
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 ,CP160/06, Brussels B-1050, Belgium
| | - Martin Lepeintre
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 ,CP160/06, Brussels B-1050, Belgium
| | - Caterina Testa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6 ,Catania 95125, Italy
| | - Andrea Pappalardo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6 ,Catania 95125, Italy
- INSTM, UdR di Catania, Viale A. Doria 6 ,Catania 95125, Italy
| | - Kristin Bartik
- Ecole Polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 ,CP165/64, Brussels B-1050, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50 ,CP160/06, Brussels B-1050, Belgium
| |
Collapse
|
3
|
Manandhar E, Day BO, Sampson KSM, Schroeder EE, Ninahaza AL, Aragon ST, Kwan CJ, Tinacba FC, Do JJ, Jees R, Bhatta RS, Cragg PJ. A 1,8-Naphthalimide-based Tripodal Fluorescent Chemosensor to Selectively Detect Copper Ions. J Fluoresc 2024:10.1007/s10895-024-03867-7. [PMID: 39066915 DOI: 10.1007/s10895-024-03867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
A 1,8-naphthalimide-based tripodal fluorescent ligand (L3) was synthesized through the copper (I) catalyzed Huisgen azide-alkyne cycloaddition reaction of 2-(2-azidoethyl)-6-morpholino-1 H-benzo[de]isoquinoline-1,3(2 H)-dione with triproparagylamine. Naphthalimide acts as the fluorophore while the triazole and amine nitrogens chelate the metal ion. L3 showed a selective fluorescence turn-off for Cu(II) over other metal ions in aqueous acetonitrile solution. A Job's plot, Benesi-Hildbrand plot and high-resolution mass spectrometry data confirm a 1:1 binding stoichiometry with a binding constant of 7.8 х105 M- 1 while addition of disodium EDTA demonstrates its reversibility. The structure and stability of the complex was supported by theoretical calculations. The limit of detection for Cu(II) was calculated to be 0.3 µM which is considerably lower than WHO recommended Cu(II) limit in drinking water.
Collapse
Affiliation(s)
- Erendra Manandhar
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, TX, USA.
| | - Blake O Day
- Department of Chemistry, Berea College, Berea, KY, USA
| | | | | | | | - Samantha T Aragon
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, TX, USA
| | - Camille J Kwan
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, TX, USA
| | - Franchesca C Tinacba
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, TX, USA
| | - Joshua J Do
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, TX, USA
| | - Rosanna Jees
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, TX, USA
| | | | - Peter J Cragg
- School of Applied Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
4
|
Zhang Z, Chasteen JL, Smith BD. Cy5 Dye Cassettes Exhibit Through-Bond Energy Transfer and Enable Ratiometric Fluorescence Sensing. J Org Chem 2024; 89:3309-3318. [PMID: 38362875 PMCID: PMC10985492 DOI: 10.1021/acs.joc.3c02767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The chemosensor literature contains many reports of fluorescence sensing using polyaromatic hydrocarbon fluorophores such as pyrene, tetraphenylethylene, or polyaryl(ethynylene), where the fluorophore is excited with ultraviolet light (<400 nm) and emits in the visible region of 400-500 nm. There is a need for general methods that convert these "turn-on" hydrocarbon fluorescent sensors into ratiometric sensing paradigms. One simple strategy is to mix the responsive hydrocarbon sensor with a second non-responsive dye that is excited by ultraviolet light but emits at a distinctly longer wavelength and thus acts as a reference signal. Five new cyanine dye cassettes were created by covalently attaching a pyrene, tetraphenylethylene, or biphenyl(ethynylene) component as the ultraviolet-absorbing energy donor directly to the pentamethine chain of a deep-red cyanine (Cy5) energy acceptor. Fluorescence emission studies showed that these Cy5-cassettes exhibited large pseudo-Stokes shifts and high through-bond energy transfer efficiencies upon excitation with ultraviolet light. Practical potential was demonstrated with two examples of ratiometric fluorescence sensing using a single ultraviolet excitation wavelength. One example mixed a Cy5-cassette with a pyrene-based fluorescent indicator that responded to changes in Cu2+ concentration, and the other example mixed a Cy5-cassette with the fluorescent pH sensing dye, pyranine.
Collapse
Affiliation(s)
- Zhumin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jordan L. Chasteen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
5
|
Assel A, Stanley MM, Mia R, Boulila B, Cragg PJ, Owolabie I, Hetrick M, Flynt A, Wallace KJ, Ben Jannet H. A molecular chemodosimeter to probe "closed shell" ions in kidney cells. Org Biomol Chem 2023; 21:9379-9391. [PMID: 37975744 DOI: 10.1039/d3ob01408h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Two quinidine-functionalized coumarin molecular probes have been synthesized and have been found to bind metal cations (Cd2+, Co2+, Cu2+, Fe2+, Hg2+, Ni2+, and Zn2+) with high affinity in organic-aqueous media (DMSO-HEPES). The chemodosimeters coordinate with the Zn2+ ions in a two-to-one ratio (molecular probe : Zn2+) with a log β of 10.0 M-2. Upon the addition of the closed-shell metal ions studied, a fluorescence turn-on via an excimer formation is seen at 542 nm due to the quinaldine moiety adopting a syn arrangement when coordinated to the metal Zn2+ ions. Confocal microscopy monitored free Zn2+ ions in the Human Embryonic Kidney cell line HEK293 by coordinating with the chemodosimter.
Collapse
Affiliation(s)
- Amine Assel
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia
| | - Meagan M Stanley
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Science, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA.
| | - Rashid Mia
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Science, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA.
- Department of Chemistry and Biochemistry, Stephen F Austin State University, P.O. Box 13006 SFA Station, Nacogdoches, TX 75962, USA
| | - Besma Boulila
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia
| | - Peter J Cragg
- School of Applied Chemical Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Iyanuoluwani Owolabie
- Department of Cellular and Molecular Biology, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Meredith Hetrick
- Department of Cellular and Molecular Biology, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Alex Flynt
- Department of Cellular and Molecular Biology, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Karl J Wallace
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Science, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA.
