1
|
Rehl KM, Selvakumar J, Pitsch RL, Hoang D, Arumugam K, Harshman SW, Gorfe AA, Cho KJ. A new ferrocene derivative blocks K-Ras localization and function by oxidative modification at His95. Life Sci Alliance 2023; 6:e202302094. [PMID: 37666666 PMCID: PMC10477449 DOI: 10.26508/lsa.202302094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Ras proteins are membrane-bound GTPases that regulate essential cellular processes at the plasma membrane (PM). Constitutively active mutations of K-Ras, one of the three Ras isoforms in mammalian cells, are frequently found in human cancers. Ferrocene derivatives, which elevate cellular reactive oxygen species (ROS), have shown to block the growth of non-small cell lung cancers harboring oncogenic mutant K-Ras. Here, we tested a novel ferrocene derivative on the growth of pancreatic ductal adenocarcinoma and non-small cell lung cancer. Our compound, which elevated cellular ROS levels, inhibited the growth of K-Ras-driven cancers, and abrogated the PM binding and signaling of K-Ras in an isoform-specific manner. These effects were reversed upon antioxidant supplementation, suggesting a ROS-mediated mechanism. We further identified that K-Ras His95 residue plays an important role in this process, and it is putatively oxidized by cellular ROS. Together, our study demonstrates that the redox system directly regulates K-Ras/PM binding and signaling via oxidative modification at the His95, and proposes a role of oncogenic mutant K-Ras in the recently described antioxidant-induced growth and metastasis of K-Ras-driven cancers.
Collapse
Affiliation(s)
- Kristen M Rehl
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jayaraman Selvakumar
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Rhonda L Pitsch
- https://ror.org/02e2egq70 Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Don Hoang
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Kuppuswamy Arumugam
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Sean W Harshman
- https://ror.org/02e2egq70 Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
2
|
Dembitsky VM. Steroids Bearing Heteroatom as Potential Drugs for Medicine. Biomedicines 2023; 11:2698. [PMID: 37893072 PMCID: PMC10604304 DOI: 10.3390/biomedicines11102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Heteroatom steroids, a diverse class of organic compounds, have attracted significant attention in the field of medicinal chemistry and drug discovery. The biological profiles of heteroatom steroids are of considerable interest to chemists, biologists, pharmacologists, and the pharmaceutical industry. These compounds have shown promise as potential therapeutic agents in the treatment of various diseases, such as cancer, infectious diseases, cardiovascular disorders, and neurodegenerative conditions. Moreover, the incorporation of heteroatoms has led to the development of targeted drug delivery systems, prodrugs, and other innovative pharmaceutical approaches. Heteroatom steroids represent a fascinating area of research, bridging the fields of organic chemistry, medicinal chemistry, and pharmacology. The exploration of their chemical diversity and biological activities holds promise for the discovery of novel drug candidates and the development of more effective and targeted treatments.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
3
|
Cseh K, Berasaluce I, Fuchs V, Banc A, Schweikert A, Prado-Roller A, Hejl M, Wernitznig D, Koellensperger G, Jakupec MA, Kandioller W, Malarek MS, Keppler BK. Anticancer Tungstenocenes with a Diverse Set of ( O,O-), ( O, S-) and ( O, N-) Chelates-A Detailed Biological Study Using an Improved Evaluation via 3D Spheroid Models. Pharmaceutics 2023; 15:1875. [PMID: 37514061 PMCID: PMC10384408 DOI: 10.3390/pharmaceutics15071875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
The synthesis, characterization and biological activity of tungstenocenes with varying biologically active (O,O-), (S,O-) and (N,O-) chelates are described. Complexes were characterized by 1H and 13C NMR, elemental analysis, ESI-mass spectrometry, FT-IR spectroscopy and X-ray diffraction analysis. The aqueous stability was studied by UV/Vis spectroscopy and the WIV to WV process by cyclic voltammetry. The cytotoxicity was determined by the MTT assay in A549, CH1/PA-1 and SW480 cancer cells as well as in IMR-90 human fibroblasts. Extensive biological evaluation was performed in three other human cancer cell lines (HCT116, HT29 and MCF-7) in monolayer and multicellular tumor spheroid cultures to better understand the mode of action. Lead compounds showed promising in vitro anticancer activity in all cancer cell lines. Further studies yielded important insights into apoptosis induction, ROS generation, different patterns in metal distribution (detected by LA-ICP-TOF-MS), changes in KI67 (proliferation marker) expression and DNA interactions. The results based on qualitative and quantitative research designs show that complexes containing (S,O-) chelates are more active than their (O,O-) and (N,O-) counterparts. The most striking results in spheroid models are the high antiproliferative capacity and the different distribution pattern of two complexes differing only in a W-S or W-O bond.