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia
| |
Collapse
|
6
|
Clark JA, Kusy D, Vakuliuk O, Krzeszewski M, Kochanowski KJ, Koszarna B, O'Mari O, Jacquemin D, Gryko DT, Vullev VI. The magic of biaryl linkers: the electronic coupling through them defines the propensity for excited-state symmetry breaking in quadrupolar acceptor-donor-acceptor fluorophores. Chem Sci 2023; 14:13537-13550. [PMID: 38033901 PMCID: PMC10685337 DOI: 10.1039/d3sc03812b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Charge transfer (CT) is key for molecular photonics, governing the optical properties of chromophores comprising electron-rich and electron-deficient components. In photoexcited dyes with an acceptor-donor-acceptor or donor-acceptor-donor architecture, CT breaks their quadrupolar symmetry and yields dipolar structures manifesting pronounced solvatochromism. Herein, we explore the effects of electronic coupling through biaryl linkers on the excited-state symmetry breaking of such hybrid dyes composed of an electron-rich core, i.e., 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP), and pyrene substituents that can act as electron acceptors. Experimental and theoretical studies reveal that strengthening the donor-acceptor electronic coupling decreases the CT rates and the propensity for symmetry breaking. We ascribe this unexpected result to effects of electronic coupling on the CT thermodynamics, which in its turn affects the CT kinetics. In cases of intermediate electronic coupling, the pyrene-DHPP conjugates produce fluorescence spectra, spreading over the whole visible range, that in addition to the broad CT emission, show bands from the radiative deactivation of the locally excited states of the donor and the acceptors. Because the radiative deactivation of the low-lying CT states is distinctly slow, fluorescence from upper locally excited states emerge leading to the observed anti-Kasha behaviour. As a result, these dyes exhibit white fluorescence. In addition to demonstrating the multifaceted nature of the effects of electronic coupling on CT dynamics, these chromophores can act as broad-band light sources with practical importance for imaging and photonics.
Collapse
Affiliation(s)
- John A Clark
- Department of Bioengineering, University of California Riverside, 900 University Ave. Riverside CA 92521 USA
| | - Damian Kusy
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Olena Vakuliuk
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Krzysztof J Kochanowski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Beata Koszarna
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Omar O'Mari
- Department of Bioengineering, University of California Riverside, 900 University Ave. Riverside CA 92521 USA
| | - Denis Jacquemin
- Nantes Université, CNRS CEISAM UMR 6230 F-44000 Nantes France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Valentine I Vullev
- Department of Bioengineering, University of California Riverside, 900 University Ave. Riverside CA 92521 USA
- Department of Chemistry, University of California Riverside CA 92521 USA
- Department of Biochemistry, University of California Riverside CA 92521 USA
- Materials Science and Engineering Program, University of California Riverside CA 92521 USA
| |
Collapse
|
7
|
Maji A, Naskar R, Mitra D, Gharami S, Murmu N, Mondal TK. Fabrication of a New Coumarin Based Fluorescent "turn-on" Probe for Distinct and Sequential Recognition of Al 3+ and F - Along With Its Application in Live Cell Imaging. J Fluoresc 2023; 33:2403-2414. [PMID: 37084063 DOI: 10.1007/s10895-023-03208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 04/22/2023]
Abstract
A new coumarin based fluorescent switch PCEH is fabricated which displays high selective sensing towards Al3+ among other metal cations at physiological pH. On gradual addition of Al3+, PCEH shows a brilliant "turn-on" emission enhancement in MeOH/H2O (4/1, v/v) solution. This new fluorescent switch is proven to be a reversible probe by gradual addition of F- into the PCEH-Al3+ solution. Detection limit as well as binding constant values are calculated to be in the order of 10-9 M and 104 M-1 respectively. We have also explored its potential as a biomarker in the application of live cell imaging using breast cancer cells (MDA-MB-231 cell).
Collapse
Affiliation(s)
- Atanu Maji
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Rahul Naskar
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | | |
Collapse
|
8
|
Feng X, Wang X, Redshaw C, Tang BZ. Aggregation behaviour of pyrene-based luminescent materials, from molecular design and optical properties to application. Chem Soc Rev 2023; 52:6715-6753. [PMID: 37694728 DOI: 10.1039/d3cs00251a] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Molecular aggregates are self-assembled from multiple molecules via weak intermolecular interactions, and new chemical and physical properties can emerge compared to their individual molecule. With the development of aggregate science, much research has focused on the study of the luminescence behaviour of aggregates rather than single molecules. Pyrene as a classical fluorophore has attracted great attention due to its diverse luminescence behavior depending on the solution state, molecular packing pattern as well as morphology, resulting in wide potential applications. For example, pyrene prefers to emit monomer emission in dilute solution but tends to form a dimer via π-π stacking in the aggregation state, resulting in red-shifted emission with quenched fluorescence and quantum yield. Over the past two decades, much effort has been devoted to developing novel pyrene-based fluorescent molecules and determining the luminescence mechanism for potential applications. Since the concept of "aggregation-induced emission (AIE)" was proposed by Tang et al. in 2001, aggregate science has been established, and the aggregated luminescence behaviour of pyrene-based materials has been extensively investigated. New pyrene-based emitters have been designed and synthesized not only to investigate the relationships between the molecular structure and properties and advanced applications but also to examine the effect of the aggregate morphology on their optical and electronic properties. Indeed, new aggregated pyrene-based molecules have emerged with unique properties, such as circularly polarized luminescence, excellent fluorescence and phosphorescence and electroluminescence, ultra-high mobility, etc. These properties are independent of their molecular constituents and allow for a number of cutting-edge technological applications, such as chemosensors, organic light-emitting diodes, organic field effect transistors, organic solar cells, Li-batteries, etc. Reviews published to-date have mainly concentrated on summarizing the molecular design and multi-functional applications of pyrene-based fluorophores, whereas the aggregation behaviour of pyrene-based luminescent materials has received very little attention. The majority of the multi-functional applications of pyrene molecules are not only closely related to their molecular structures, but also to the packing model they adopt in the aggregated state. In this review, we will summarize the intriguing optoelectronic properties of pyrene-based luminescent materials boosted by aggregation behaviour, and systematically establish the relationship between the molecular structure, aggregation states, and optoelectronic properties. This review will provide a new perspective for understanding the luminescence and electronic transition mechanism of pyrene-based materials and will facilitate further development of pyrene chemistry.
Collapse
Affiliation(s)
- Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Xiaohui Wang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull, Yorkshire HU6 7RX, UK.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
9
|
Taniya OS, Khasanov AF, Sadieva LK, Santra S, Nikonov IL, Al-Ithawi WKA, Kovalev IS, Kopchuk DS, Zyryanov GV, Ranu BC. Polymers and Polymer-Based Materials for the Detection of (Nitro-)explosives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6333. [PMID: 37763611 PMCID: PMC10532833 DOI: 10.3390/ma16186333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Methods for the remote detection of warfare agents and explosives have been in high demand in recent times. Among the several detection methods, fluorescence methods appear to be more convenient due to their low cost, simple operation, fast response time, and naked-eye-visible sensory response. For fluorescence methods, a large variety of fluorescent materials, such as small-molecule-based fluorophores, aggregation-induced emission fluorophores/materials, and supramolecular systems, have been reported in the literature. Among them, fluorescent (bio)polymers/(bio)polymer-based materials have gained wide attention due to their excellent mechanical properties and sensory performance, their ability to recognize explosives via different sensing mechanisms and their combinations, and, finally, the so-called amplification of the sensory response. This review provides the most up-to-date data on the utilization of polymers and polymer-based materials for the detection of nitroaromatic compounds (NACs)/nitro-explosives (NEs) in the last decade. The literature data have been arranged depending on the polymer type and/or sensory mechanism.
Collapse
Affiliation(s)
- Olga S. Taniya
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Albert F. Khasanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Leila K. Sadieva
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Sougata Santra
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Igor L. Nikonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya Str., 620219 Yekaterinburg, Russia
| | - Wahab K. A. Al-Ithawi
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- Energy and Renewable Energies Technology Center, University of Technology-Iraq, Baghdad 10066, Iraq
| | - Igor S. Kovalev
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Dmitry S. Kopchuk
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya Str., 620219 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya Str., 620219 Yekaterinburg, Russia
| | - Brindaban C. Ranu
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
10
|
Hernández-Pacheco P, Zelada-Guillén GA, Romero-Ávila M, Cañas-Alonso RC, Flores-Álamo M, Escárcega-Bobadilla MV. Enhanced Host-Guest Association and Fluorescence in Copolymers from Copper Salphen Complexes by Supramolecular Internalization of Anions. Chempluschem 2023; 88:e202200310. [PMID: 36175158 DOI: 10.1002/cplu.202200310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/13/2022] [Indexed: 11/10/2022]
Abstract
We describe the synthesis, crystallographic characterization of a new Cu-Salphen compound and its use as a host Lewis-acid against guest anions in two versions: a) free molecule, b) copolymerized with methyl methacrylate:n-butyl acrylate (1 : 4-wt.) as protective co-monomers. Higher contents in Cu-Salphen yielded larger and more homogeneous polymer sizes. Polymer size together with glass transitions, heat capacity, thermal degradation, guest-saturation degrees and host-guest species distribution profiles from spectrophotometric titrations explained growths of up to 630-fold in K11 and 180000-fold in K12 for the host's binding site attributable to a solvophobic protection from the macromolecular structure. Spectrofluorimetry revealed blue-shifted×13-16 larger luminescence for Cu-Salphen in the polymers (λem =488-498 nm) than that of the non-polymerized counterpart (λem =510-543 nm) and "turn-on" blue-shifted enhanced fluorescence upon guest association. We propose a cooperative incorporation of the guests occurring from the outer medium toward internally protected binding site pockets in the random coil polymer conformations.
Collapse
Affiliation(s)
- Paulina Hernández-Pacheco
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Gustavo A Zelada-Guillén
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Margarita Romero-Ávila
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Roberto Carlos Cañas-Alonso
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Marcos Flores-Álamo
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Martha V Escárcega-Bobadilla
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| |
Collapse
|
11
|
Kumar Panda S, Kumar Singh A. Combined experimental and TD-DFT study of a highly sensitive AIE-based probe for the detection of water in organic solvents and its application in inkless writing. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Al-Saidi HM, Khan S. A Review on Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Ag(I) Ions. Crit Rev Anal Chem 2022; 54:1810-1836. [PMID: 36251012 DOI: 10.1080/10408347.2022.2133561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Organic compounds display several electronic and structural features which enable their application in various fields, ranging from biological to non-biological. These compounds contain heteroatoms like sulfur, nitrogen and oxygen, which provide coordination sites to act as ligands in the field of coordination chemistry and are used as chemosensors to detect various metal ions. This review article covers different organic compounds including thiourea, Schiff base, pyridine, thiophene, coumarin, triazolyl pyrenes, imidazole, fluorescein, thiazole, tricarbocyanine, rhodanine, porphyrin, hydrazone, benzidine and other functional groups based chemosensors, that contain heteroatoms like sulfur, nitrogen and, oxygen for fluorimetric and colorimetric detection of Ag+ in different environmental, agricultural, and biological samples. Further, the sensing mechanism and performances of these chemosensors have been discussed, which could help the readers for the future design of highly efficient, selective, and sensitive chemosensors for the detection and determination of Ag+ ions.
Collapse
Affiliation(s)
- Hamed M Al-Saidi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
13
|
Facile fluorescent detection of o-nitrophenol by a cucurbit[8]uril-based supramolecular assembly in aqueous media. Anal Chim Acta 2022; 1226:340262. [DOI: 10.1016/j.aca.2022.340262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
|
14
|
Tonkoglazova DI, Oryabinskaya LM, Shcherbatykh AA, Gulevskaya AV. The synthesis and crystal structure of pH-sensitive fluorescent pyrene-based double aza- and diaza[4]helicenes. Org Biomol Chem 2022; 20:2704-2714. [PMID: 35293927 DOI: 10.1039/d2ob00204c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Novel pyrene-based double aza- and diaza[4]helicenes have been prepared through a five-step synthetic sequence in overall good yields. Commercially available 2,3-dihaloazines (2,3-dibromopyridine, 2,3-dichloropyrazine and 2,3-dichloroquinoxaline) were used as starting materials. The synthesis employs electrophile-induced cyclizations of ortho-alkynyl bihetaryls as the key steps, leading to the formation of a helical skeleton. To discern the effect of merging azine and pyrene moieties within a helical skeleton, the X-ray structures, UV-vis absorption and fluorescence spectra of the helicenes were investigated and compared with those of the parent [4]helicene, aza- and diaza[4]helicenes. It was found that the emission properties of the synthesized helicenes can be modulated as a function of pH. The basicity of pyrene-based double aza[4]helicenes was estimated by the direct fluorimetric titration method; the pKa value was found to be equal to 1.4.
Collapse
Affiliation(s)
- Daria I Tonkoglazova
- Department of Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation.
| | - Lyubov M Oryabinskaya
- Department of Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation.
| | - Aleksandr A Shcherbatykh
- Department of Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation.
| | - Anna V Gulevskaya
- Department of Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation.
| |
Collapse
|
15
|
Synthesis and Excimer Formation Properties of Electroactive Polyamides Incorporated with 4,5-Diphenoxypyrene Units. Polymers (Basel) 2022; 14:polym14020261. [PMID: 35054668 PMCID: PMC8778140 DOI: 10.3390/polym14020261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
A new dietherpyrene-cored diamine monomer, namely, 4,5-bis(4-aminophenoxy)pyrene, was successful synthesized and formed a series of electroactive polyamides with an aryloxy linkage in a polymer main chain and bearing pyrene chromophore as a pendent group using conventional one-pot polycondensation reactions with commercial aromatic/aliphatic dicarboxylic acids. The resulting polyamides exhibited good solubility in polar organic solvents and, further, can be made into transparent films. They had appropriate levels of thermal stability with moderately high glass-transition values. The dilute NMP solutions of these polyamides exhibited pyrene characteristic fluorescence and also showed a remarkable additional excimer emission peak centered at 475 nm. Electrochemical studies of these polymer films showed that these polyamides have both p- and n-dopable states as a result of the formation of radical cations and anions of the electroactive pyrene moieties.