Collapse
Affiliation(s)
- Klaudia Cseh
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Iker Berasaluce
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Valentin Fuchs
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Alexandra Banc
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Andreas Schweikert
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, A 1090 Vienna, Austria
| | - Alexander Prado-Roller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Debora Wernitznig
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, A 1090 Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Michael S Malarek
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| |
Collapse
|
4
|
Rehl KM, Selvakumar J, Hoang D, Arumugam K, Gorfe AA, Cho KJ. A new ferrocene derivative blocks KRAS localization and function by oxidative modification at His95. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534499. [PMID: 37034642 PMCID: PMC10081197 DOI: 10.1101/2023.03.28.534499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ras proteins are membrane-bound GTPases that regulate essential cellular processes at the plasma membrane (PM). Constitutively active mutations of K-Ras, one of the three Ras isoforms in mammalian cells, are frequently found in human cancers. Ferrocene derivatives, which elevate cellular reactive oxygen species (ROS), have shown to block the growth of non-small cell lung cancers (NSCLCs) harboring oncogenic mutant K-Ras. Here, we developed and tested a novel ferrocene derivative on the growth of human pancreatic ductal adenocarcinoma (PDAC) and NSCLC. Our compound inhibited the growth of K-Ras-dependent PDAC and NSCLC and abrogated the PM binding and signaling of K-Ras, but not other Ras isoforms. These effects were reversed upon antioxidant supplementation, suggesting a ROS-mediated mechanism. We further identified K-Ras His95 residue in the G-domain as being involved in the ferrocene-induced K-Ras PM dissociation via oxidative modification. Together, our studies demonstrate that the redox system directly regulates K-Ras PM binding and signaling via oxidative modification at the His95, and proposes a role of oncogenic mutant K-Ras in the recently described antioxidant-induced metastasis in K-Ras-driven lung cancers.
Collapse
|
5
|
Bag R, Gayen S, Mohapatra S, Antharjanam PS, Halet JF, Ghosh S. Planar triple-decker and capped octahedral clusters of group-6 transition metals. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Bruni PS, Schürch S. Mass Spectrometric Evaluation of β-Cyclodextrins as Potential Hosts for Titanocene Dichloride. Int J Mol Sci 2021; 22:ijms22189789. [PMID: 34575951 PMCID: PMC8467183 DOI: 10.3390/ijms22189789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Bent metallocene dichlorides (Cp2MCl2, M = Ti, Mo, Nb, …) have found interest as anti-cancer drugs in order to overcome the drawbacks associated with platinum-based therapeutics. However, they suffer from poor hydrolytic stability at physiological pH. A promising approach to improve their hydrolytic stability is the formation of host-guest complexes with macrocyclic structures, such as cyclodextrins. In this work, we utilized nanoelectrospray ionization tandem mass spectrometry to probe the interaction of titanocene dichloride with β-cyclodextrin. Unlike the non-covalent binding of phenylalanine and oxaliplatin to β-cyclodextrin, the mixture of titanocene and β-cyclodextrin led to signals assigned as [βCD + Cp2Ti–H]+, indicating a covalent character of the interaction. This finding is supported by titanated cyclodextrin fragment ions occurring from collisional activation. Employing di- and trimethylated β-cyclodextrins as hosts enabled the elucidation of the influence of the cyclodextrin hydroxy groups on the interaction with guest structures. Masking of the hydroxy groups was found to impair the covalent interaction and enabling the encapsulation of the guest structure within the hydrophobic cavity of the cyclodextrin. Findings are further supported by breakdown curves obtained by gas-phase dissociation of the various complexes.
Collapse
|
7
|
Bag R, Prakash R, Saha S, Roisnel T, Ghosh S. Triple-Decker Sandwich Complexes of Tungsten with Planar and Puckered Middle Decks. Inorg Chem 2021; 60:3524-3528. [PMID: 33646752 DOI: 10.1021/acs.inorgchem.0c03411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A triple-decker complex of tungsten, [(Cp*W)2{μ-η6:η6-B4H4Co2(CO)5}(H)2] (1; Cp* = η5-C5Me5), with a planar middle deck has been isolated by thermolysis of an in situ formed intermediate from the reaction of Cp*WCl4 and LiBH4 with Co2(CO)8. In addition, we have also isolated another triple-decker complex, [(Cp*W)2{μ-η6:η6-B5H5Fe(CO)3}(H)2] (4), having a puckered central ring, from a similar reaction with Fe2(CO)9. Clusters 1 and 4 are unprecedented examples of a triple-decker complex having a 24-valence electron with bridging hydrogen atoms.
Collapse
Affiliation(s)
- Ranjit Bag
- Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Rini Prakash
- Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Suvam Saha
- Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes, Université de Rennes, CNRS, UMR 6226, Rennes F-35000, France
| | - Sundargopal Ghosh
- Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| |
Collapse
|
8
|
Román T, Ramirez D, Fierro-Medina R, Santillan R, Farfán N. Ferrocene and Organotin (IV) Conjugates Containing Amino Acids and Peptides: A Promising Strategy for Searching New Therapeutic and Diagnostic Tools. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201001154259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Organometallic complexes are an important class of synthetic reagents and are of
great interest due to their versatility and wide biological application. The cationic nature of the
coordination nucleus facilitates its interaction with biological molecules such as amino acids,
proteins, and nucleic acids. The functionalization of peptides or amino acids with organometallic
motifs is a novel strategy for the design and development of molecules with greater biological
activity, stability in biological environments, and selectivity for specific targets, which
make them valuable tools for designing and obtaining molecules with therapeutic applications.
The physicochemical properties of ferrocene make it ideal for drug development, due to its
structure, stability in aqueous solutions, redox properties, and low toxicity. In the same way,
organotin (IV) derivatives have great potential for drug development because of their multiple
biological activities, wide structural versatility, high degree of stability, and low toxicity.