Collapse
|
16
|
Matsuura Y, Asami M, Ito S. Dual-channel recognition of Al 3+ and Cu 2+ ions using a chiral pyrene-based fluorescent sensor. NEW J CHEM 2022. [DOI: 10.1039/d2nj00801g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Specific recognition between Al3+ and Cu2+ has been achieved based on the new mechanism of Cu2+ detection by pyrene dimerization.
Collapse
Affiliation(s)
- Yuki Matsuura
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Masatoshi Asami
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Suguru Ito
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
17
|
Mitchell M, Liyana Gunawardana VW, Ramakrishna G, Mezei G. Pyrene-Functionalized Fluorescent Nanojars: Synthesis, Mass Spectrometric, and Photophysical Studies. ACS OMEGA 2021; 6:33180-33191. [PMID: 34901669 PMCID: PMC8656208 DOI: 10.1021/acsomega.1c05619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Nanojars are a class of supramolecular coordination complexes based on pyrazolate, Cu2+, and OH- ions that self-assemble around highly hydrophilic anions and serve as efficient anion binding and extraction agents. In this work, the synthesis, characterization, and photophysical properties of pyrene-functionalized fluorescent nanojars are presented. Three pyrene derivatives, 4-(pyren-1-yl)pyrazole (HL1), 4-(5-(pyren-1-yl)pent-4-yn-1-yl)pyrazole (HL2), and 4-(3-(pyrazol-4-yl)propyl)-1-(pyren-1-yl)-1,2,3-triazole (HL3), and the corresponding nanojars were synthesized and characterized using nuclear magnetic resonance spectroscopy and mass spectrometry. Electronic absorption, steady-state, and time-resolved fluorescence measurements were carried out to understand the interaction between the pyrene fluorophore and copper nanojars. Optical absorption measurements have shown minor ground state interaction between the fluorophore and nanojars. The fluorescence of pyrene is significantly quenched when attached to nanojars, suggesting strong contribution from the paramagnetic Cu2+ ions. Significant static quenching is observed in the case of L1, when pyrene is directly bound to the nanojar, whereas in the case of L2 and L3, when pyrene is attached to the nanojars using flexible tethers, both static and dynamic quenching are observed.
Collapse
Affiliation(s)
- Melanie
M. Mitchell
- Department of Chemistry, Western
Michigan University, Kalamazoo, Michigan 49008, USA
| | | | - Guda Ramakrishna
- Department of Chemistry, Western
Michigan University, Kalamazoo, Michigan 49008, USA
| | - Gellert Mezei
- Department of Chemistry, Western
Michigan University, Kalamazoo, Michigan 49008, USA
| |
Collapse
|
18
|
Mishra S, Singh AK. Optical sensors for water and humidity and their further applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Ito K, Ito K. Amphiphilic Bispyrenyl Derivative with Branched Oligo(ethylene glycol) Chains: Detection and Extraction of Nitrophenols. CHEM LETT 2021. [DOI: 10.1246/cl.200930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Kazuki Ito
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jhonan, Yonezawa, Yamagata 992-8513, Japan
| | - Kazuaki Ito
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jhonan, Yonezawa, Yamagata 992-8513, Japan
| |
Collapse
|
20
|
Host selectivity behaviour of trans-N,N′-bis(9-phenyl-9-xanthenyl)cyclohexane-1,2-diamine and trans-N,N′-bis(9-phenyl-9-thioxanthenyl)cyclohexane-1,2-diamine when presented with six-membered heterocyclic guest mixtures. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01069-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Kinik FP, Ortega-Guerrero A, Ongari D, Ireland CP, Smit B. Pyrene-based metal organic frameworks: from synthesis to applications. Chem Soc Rev 2021; 50:3143-3177. [PMID: 33475661 DOI: 10.1039/d0cs00424c] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pyrene is one of the most widely investigated aromatic hydrocarbons given to its unique optical and electronic properties. Hence, pyrene-based ligands have been attractive for the synthesis of metal-organic frameworks (MOFs) in the last few years. In this review, we will focus on the most important characteristics of pyrene, in addition to the development and synthesis of pyrene-based molecules as bridging ligands to be used in MOF structures. We will summarize the synthesis attempts, as well as the post-synthetic modifications of pyrene-based MOFs by the incorporation of metals or ligands in the structure. The discussion of promising results of such MOFs in several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications will be highlighted. Finally, some insights and future prospects will be given based on the studies discussed in the review. This review will pave the way for the researchers in the field for the design and development of novel pyrene-based structures and their utilization for different applications.
Collapse
Affiliation(s)
- F Pelin Kinik
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Daniele Ongari
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Christopher P Ireland
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| |
Collapse
|
22
|
Zreid M, Tabasi ZA, Zhao Y. Comparative studies of the noncovalent interactions in the single‐crystal packing of pyrene, pyrene‐4,5‐dione, and pyrene‐4,5,9,10‐tetraone. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Monther Zreid
- Department of Chemistry Memorial University of Newfoundland St. John's Newfoundland and Labrador Canada
| | - Zahra A. Tabasi
- Department of Chemistry Memorial University of Newfoundland St. John's Newfoundland and Labrador Canada
| | - Yuming Zhao
- Department of Chemistry Memorial University of Newfoundland St. John's Newfoundland and Labrador Canada
| |
Collapse
|
23
|
Nowacka M, Makowski T, Kowalewska A. Hybrid Fluorescent Poly(silsesquioxanes) with Amide- and Triazole-Containing Side Groups for Light Harvesting and Cation Sensing. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4491. [PMID: 33050483 PMCID: PMC7600812 DOI: 10.3390/ma13204491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/02/2020] [Accepted: 10/06/2020] [Indexed: 01/12/2023]
Abstract
Hybrid polymers containing pyrene (Py) units bound to linear poly(silsesquioxane) (LPSQ) chains through flexible linkers containing heteroatoms (S, N, O) (LPSQ-triazole-Py and LPSQ-amide-Py) exhibit intense fluorescence emission, both in very diluted solutions (c = 10-8 mol/L) and in the solid state. The materials are thermally stable and exhibit good thin film forming abilities. Their optical and physicochemical properties were found to be strongly dependent on the structure of the side chains. Comparative studies with octahedral silsesquioxane (POSS) analogues (POSS-triazole-Py and POSS-amide-Py) emphasized the role of the specific double-strand architecture of the LPSQ backbone and distribution of side Py groups for their photo-luminescent properties. The new hybrid materials were tested as fluorescence energy donors to red-emitting dyes (Nile Red and Coumarine 6). All the silsesquioxanes studied were found to be able to transfer FL emission energy to Coumarin 6, irrespectively of their spatial structure. However, due to the differences in the wavelength range of FL emission, only LPSQ-triazole-Py were able to act as energy donors to Nile Red. The Py-grafted LPSQ may be also applied for development of soluble and highly emissive chemosensors. Their fluorescent nature was explored for the detection of Cu(II), Fe(III), Co(II), Ag(I), Hg(II), Mg(II), Ca(II), Pb(II) and Zn(II). The morphology of the side chains and hydrogen-bonding interactions influenced the sensing capacity of all the studied materials.
Collapse
Affiliation(s)
- Maria Nowacka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland; (T.M.); (A.K.)
| | | | | |
Collapse
|
24
|
Hazarika SI, Mahata G, Pahari P, Pramanik N, Atta AK. A simple triazole-linked bispyrenyl-based xylofuranose derivative for selective and sensitive fluorometric detection of Cu2+. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Bartwal G, Aggarwal K, Khurana JM. Quinoline-ampyrone functionalized azo dyes as colorimetric and fluorescent enhancement probes for selective aluminium and cobalt ion detection in semi-aqueous media. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Effects of substituents on absorption and fluorescence properties of trimethylsilylethynyl- and tert-butylethynyl-pyrenes. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Sarli SE, Ay U. Formation mechanism and photo physical behaviors of Pyrene-Methyl-beta-cyclodextrin complex at excited state. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Dey N, Bhattacharjee S, Bhattacharya S. Addressing Multiple Ions Using Single Optical Probe: Multi‐Color Response via Mutually Independent Sensing Pathways. ChemistrySelect 2020. [DOI: 10.1002/slct.201902920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry Indian Institute of Science Bangalore- 560012
| | - Subham Bhattacharjee
- Department of Chemistry Kazi Nazrul University, Burdwan West Bengal 713340 India
| | - Santanu Bhattacharya
- Department of Organic Chemistry Indian Institute of Science Bangalore- 560012
- Indian Association of Cultivation of Science Kolkata 700032 India
| |
Collapse
|
29
|
Fantozzi N, Pétuya R, Insuasty A, Long A, Lefevre S, Schmitt A, Robert V, Dutasta JP, Baraille I, Guy L, Genin E, Bégué D, Martinez A, Pinet S, Gosse I. A new fluorescent hemicryptophane for acetylcholine recognition with an unusual recognition mode. NEW J CHEM 2020. [DOI: 10.1039/d0nj02794d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ammonium of the target interacts with the south part of the hemicryptophane probably because the cyclotriveratrylene's electronic density is altered by the extension of conjugation.
Collapse
|
30
|
Shahrokhi F, Fazli Estabragh R, Zhao Y. Synthesis and comparative studies of K-region functionalized pyrene derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj03897k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Three new K-region functionalized pyrene derivatives were synthesized and characterized to understand their electronic, redox, and crystallographic properties.
Collapse
Affiliation(s)
- Farshid Shahrokhi
- Department of Chemistry
- Memorial University of Newfoundland
- St. John's
- Canada A1B 3X7
| | | | - Yuming Zhao
- Department of Chemistry
- Memorial University of Newfoundland
- St. John's
- Canada A1B 3X7
| |
Collapse
|
31
|
Maeda H, Nakamura K, Furuyama T, Segi M. (1,3)Pyrenophanes containing crown ether moieties as fluorescence sensors for metal and ammonium ions. Photochem Photobiol Sci 2019; 18:2397-2410. [PMID: 31347646 DOI: 10.1039/c9pp00239a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Crown ether containing (1,3)pyrenophanes 1-6 were synthesized, and UV absorption and fluorescence spectroscopic studies were carried out to determine their abilities to form complexes with metal and ammonium ions. The fluorescence spectra of 1.0 × 10-5 M solutions of 1, 2, 4 and 6 in 1 : 1 v/v CH2Cl2 : CH3CN were comprised of both monomer and intramolecular excimer emission bands, while only monomer emission bands were present in the fluorescence spectra of 3 and 5. The intensities of the intramolecular excimer emission bands of 1, 2, 4 and 6 in 1 : 1 v/v CH2Cl2 : CH3CN decreased and those of the monomer emission increased in conjunction with the existence of isoemissive points upon the addition of increasing concentrations of various metal perchlorates. The fluorescence spectral changes were dependent on the sizes of crown ether rings and metal ions and, as such, they reflected equilibrium constants for the formation of metal-crown ether complexes. Addition of n-Bu2NH2+PF6- or (PhCH2)2NH2+PF6- to the solutions of the (1,3)pyrenophane linked crown ethers, which brought about similar fluorescence spectral changes, led to the formation of pseudo-rotaxanes as was evidenced by an analysis of 1H NMR spectra and Job's plots. The fluorescence changes of 1 occurred during 5 cycles of repetitive addition and removal of Ba2+. The ratio of intensities of the monomer to the intramolecular excimer emission bands of 1, 2, 4 and 6 increased as the temperature decreased. Based on the experimental observations and the results of DFT calculations, it is concluded that the (1,3)pyrenophanes exist in solution as equilibrium mixtures of anti monomer emitting and syn intramolecular excimer emitting conformers and the equilibrium favors the anti form when the crown ether moieties form complexes with metal or ammonium ions.