However, the synthesis of these drugs based on organometallic molecules containing ferrocene or organotin (IV) is
quite complex and represents a challenge nowadays; for this reason, it is necessary to design and implement procedures
to obtain molecules with a high degree of purity, in sufficient quantities, and at low cost. This review describes
the strategies of synthesis used up to now for the preparation of organometallic amino acids and peptides
containing ferrocene or organotin (IV) derivates, as well as their impact on the development of therapeutic agents.
Collapse
Affiliation(s)
- Tatiana Román
- Departamento de Farmacia, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - David Ramirez
- Departamento de Quimica. Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - Ricardo Fierro-Medina
- Departamento de Quimica. Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - Rosa Santillan
- Departamento de Quimica, Centro de Investigacion y de Estudios Avanzados del IPN, Av Instituto Politecnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de Mexico, CDMX, Mexico
| | - Norberto Farfán
- Facultad de Quimica, Departamento de Quimica Organica, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Circuito Exterior S/N Delegacion Coyoacan, C.P. 04510 Ciudad Universitaria, Ciudad de Mexico, CDMX, Mexico
| |
Collapse
|
9
|
Arojojoye AS, Mertens RT, Ofori S, Parkin SR, Awuah SG. Synthesis, Characterization, and Antiproliferative Activity of Novel Chiral [QuinoxP*AuCl 2] + Complexes. Molecules 2020; 25:E5735. [PMID: 33291802 PMCID: PMC7730091 DOI: 10.3390/molecules25235735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
Herein is reported the synthesis of two Au(III) complexes bearing the (R,R)-(-)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (R,R-QuinoxP*) or (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (S,S-QuinoxP*) ligands. By reacting two stoichiometric equivalents of HAuCl4.3H2O to one equivalent of the corresponding QuinoxP* ligand, (R,R)-(-)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (1) and (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) were formed, respectively, in moderate yields. The structure of (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) was further confirmed by X-ray crystallography. The antiproliferative activities of the two compounds were evaluated in a panel of cell lines and exhibited promising results comparable to auranofin and cisplatin with IC50 values between 1.08 and 4.83 µM. It is noteworthy that in comparison to other platinum and ruthenium enantiomeric complexes, the two enantiomers (1 and 2) do not exhibit different cytotoxic effects. The compounds exhibited stability in biologically relevant media over 48 h as well as inert reactivity to excess glutathione at 37 °C. These results demonstrate that the Au(III) atom, stabilized by the QuinoxP* ligand, can provide exciting compounds for novel anticancer drugs. These complexes provide a new scaffold to further develop a robust and diverse library of chiral phosphorus Au(III) complexes.
Collapse
Affiliation(s)
- Adedamola S. Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
| | - R. Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
| | - Samuel Ofori
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
| | - Sean R. Parkin
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
10
|
Güette Fernández JR, Pita XN, Meléndez E, Parés Matos EI. Interaction of metallocene dichlorides with apo-human transferrin: A spectroscopic study and cytotoxic activity against human cancer cell lines. INTERNATIONAL JOURNAL OF MOLECULAR BIOLOGY (EDMOND, OKLA.) 2020; 5:79-109. [PMID: 33205002 PMCID: PMC7668563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metallocene dichlorides (Cp2M(IV)Cl2) are the first class of small and hydrophobic organometallic compounds classified as anticancer agents against numerous cancer cell lines and tumors. In this study, the antiproliferative activities of Cp2VCl2,Cp2NbCl2, Cp2HfCl2 and Cp2ZrCl2were assessed on two human cancer cell lines (HT-29 and MCF-7) using MTT assay. Spectroscopic studies were also conducted using these and other known metallocene dichlorides on apo-human transferrin (apo-hTf) at pH 7.4. UV-Vis and CD showed that their interaction with apo-hTf could induce conformational changes of its secondary structure during binding process. In fluorescence, a decrease in intensity of the emission peak was observed when the apo-hTf:Cp2M(IV)Cl2 complex is being formed, probably due to changes in the microenvironment of its tyrosine and tryptophan residues. Among all metallocene dichlorides studied, Cp2VCl2 has the strong ability to quench the intrinsic fluorescence of apo-hTf through a static quenching mechanism. The association constants for each protein-compound complex were also determined at different temperatures (296 K, 303 K, 310 K, and 317 K) based on fluorescence quenching results. Positive enthalpy changes (ΔH) and entropy changes (ΔS) as well as negative free energies (ΔG) suggest that hydrophobic interactions are the main intermolecular forces involved in the binding process, probably via an endothermic and spontaneous reaction mechanism. The distance, r, between donor (apo-hTf) and acceptor (Cp2M(IV)Cl2) obtained according to Forster's theory of non-radiation energy transfer suggest that the energy transfer from apo-hTf to Cp2M(IV)Cl2 occurs with high probability and distances obtained by FRET with high accuracy.
Collapse
|
11
|
Tabrizi L, Olasunkanmi LO, Fadare OA. De novodesign of thioredoxin reductase-targeted heterometallic titanocene–gold compounds of chlorambucil for mechanistic insights into renal cancer. Chem Commun (Camb) 2020; 56:297-300. [DOI: 10.1039/c9cc07406f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A chlorambucil-alkynyl mononuclear gold(i) complex and heteronuclear titanocene–gold(i) complex were studied for mechanism of action in renal cancer by experimental and computational methods.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
| | - Lukman O. Olasunkanmi
- Department of Chemistry
- Faculty of Science
- Obafemi Awolowo University
- Ile-Ife 220005
- Nigeria
| | - Olatomide A. Fadare
- Department of Chemistry
- Faculty of Science
- Obafemi Awolowo University
- Ile-Ife 220005
- Nigeria
| |
Collapse
|
12
|
Serebryanskaya TV, Kinzhalov MA, Bakulev V, Alekseev G, Andreeva A, Gushchin PV, Protas AV, Smirnov AS, Panikorovskii TL, Lippmann P, Ott I, Verbilo CM, Zuraev AV, Bunev AS, Boyarskiy VP, Kasyanenko NA. Water soluble palladium(ii) and platinum(ii) acyclic diaminocarbene complexes: solution behavior, DNA binding, and antiproliferative activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj00060d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Water soluble Pd(ii) and Pt(ii)–ADC species synthesized via the metal-mediated coupling of isocyanides and 1,2-diaminobenzene have demonstrated antitumor potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Taras L. Panikorovskii
- Saint Petersburg State University
- St. Petersburg
- Russia
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic
- Kola Science Centre
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- D-38106 Braunschweig
- Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- D-38106 Braunschweig
- Germany
| | - Cyril M. Verbilo
- Research Institute for Physical Chemical Problems
- Belarusian State University
- 220006 Minsk
- Belarus
| | - Alexander V. Zuraev
- Research Institute for Physical Chemical Problems
- Belarusian State University
- 220006 Minsk
- Belarus
| | - Alexander S. Bunev
- Medicinal Chemistry Center
- Togliatti State University
- 445020 Togliatti
- Russia
| | | | | |
Collapse
|
13
|
Odularu AT, Ajibade PA, Mbese JZ. Impact of Molybdenum Compounds as Anticancer Agents. Bioinorg Chem Appl 2019; 2019:6416198. [PMID: 31582964 PMCID: PMC6754869 DOI: 10.1155/2019/6416198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/24/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of this mini review was to report the molybdenum compound intervention to control cancer disease. The intervention explains its roles and progress from inorganic molybdenum compounds via organomolybdenum complexes to its nanoparticles to control oesophageal cancer and breast cancer as case studies. Main contributions of molybdenum compounds as anticancer agents could be observed in their nanofibrous support with suitable physicochemical properties, combination therapy, and biosensors (biomarkers). Recent areas in anticancer drug design, which entail the uses of selected targets, were also surveyed and proposed.
Collapse
Affiliation(s)
- Ayodele T. Odularu
- Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Scottsville 3209, South Africa
| | - Johannes Z. Mbese
- Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
14
|
Development and future prospects of selective organometallic compounds as anticancer drug candidates exhibiting novel modes of action. Eur J Med Chem 2019; 175:269-286. [PMID: 31096151 DOI: 10.1016/j.ejmech.2019.04.062] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/30/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023]
|
15
|
Alonso-Lanza T, González JW, Aguilera-Granja F, Ayuela A. Out-of-plane magnetic anisotropy energy in the Ni 3Bz 3 molecule. Phys Chem Chem Phys 2019; 21:5305-5311. [DOI: 10.1039/c8cp04251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni3Bz3 molecule shows a large magnetic anisotropy energy of 8 meV, with the easy axis perpendicular to the plane of Ni metal atoms. Note that the corresponding bare Ni3 cluster has an in-plane easy axis.
Collapse
Affiliation(s)
- Tomás Alonso-Lanza
- Centro de Física de Materiales CFM-MPC CSIC-UPV/EHU
- Donostia International Physics Center (DIPC)
- Departamento de Física de Materiales
- Fac. de Químicas
- UPVEHU
| | - Jhon W. González
- Centro de Física de Materiales CFM-MPC CSIC-UPV/EHU
- Donostia International Physics Center (DIPC)
- Departamento de Física de Materiales
- Fac. de Químicas
- UPVEHU
| | - Faustino Aguilera-Granja
- Centro de Física de Materiales CFM-MPC CSIC-UPV/EHU
- Donostia International Physics Center (DIPC)
- Departamento de Física de Materiales
- Fac. de Químicas
- UPVEHU
| | - Andrés Ayuela
- Centro de Física de Materiales CFM-MPC CSIC-UPV/EHU
- Donostia International Physics Center (DIPC)
- Departamento de Física de Materiales
- Fac. de Químicas
- UPVEHU
| |
Collapse
|
16
|
Tukhvatshin RS, Kucherenko AS, Nelyubina YV, Zlotin SG. Stereoselective Synthesis of Tetrahydroquinolines via Asymmetric Domino Reaction Catalyzed by a Recyclable Ionic-Liquid-Supported Bifunctional Tertiary Amine. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rinat S. Tukhvatshin
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Alexander S. Kucherenko
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28, Vavilova str 119991 Moscow Russia
| | - Sergei G. Zlotin
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Prospect 119991 Moscow Russian Federation
| |
Collapse
|
17
|
Kandioller W, Reikersdorfer M, Theiner S, Roller A, Hejl M, Jakupec MA, Malarek MS, Keppler BK. The Impact of Leaving Group Variation on the Anticancer Activity of Molybdenocenes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
González-Pelayo S, López E, Borge J, de-Los-Santos-Álvarez N, López LA. Trapping para-Quinone Methide Intermediates with Ferrocene: Synthesis and Preliminary Biological Evaluation of New Phenol-Ferrocene Conjugates. Molecules 2018; 23:E1335. [PMID: 29865205 PMCID: PMC6099632 DOI: 10.3390/molecules23061335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
The reaction of para-hydroxybenzyl alcohols with ferrocene in the presence of a catalytic amount of InCl₃ provided ferrocenyl phenol derivatives, an interesting class of organometallic compounds with potential applications in medicinal chemistry. This transformation exhibited a reasonable substrate scope delivering the desired products in synthetically useful yields. Evidence of involvement of a para-quinone methide intermediate in this coupling process was also provided. Preliminary biological evaluation demonstrated that some of the ferrocene derivatives available by this methodology exhibit significant cytotoxicity against several cancer cell lines with IC50 values within the range of 1.07⁻4.89 μM.