Collapse
Affiliation(s)
- Hajime Maeda
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | | | | | | |
Collapse
|
32
|
Bard JP, Mancuso JL, Deng CL, Zakharov LN, Johnson DW, Haley MM. A highly fluorescent PN-heterocycle-fused pyrene derivative with strong self-dimerisation through hydrogen bonding. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1687896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jeremy P. Bard
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR, USA
| | - Jenna L. Mancuso
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR, USA
| | - Chun-Lin Deng
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR, USA
| | | | - Darren W. Johnson
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR, USA
| | - Michael M. Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR, USA
| |
Collapse
|
33
|
Novel designed TFC membrane based on host-guest interaction for organic solvent nanofiltration (OSN). J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117227] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Lee CS, Kim JS, Kim TH. A chemodosimeter-modified carbon nanotube-field effect transistor: toward a highly selective and sensitive electrical sensing platform. RSC Adv 2019; 9:28414-28420. [PMID: 35529645 PMCID: PMC9071199 DOI: 10.1039/c9ra04656a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
We present a carbon nanotube-field effect transistor (CNT-FET) biosensor which first implements the chemodosimeter sensing principle in CNT nanoelectronics. We experimentally illustrate the specific molecular interplay that the cysteine-selective chemodosimeter immobilized on the CNT surface can specifically interact with cysteine, which leads to the chemical transformation of the chemodosimeter. Since the chemical transformation of the chemodosimeter can disrupt the charge distribution in the vicinity of the CNT surface, the carrier equilibrium in CNT might be altered, and manifested by the conductivity change of CNT-FET. The real-time conductance measurements show our biosensor is capable of label-free, rapid, highly selective and ultrasensitive detection of cysteine with a detection limit down to 0.45 fM. These results first verify the signaling principle competency of chemical transformation of the chemodosimeter in CNT electronic sensors. Combined with the advantages of the highly selective chemodosimeter and sensitive CNT-FET, the excellent performance of our sensor indicates its promising prospect as a valuable tool for developing highly sensitive and selective sensing platforms in practical application. The utility of the chemodosimetric sensing principle was demonstrated for the first time in electronic biosensing with CNT-FET devices.![]()
Collapse
Affiliation(s)
- Chang-Seuk Lee
- Department of Chemistry, Soonchunhyang University Republic of Korea +82-41-530-4722
| | - Jong Seung Kim
- Department of Chemistry, Korea University Republic of Korea +82-2-3290-3183
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University Republic of Korea +82-41-530-4722
| |
Collapse
|
35
|
Maeda H, Geshi M, Hirose K, Furuyama T, Segi M. Synthesis, fluorescence properties, and conformational analysis of ether-linked (1,8)pyrenophanes. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Wu D, Chen L, Xu Q, Chen X, Yoon J. Design Principles, Sensing Mechanisms, and Applications of Highly Specific Fluorescent Probes for HOCl/OCl .. Acc Chem Res 2019; 52:2158-2168. [PMID: 31318529 DOI: 10.1021/acs.accounts.9b00307] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypochlorous acid/hypochlorite (HOCl/OCl-), one of the most important reactive oxygen species (ROS), plays vital roles in various physiological and pathological processes. At normal concentrations, OCl- acts as part of an immune defense system by destroying invasive bacteria and pathogens. However, nonproperly located or excessive amounts of OCl- are related to many diseases, including cancers. Thus, detection of OCl- has great importance. Owing to their high sensitivities, selectivities, fast response times, technical simplicities, and high temporal and spatial resolution, fluorescent probes are powerful tools for in vitro and in vivo sensing of target substances. This Account focuses on the development of new chemosensors for detection of OCl-, which operate by undergoing a chemical reaction with this ROS in conjunction with a change in emission properties. As part of the presentation, we first introduce several important factors that need to be considered in the design of fluorescent chemosensors for OCl-, including fluorophores, reaction groups, cosolvents, and buffers. Discussion here revolves around the need to select fluorophores that resist oxidation by OCl-. As well, attention is given to the sensitivities and selectivities of groups in the sensors that react with OCl- to trigger a fluorescence response. Moreover, well-known reaction groups, which react with highly reactive ROS (hROS), have been redesigned to be specific for OCl-. In addition, it is pointed out that several cosolvents and buffers such as DMSO and HEPES are not suitable for use in systems for the detection of OCl- because they are readily oxidized by this ROS. We further discuss recent investigations carried out by us and others aimed at the development of fluorescent probes for in vitro and in vivo detection of OCl-. These efforts led to the new "dual lock" strategy for designing OCl- chemosensors as well as several new specific reaction groups such as imidazoline-2-thiones and imidazoline-2-boranes. Probes created using this strategy and the new reacting groups have been successfully applied to imaging exogenous and endogenous OCl- in live cells and/or tissues. The design concepts and strategies emanating from our studies of fluorescent OCl- probes have provided insight into the general field of fluorescent probes. Despite the progress made thus far, challenges still remain in developing and applying fluorescent OCl- probes. For example, more highly specific and sensitive fluorescent OCl- probes are still in great demand for studies of the biological roles played by OCl-. Thus, interdisciplinary collaborations of chemists, biologists, and medical practitioners are needed to drive future developments of OCl- probes for disease diagnosis and drug screening.
Collapse
Affiliation(s)
- Di Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Liyan Chen
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Qingling Xu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
37
|
Mondal P, Banerjee S, Rath SP. Controlling the Photophysics of Aromatic Guests Using a Cyclic Porphyrin Dimer: Synthesis, Structure, and Encapsulation‐Mediated “ON‐OFF” Switch. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pritam Mondal
- Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| | - Sayantani Banerjee
- Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| | - Sankar Prasad Rath
- Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| |
Collapse
|
38
|
Deng CL, Bard JP, Zakharov LN, Johnson DW, Haley MM. PN-Containing Pyrene Derivatives: Synthesis, Structure, and Photophysical Properties. Org Lett 2019; 21:6427-6431. [DOI: 10.1021/acs.orglett.9b02332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chun-Lin Deng
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Jeremy P. Bard
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lev N. Zakharov
- CAMCOR, University of Oregon, Eugene, Oregon 97403-1433, United States
| | - Darren W. Johnson
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael M. Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
39
|
Huang YH, Ge QM, Zhao YY, Cong H, Zhao JL, Tao Z, Luo QY. Recognition of silver cations by multifarene[2,2] chemosensors with unexpected fluorescence response. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 218:213-220. [PMID: 30995579 DOI: 10.1016/j.saa.2019.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Fluorescent chemosensors based on a new macrocyclic compound, multifarene[2,2], with modification by triazole-linked pyrene or anthracene were synthesized. These macrocyclic sensors exhibited high affinity and selectivity toward Ag+ over other metal ions, with ratiometric or enhanced response of their fluorescence emissions depending upon the substituent species for coordination to Ag+, and an unexpected response to a concentration threshold of the metal cations was discovered. The experimental evidences of fluorescence spectra, 1H NMR titration, IR spectra, and high-resolution mass spectra suggested the coordination behaviors of the sensors with Ag+, that is, the 1:1 complexes were formed with moderate association constants of about 105 L·mol-1, and the sulfur atoms on macrocyclic ligand should affinite to the metal cations. Energy-minimized structures and frontier orbitals were estimated by quantum chemical calculations with a view to rationalizing the fluorescence response of the multifarene[2,2] sensors upon binding to Ag+.