Collapse
Affiliation(s)
- Silvia González-Pelayo
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Enol López
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Javier Borge
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | | | - Luis A López
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| |
Collapse
|
19
|
Forti KM, Bernard F, Santiago-Collazo G, Garcia W, Vera JL, Meléndez E, Suarez-Martinez EB. Para-Substituted Functionalised Ferrocene Esters with Novel Antibacterial Properties. J Clin Diagn Res 2018; 12:DC01-DC04. [PMID: 29780759 DOI: 10.7860/jcdr/2018/30149.11218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introduction Bacterial antibiotic resistance is on rise despite advances in the development of new antibiotics. In an attempt to circumvent resistance, scientists are shifting focus from modifying existent antibiotics to identifying new antibiotic compounds. Aim To assess the potential antibiotic effects of functionalised ferrocenecarboxylates para-substituted on the phenoxy pendant group to form: 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, 4-iodophenyl and 4-(H-pyrrol-1-yl)phenyl. Materials and Methods For this, we employed the Kirby-Bauer disc diffusion method using a collection of nine bacterial species: Staphylococcus aureus, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa, Serratia marcescens, Klebsiella pneumoniae, Bacillus subtilis, Proteus vulgaris and Enterobacter aerogenes. Results The results show that all four-halogen substituted ferrocenecarboxylates 4-fluorophenyl (23.33 μM, 11.66 μM, 5.83 μM), 4-chlorophenyl (10.16 μM, 5.08 μM, 2.54 μM), 4-bromophenyl (9.0 μM, 4.5 μM, 2.25 μM), and 4-iodophenyl (17.12 μM, 8.56 μM, 4.28 μM) exhibited an antibacterial effect by reducing proliferation of Bacillus subtilis. Meanwhile, only 4-bromophenyl (9.0 μM) and 4-chlorophenyl (10.16 μM) ferrocenecarboxylates were able to decrease the growth of Micrococcus luteus. Conclusion Hence, functionalised ferrocenecarboxylates para-substituted with small and simple groups represent a novel class of bio-organometallic compounds with the potential to be used as antibacterial agents.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Graduate Student, Department of Biotechnology, Pontifical Catholic University of Puerto Rico, Ponce PR 00731; Research Coordinator, Department of Biology, University of Puerto Rico, Ponce PR 00716
| | - Faviola Bernard
- Student, Department of Biology, University of Puerto Rico, Ponce PR 00716
| | | | - Waldemar Garcia
- Technician, Department of Biology, University of Puerto Rico, Ponce PR 00716
| | - Jose L Vera
- Professor, Department of Chemistry, University of Puerto Rico, Mayagüez PR 00681; Inter American University of San German Biology, Chemistry, and Environmental Science Department Calle Luna, San Germán 00683
| | - Enrique Meléndez
- Professor, Inter American University of San German Biology, Chemistry, and Environmental Science Department Calle Luna, San Germán 00683
| | - Edu B Suarez-Martinez
- Professor, Department of Biology, University of Puerto Rico, Ponce PR 00716; Professor, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico 00732
| |
Collapse
|
20
|
Dembitsky VM, Gloriozova TA, Imbs AB. Ferrocene and titanocene steroid conjugates: Structures and activities - a brief review. VIETNAM JOURNAL OF CHEMISTRY 2018. [DOI: 10.1002/vjch.201800001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Andrew B. Imbs
- National Scientific Center of Marine Biology; Vladivostok Russia 690041
| |
Collapse
|
21
|
Wang Y, Huang H, Zhang Q, Zhang P. Chirality in metal-based anticancer agents. Dalton Trans 2018; 47:4017-4026. [DOI: 10.1039/c8dt00089a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chiral metal-based drugs are currently an interesting and rapidly growing field in anticancer research. Here the different chiral metal-based anticancer agents and the extent to which the chiral resolution affects their biological properties are discussed. This review will aid the design of new potent and efficient chiral metal-based anticancer drugs that exploit the unique properties combined with their potential selectivity toward targeted chiral biomolecules.
Collapse
Affiliation(s)
- Yi Wang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- 518060
- P. R. China
| | - Huaiyi Huang
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- 518060
- P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- 518060
- P. R. China
| |
Collapse
|
22
|
|
23
|
Carraher CE, Roner MR, Campbell AG, Moric-Johnson A, Miller L, Slawek P, Mosca F. Group IVB metallocene polyesters containing camphoric acid and preliminary cancer cell activity. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1342254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Charles E. Carraher
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | - Michael R. Roner
- Department of Biology, University of Texas Arlington, Arlington, TX, USA
| | - Anthony G. Campbell
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Lindsey Miller
- Department of Biology, University of Texas Arlington, Arlington, TX, USA
| | - Paul Slawek
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | - Francesca Mosca
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
24
|
Synthesis and Characterization, Including Cancer Cell Line Inhibition, of Group VA (Group 15)-Containing Polyesters from Reaction with Camphoric Acid. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0622-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Winter I, Lockhauserbäumer J, Lallinger-Kube G, Schobert R, Ersfeld K, Biersack B. Anti-trypanosomal activity of cationic N -heterocyclic carbene gold(I) complexes. Mol Biochem Parasitol 2017; 214:112-120. [DOI: 10.1016/j.molbiopara.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022]
|
26
|
Güette-Fernández JR, Meléndez E, Maldonado-Rojas W, Ortega-Zúñiga C, Olivero-Verbel J, Parés-Matos EI. A molecular docking study of the interactions between human transferrin and seven metallocene dichlorides. J Mol Graph Model 2017; 75:250-265. [PMID: 28609757 DOI: 10.1016/j.jmgm.2017.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 02/08/2023]
Abstract
Human Transferrin (hTf) is a metal-binding protein found in blood plasma and is well known for its role in iron delivery. With only a 30% of its capacity for Fe+3 binding, this protein has the potential ability to transport other metal ions or organometallic compounds from the blood stream to all cell tissues. In this perspective, recent studies have described seven metallocene dichlorides (Cp2M(IV)Cl2, M(IV)=V, Mo, W, Nb, Ti, Zr, Hf) suitable as anticancer drugs and less secondary effects than cisplatin. However, these studies have not provided enough data to clearly explain how hTf binds and transports these organometallic compounds into the cells. Thus, a computational docking study with native apo-hTf using Sybyl-X 2.0 program was conducted to explore the binding modes of these seven Cp2M(IV)Cl2 after their optimization and minimization using Gaussian 09. Our model showed that the first three Cp2M(IV)Cl2 (M(IV)=V, Mo, W) can interact with apo-hTf on a common binding site with the amino acid residues Leu-46, Ile-49, Arg-50, Leu-66, Asp-69, Ala-70, Leu-72, Ala-73, Pro-74 and Asn-75, while the next four Cp2M(IV)Cl2 (M(IV)=Nb, Ti, Zr, Hf) showed different binding sites, unknown until now. A decreasing order in the total score (equal to -log Kd) was observed from these docking studies: W (5.4356), Mo (5.2692), Nb (5.1672), V (4.5973), Ti (3.6529), Zr (2.0054) and Hf (1.8811). High and significant correlation between the affinity of these seven ligands (metallocenes) for apo-hTf and their bond angles CpMCp (r=0.94, p<0.01) and Cl-M-Cl (r=0.95, p<0.01) were observed, thus indicating the important role that these bond angles can play in ligand-protein interactions. Fluorescence spectra of apo-hTf, measured at pH 7.4, had a decrease in the fluorescence emission spectrum with increasing concentration of Cp2M(IV)Cl2. Experimental data has a good correlation between KA (r=0.84, p=0.027) and Kd (r=0.94, p=0.0014) values and the calculated total scores obtained from our docking experiments. In conclusion, these results suggest that the seven Cp2M(IV)Cl2 used for this study can interact with apo-hTf, and their affinity was directly and inversely proportional to their bond angles CpMCp and ClMCl, respectively. Our docking studies also suggest that the binding of the first three Cp2M(IV)Cl2 (M(IV)=V, Mo, W) to hTf could abrogate the formation of the hTf-receptor complex, and as a consequence the metallocene-hTf complex might require another transport mechanism in order to get into the cell.
Collapse
Affiliation(s)
- Jorge R Güette-Fernández
- Department of Chemistry at Mayagüez, University of Puerto Rico, Mayagüez, PR 00681; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Enrique Meléndez
- Department of Chemistry at Mayagüez, University of Puerto Rico, Mayagüez, PR 00681
| | - Wilson Maldonado-Rojas
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Carlos Ortega-Zúñiga
- Department of Chemistry at Mayagüez, University of Puerto Rico, Mayagüez, PR 00681; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Elsie I Parés-Matos
- Department of Chemistry at Mayagüez, University of Puerto Rico, Mayagüez, PR 00681.