Collapse
Affiliation(s)
- Yin-Hui Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qing-Mei Ge
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yong-Yi Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
| | - Jiang-Lin Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qing-Ying Luo
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China.
| |
Collapse
|
40
|
Shin HW, Sohn H, Jeong YH, Lee SM. Construction of Paramagnetic Manganese-Chelated Polymeric Nanoparticles Using Pyrene-End-Modified Double-Hydrophilic Block Copolymers for Enhanced Magnetic Resonance Relaxivity: A Comparative Study with Cisplatin Pharmacophore. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6421-6428. [PMID: 30998363 DOI: 10.1021/acs.langmuir.9b00406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cationic metal-mediated self-assembly of double-hydrophilic block copolymers (DHBCs) has been of great interest for the preparation of hybrid nanoparticles for versatile applications. Among many functional transition-metal ions, manganese (MnII) is a highly attractive element due to its paramagnetic property with a high coordination number. However, MnII does not lead to the efficient self-assembly of DHBCs because of the relatively high aqueous solubility of coordinated MnII. This article reports a facile method for direct conjugation of MnII ions inside sterically stabilized polymer assemblies, composed of pyrene-end-modified DHBCs. Nitroxide-mediated radical polymerization was used to prepare the poly(ethylene glycol)- b-poly(acrylate) DHBC precursor, followed by the end-modification with pyrene maleimide via the radical-exchange reaction. Employing the self-associated DHBC as the nanoscale template, the simple addition of MnII enables a large number of polyvalent MnII ions to be immobilized at the chelating blocks of DHBCs, which can be readily monitored by the excimeric fluorescence emission change of the terminal pyrene fluorophore. The resulting MnII-loaded polymeric nanoparticles (MnII-PNPs) possess nanogel-like scaffolds, which allow for efficient water permeation at the MnII-incorporated interior for enhanced magnetic resonance contrasting effect. Additionally, by comparing the coordination properties of MnII and cisplatin, we endeavor to understand the internal structures and the relevant physicochemical features of metal-chelated nanoparticles.
Collapse
Affiliation(s)
- Hyeon-Woo Shin
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| | - Hyerin Sohn
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| | - Yun-Ho Jeong
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| | - Sang-Min Lee
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| |
Collapse
|
41
|
Low Molecular Weight Fluorescent Probes (LMFPs) to Detect the Group 12 Metal Triad. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7020022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fluorescence sensing, of d-block elements such as Cu2+, Fe3+, Fe2+, Cd2+, Hg2+, and Zn2+ has significantly increased since the beginning of the 21st century. These particular metal ions play essential roles in biological, industrial, and environmental applications, therefore, there has been a drive to measure, detect, and remediate these metal ions. We have chosen to highlight the low molecular weight fluorescent probes (LMFPs) that undergo an optical response upon coordination with the group 12 triad (Zn2+, Cd2+, and Hg2+), as these metals have similar chemical characteristics but behave differently in the environment.
Collapse
|
42
|
Bayindir S, Toprak M. A novel pyrene-based selective colorimetric and ratiometric turn-on sensing for copper. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:6-11. [PMID: 30669074 DOI: 10.1016/j.saa.2019.01.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/20/2018] [Accepted: 01/15/2019] [Indexed: 05/13/2023]
Abstract
Detection of copper attracts important in most environmental and biological systems. In this study, a simple probe BisPyTSC containing bis-pyrene core was synthesized, and cation binding and sensing properties were studied using colorimetric and fluorometric detection. The research indicated that the specific ligand affinity for Cu2+ ions results in drastic color and spectral changes. According to the data obtained, while the peak intensity increases at 376 nm, the peak intensity decreased at 280 nm in the absorption spectrum of BisPyTSC and an increase in fluorescence intensity of BisPyTSC was observed in the presence of Cu2+ ions. The binding ratio of BisPyTSC to Cu2+ was found to be 1:1 according to Job's plot experiments. The binding constant was calculated using the Benesi-Hildebrand equation and found to be 3.26 × 104 M-1. Based on these concentration dependent fluorescence changes, the limit of detection (LOD) value was calculated to be 14.5 μM for Cu2+, which is the range of copper that should be in the blood (11.8-23.6 μM). As a result of all these studies, we can understand that BisPyTSC is a good selective candidate turn-on sensor that can be used for Cu2+ detection.
Collapse
Affiliation(s)
- Sinan Bayindir
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, Bingol, Turkey.
| | - Mahmut Toprak
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, Bingol, Turkey
| |
Collapse
|
43
|
Chatterjee S, Gohil H, Raval I, Chatterjee S, Paital AR. An Anthracene Excimer Fluorescence Probe on Mesoporous Silica for Dual Functions of Detection and Adsorption of Mercury (II) and Copper (II) with Biological In Vivo Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804749. [PMID: 30821112 DOI: 10.1002/smll.201804749] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Dual functional activity by the same organic-inorganic hybrid material toward selective metal ion detection and its adsorption has drawn more attraction in the field of sensing. However, most of the hybrid materials in the literature are either for sensing studies or adsorption studies. In this manuscript, a fluorescent active hybrid material SiO2 @PBATPA is synthesized by covalent coupling of anthracene-based chelating ligand N,N'-(propane-1,3-diyl) bis(N-(anthracen-9-ylmethyl)-2-((3-(triethoxysilyl)propyl) amino) acetamide) (PBATPA) within the mesopores of newly synthesized cubic mesoporous silica. The synthetic strategy is designed to form an exclusively intramolecular excimer on a solid surface, which is then used as a sensory tool for selective detection of metal ions through fluorescence quenching by the destruction of excimer upon metal ion binding. The dual functions of sensing and adsorption studies show selectivity toward Hg2+ and Cu2+ among various metal ions with detection limits of 37 and 6 ppb, respectively, and adsorption capacities of 482 and 246 mg g-1 , respectively. This material can be used as a sensory cum adsorbent material in real food samples and living organisms such as the brine shrimp Artemia salina without any toxic effects from the material.
Collapse
Affiliation(s)
- Sobhan Chatterjee
- Salt and Marine Chemicals Division & Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, Gujarat, India
| | - Hardipsinh Gohil
- Salt and Marine Chemicals Division & Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, Gujarat, India
| | - Ishan Raval
- Division of Biotechnology and Phycology, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, Gujarat, India
| | - Shruti Chatterjee
- Division of Biotechnology and Phycology, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, Gujarat, India
| | - Alok Ranjan Paital
- Division of Biotechnology and Phycology, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, Gujarat, India
| |
Collapse
|
44
|
Synthesis and assessment of compounds trans-N,N′-bis(9-phenyl-9-xanthenyl)cyclohexane-1,4-diamine and trans-N,N′-bis(9-phenyl-9-thioxanthenyl)cyclohexane-1,4-diamine as hosts for potential xylene and ethylbenzene guests. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00883-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Taura D, Shimizu K, Yokota C, Ikeda R, Suzuki Y, Iida H, Ousaka N, Yashima E. Fluorescent molecular spring that visualizes the extension and contraction motions of a double-stranded helicate bearing terminal pyrene units triggered by release and binding of alkali metal ions. Chem Commun (Camb) 2019; 55:12084-12087. [DOI: 10.1039/c9cc06126f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique springlike motion of a fluorescent pyrene-terminated double-stranded helicate is visualized by the catch and release of alkali metal ions.