| |
Collapse
|
27
|
Ahmad A, Mahal K, Padhye S, Sarkar FH, Schobert R, Biersack B. New ferrocene modified lawsone Mannich bases with anti-proliferative activity against tumor cells. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2016.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Shin HJ, Moon S, Kim JC. Structure and Properties of Macrocyclic Nickel(II) Coordination Polymer Bearing 1,1'-Ferrocenedicarboxylate Bridging Ligand. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2016. [DOI: 10.5012/jkcs.2016.60.6.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Błauż A, Rychlik B, Makal A, Szulc K, Strzelczyk P, Bujacz G, Zakrzewski J, Woźniak K, Plażuk D. Ferrocene-Biotin Conjugates: Synthesis, Structure, Cytotoxic Activity and Interaction with Avidin. Chempluschem 2016; 81:1191-1201. [DOI: 10.1002/cplu.201600320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Andrzej Błauż
- Cytometry Lab; Department of Molecular Biophysics; Faculty of Biology and Environmental Protection; University of Łódź; 141/143 Pomorska St. 90-236 Łódź Poland
| | - Błażej Rychlik
- Cytometry Lab; Department of Molecular Biophysics; Faculty of Biology and Environmental Protection; University of Łódź; 141/143 Pomorska St. 90-236 Łódź Poland
| | - Anna Makal
- Department of Chemistry; University of Warsaw; Pasteura, 1 02-093 Warszawa Poland
| | - Katarzyna Szulc
- Cytometry Lab; Department of Molecular Biophysics; Faculty of Biology and Environmental Protection; University of Łódź; 141/143 Pomorska St. 90-236 Łódź Poland
| | - Paweł Strzelczyk
- Institute of Technical Biochemistry; Łódź University of Technology; Stefanowskiego 4/10 90-924 Łódź Poland
| | - Grzegorz Bujacz
- Institute of Technical Biochemistry; Łódź University of Technology; Stefanowskiego 4/10 90-924 Łódź Poland
| | - Janusz Zakrzewski
- Department of Organic Chemistry; Faculty of Chemistry; University of Łódź; Tamka 12 41-403 Łódź Poland
| | - Krzysztof Woźniak
- Department of Chemistry; University of Warsaw; Pasteura, 1 02-093 Warszawa Poland
| | - Damian Plażuk
- Department of Organic Chemistry; Faculty of Chemistry; University of Łódź; Tamka 12 41-403 Łódź Poland
| |
Collapse
|
30
|
Wieczorek A, Błauż A, Żal A, Arabshahi HJ, Reynisson J, Hartinger CG, Rychlik B, Plażuk D. Ferrocenyl Paclitaxel and Docetaxel Derivatives: Impact of an Organometallic Moiety on the Mode of Action of Taxanes. Chemistry 2016; 22:11413-21. [DOI: 10.1002/chem.201601809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Anna Wieczorek
- Department of Organic Chemistry; Faculty of Chemistry; University of Łódź; Tamka 12 41-403 Łódź Poland
| | - Andrzej Błauż
- Cytometry Lab; Department of Molecular Biophysics; Faculty of Biology and Environmental Protection; University of Łódź; ul. Pomorska 141/143 90-236 Łódź Poland
| | - Aleksandra Żal
- Cytometry Lab; Department of Molecular Biophysics; Faculty of Biology and Environmental Protection; University of Łódź; ul. Pomorska 141/143 90-236 Łódź Poland
| | - Homayon John Arabshahi
- School of Chemical Sciences; The University of Auckland; Private Bag 92019 Auckland 1142 New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences; The University of Auckland; Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical Sciences; The University of Auckland; Private Bag 92019 Auckland 1142 New Zealand
| | - Błażej Rychlik
- Cytometry Lab; Department of Molecular Biophysics; Faculty of Biology and Environmental Protection; University of Łódź; ul. Pomorska 141/143 90-236 Łódź Poland
| | - Damian Plażuk
- Department of Organic Chemistry; Faculty of Chemistry; University of Łódź; Tamka 12 41-403 Łódź Poland
| |
Collapse
|
31
|
Carraher CE, Roner MR, Ayoub M, Crichton R, Moric-Johnson A, Miller L, Black K. Synthesis of poly(ether esters) from reaction of alpha-cyano-4-hydroxycinnamic acid and group IVB metallocenes. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2016. [DOI: 10.1080/10601325.2016.1165993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Muenzner JK, Ahmad A, Rothemund M, Schrüfer S, Padhye S, Sarkar FH, Schobert R, Biersack B. Ferrocene-substituted 3,3′-diindolylmethanes with improved anticancer activity. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Julienne K. Muenzner
- Organic Chemistry Laboratory; University of Bayreuth; Universitaetsstrasse 30 95440 Bayreuth Germany
| | - Aamir Ahmad
- Karmanos Cancer Institute; Wayne State University School of Medicine; Detroit MI 48201 USA
| | - Matthias Rothemund
- Organic Chemistry Laboratory; University of Bayreuth; Universitaetsstrasse 30 95440 Bayreuth Germany
| | - Sebastian Schrüfer
- Organic Chemistry Laboratory; University of Bayreuth; Universitaetsstrasse 30 95440 Bayreuth Germany
| | - Subhash Padhye
- Abeda Inamdar Senior College; University of Pune; 2390 K. B. Hidayatullah Road , Azam Campus Pune 411 001 India
| | - Fazlul H. Sarkar
- Karmanos Cancer Institute; Wayne State University School of Medicine; Detroit MI 48201 USA
| | - Rainer Schobert
- Organic Chemistry Laboratory; University of Bayreuth; Universitaetsstrasse 30 95440 Bayreuth Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory; University of Bayreuth; Universitaetsstrasse 30 95440 Bayreuth Germany
| |
Collapse
|
33
|
Beauperin M, Top S, Richard MA, Plażuk D, Pigeon P, Toma S, Poláčková V, Jaouen G. The length of the bridging chain in ansa-metallocenes influences their antiproliferative activity against triple negative breast cancer cells (TNBC). Dalton Trans 2016; 45:13126-34. [DOI: 10.1039/c6dt01640e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[n]Ferrocenophane and [n]ruthenocenophane derivatives have been synthesized and their antiproliferative activity evaluated against MDA-MB-231 cells.