Collapse
Affiliation(s)
- Daisuke Taura
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Japan
- Department of Molecular Design and Engineering
| | - Kaori Shimizu
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Chiaki Yokota
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Riho Ikeda
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Japan
| | - Yoshimasa Suzuki
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Hiroki Iida
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Naoki Ousaka
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Japan
- Department of Molecular Design and Engineering
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Japan
- Department of Molecular Design and Engineering
| |
Collapse
|
46
|
Maeda H, Tanaka K, Aratani M, Segi M. Ethynylpyrene Linked Benzocrown Ethers as Fluorescent Sensors for Metal Ions. Photochem Photobiol 2018; 95:762-772. [PMID: 30536779 DOI: 10.1111/php.13071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/06/2018] [Indexed: 12/24/2022]
Abstract
Substances containing ethynylpyrenes linked to either one or four benzocrown ethers were synthesized, and their absorption and fluorescence spectroscopic responses to metal ions were assessed. Addition of metal perchlorates to solutions of these substances promotes short wavelength shifts in their absorption and fluorescence maxima and increases in their fluorescence intensities. The magnitudes of the fluorescence intensity increases are dependent on the ring size and number of the crown ether and the nature of the metal cation. Association constants for complex formation were calculated using fluorescence intensity versus concentration data. Analysis using Job's plots showed that the substances containing one benzocrown ether moiety form 1:1 complexes with metal ions. Results of experiments employing repeated addition and removal of Mg(ClO4 )2 demonstrate that the ON-OFF fluorescence response can be repeated at least three times. Results of molecular orbital calculations show that complexation with metal ions lowers the energies of both the π and π* levels of the ethynylpyrene moiety and that in some cases the vacant orbital on the metal becomes the LUMO of the complex. An explanation of the spectroscopic changes promoted by metal ions is proposed in terms of electrostatic repulsion and structural regulation.
Collapse
Affiliation(s)
- Hajime Maeda
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kazuhiro Tanaka
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Mona Aratani
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masahito Segi
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
47
|
Liang Y, Wang R, Liu G, Pu S. Effects of heteroaryl ring on the photochromism of asymmetrical diarylethenes containing a naphthalene group. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:470-478. [PMID: 30059873 DOI: 10.1016/j.saa.2018.07.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/14/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
Photochromic asymmetrical diarylethene derivatives 1o-4o bearing different benzo-five-membered heterocyclic rings were synthesized and characterized with single-crystal X-ray diffraction microscopy. The effects of heterocyclic ring on their properties including the photochromic behaviors in solution, solid state and crystalline phase were systematically investigated. The diarylethenes bearing benzothiophene or indole ring exhibited high cyclization quantum yields in solution, and evidently enhanced the fluorescent modulation efficiency in solid state, while those containing benzofuran or thiophene ring exhibited the opposite behaviors. In addition, indole ring red-shifted the absorption maximum, and notably enhanced the fatigue resistance of the diarylethene. These results indicate that heteroaryl ring played an important role in the photoisomerization of these diarylethenes, causing the heterocyclic effect.
Collapse
Affiliation(s)
- Yunfei Liang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Renjie Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
48
|
Xiong J, Li Z, Tan J, Ji S, Sun J, Li X, Huo Y. Two new quinoline-based regenerable fluorescent probes with AIE characteristics for selective recognition of Cu 2+ in aqueous solution and test strips. Analyst 2018; 143:4870-4886. [PMID: 30128460 DOI: 10.1039/c8an00940f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two novel highly selective quinoline-based fluorescent probes (1 and 2) with an aggregation induced emission (AIE) feature have been designed and synthesized for the rapid analysis of Cu2+ ions in aqueous media and on paper strips with a fluorescence quenching mechanism. Moreover, probes 1 and 2 exhibit excellent sensitivity and anti-interference for Cu2+ detection, and the detection limits are as low as 1.3 × 10-8 M and 8.5 × 10-8 M, respectively, which are much lower than the allowable standard of Cu2+ (∼20 μM) in drinking water (EPA). More importantly, these two probes were successfully applied for the determination of Cu2+ in real aqueous samples and fabrication of simple device test strips for rapid and on-site detection of Cu2+ ions. Interestingly, they can also be regenerated by adding an excess of S2-. Additionally, the crystallographic structure of probe 1 was confirmed through a single crystal X-ray study. Job's plot analysis and ESI-MS spectroscopic studies reflect the 1 : 1 complexation of the 1-Cu2+ and 2-Cu2+ complexes. Furthermore, DFT/TDDFT calculations were performed in order to help in understanding the electronic properties of the complexes and the chelation-induced quenching mechanism.
Collapse
Affiliation(s)
- Jingwen Xiong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Maeda H, Suzuki T, Segi M. Effects of substituents in silyl groups on the absorption, fluorescence and structural properties of 1,3,6,8-tetrasilylpyrenes. Photochem Photobiol Sci 2018; 17:781-792. [PMID: 29741552 DOI: 10.1039/c8pp00135a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,3,6,8-Tetrasilylpyrenes and related germyl and stannyl derivatives were synthesized, and their absorption and fluorescence spectroscopic and structural properties were elucidated. The results show that the UV-vis absorption maxima of these substances in CH2Cl2 solutions shift to longer wavelengths as the size of the alkyl groups and numbers of phenyl groups on silicon increase. Fluorescence quantum yields of tetrasilylpyrenes in cyclohexane are larger than that of pyrene, and a pentamethyldisilyl derivative has an emission efficiency of 0.79. Except in the case of the SiMe2H derivative, excimer emission was not observed in concentrated solutions of these substances. The SiMe2H and SiMe3 derivatives were shown to form CT complexes with tetracyanoethylene in CH2Cl2 solutions. The calculated energy barriers for rotation of the silyl groups about the Si-C bond increase as the steric bulk of the silyl group increases. 29Si NMR chemical shifts were found to depend on the sizes of the alkyl groups and numbers of phenyl groups. Data arising from theoretical calculations suggest that the silyl groups act as electron-donating groups, and the donating ability of the groups decreases in the order SiR3 > GeR3 > SnR3.
Collapse
Affiliation(s)
- Hajime Maeda
- Division of Material Chemistry, Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | | | | |
Collapse
|
50
|
Synthesis, solvatochromism, photochemistry, DNA binding, photocleavage, cytotoxicity and molecular docking studies of a ruthenium(II) complex bearing photoactive subunit. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|