Collapse
Affiliation(s)
| | - Siden Top
- Sorbonne Universités
- UPMC Univ Paris 6
- UMR 8232
- IPCM
- F-75005 Paris
| | | | - Damian Plażuk
- University of Lodz
- Faculty of Chemistry
- Department of Organic Chemistry
- Lodz 91-403
- Poland
| | - Pascal Pigeon
- Sorbonne Universités
- UPMC Univ Paris 6
- UMR 8232
- IPCM
- F-75005 Paris
| | - Stefan Toma
- Faculty of Natural Sciences
- Comenius University
- SK-84215 Bratislava
- Slovakia
| | - Viera Poláčková
- Faculty of Natural Sciences
- Comenius University
- SK-84215 Bratislava
- Slovakia
| | - Gérard Jaouen
- Sorbonne Universités
- UPMC Univ Paris 6
- UMR 8232
- IPCM
- F-75005 Paris
| |
Collapse
|
34
|
García-Moreno E, Tomás A, Atrián-Blasco E, Gascón S, Romanos E, Rodriguez-Yoldi MJ, Cerrada E, Laguna M. In vitro and in vivo evaluation of organometallic gold(I) derivatives as anticancer agents. Dalton Trans 2015; 45:2462-75. [PMID: 26469679 DOI: 10.1039/c5dt01802a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkyne gold(I) derivatives with the water soluble phosphanes PTA (1,3,5-triaza-7-phosphaadamantane) and DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) were described and their anticancer potential against the colon cancer cell line Caco-2 (PD7 and TC7 clones) was studied. Strong antiproliferative effects are found, for all the new complexes, to be even more pronounced than for the reference drug cisplatin, and similar to auranofin. The interaction of these derivatives with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. The types of quenching and binding constants were determined by a fluorescence quenching method. Moderate values of the binding constants are calculated for the tested derivatives indicating that these complexes can be stored and carried easily by this protein in the body. The study of the thermodynamic parameters in the case of [Au(C[triple bond, length as m-dash]CCH2Spyridine)(PTA)] points out to the presence of van der Waals interactions or hydrogen bonding between the metallic complex and the protein. In addition, the complex [Au(C[triple bond, length as m-dash]CCH2Spyridine)(PTA)] has shown inhibition in colon cancer proliferation of HTC-116-luc2 cell lines via the apoptotic pathway and S-phase arrest of the cell cycle. Intraperitoneal injection of this derivative in athymic nude mice inoculated with HTC-116-luc2 cells prolonged their survival and displayed moderate inhibition of the tumour growth with no subsequent organ (kidney and liver) damage after treatment.
Collapse
Affiliation(s)
- Elena García-Moreno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Pérez WI, Rheingold AL, Meléndez E. Crystal structure of bis-[4-(1H-pyrrol-1-yl)phen-yl] ferrocene-1,1'-di-carboxyl-ate: a potential chemotherapeutic drug. Acta Crystallogr E Crystallogr Commun 2015; 71:536-9. [PMID: 25995874 PMCID: PMC4420060 DOI: 10.1107/s2056989015007446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/15/2015] [Indexed: 11/10/2022]
Abstract
The title iron(II) complex, [Fe(C16H12NO2)2], crystallizes in the ortho-rhom-bic space group Pbca with the Fe(2+) cation positioned on an inversion center. The cyclo-penta-dienyl (Cp) rings adopt an anti conformation in contrast with other substituted ferrocenes in which the Cp rings appear in a nearly eclipsed conformation. The Cp and the aromatic rings are positioned out of the plane, with a twist angle of 70.20 (12)°, and the C(Cp)-C(CO) bond length is shorter than a typical C-C single bond, which suggests a partial double-bond character and delocalization with the Cp π system. The structure of the complex is compared to other functionalized ferrocenes synthesized in our laboratory.
Collapse
Affiliation(s)
- Wanda I. Pérez
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayaguez, Puerto Rico 00681, USA
| | - Arnold L. Rheingold
- University of California-San Diego, Department of Chemistry, Urey Hall 5128, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Enrique Meléndez
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayaguez, Puerto Rico 00681, USA
| |
Collapse
|
36
|
Metallocene-uracil conjugates: Synthesis and biological evaluation of novel mono-, di- and tri-nuclear systems. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2014.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Pérez WI, Soto Y, Ortíz C, Matta J, Meléndez E. Ferrocenes as potential chemotherapeutic drugs: synthesis, cytotoxic activity, reactive oxygen species production and micronucleus assay. Bioorg Med Chem 2015; 23:471-9. [PMID: 25555734 PMCID: PMC4330091 DOI: 10.1016/j.bmc.2014.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/03/2014] [Accepted: 12/12/2014] [Indexed: 11/21/2022]
Abstract
Three new ferrocene complexes were synthesized with 4-(1H-pyrrol-1-yl)phenol group appended to one of the Cp ring. These are: 1,1'-4-(1H-pyrrol-1-yl)phenyl ferrocenedicarboxylate, ('Fc-(CO2-Ph-4-Py)2'), 1,4-(1H-pyrrol-1-yl)phenyl, 1'-carboxyl ferrocenecarboxylate ('Fc-(CO2-Ph-4-Py)CO2H') and 4-(1H-pyrrol-1-yl)phenyl ferroceneacetylate ('Fc-CH2CO2-Ph-4-Py'). The new species were characterized by standard analytical methods. Cyclic voltammetry experiments showed that Fc-CH2CO2-Ph-4-Py has redox potential very similar to the Fc/Fc(+) redox couple whereas Fc-(CO2-Ph-4-Py)2 and Fc-(CO2-Ph-4-Py)CO2H have redox potentials of over 400 mV higher than Fc/Fc(+) redox couple. The in vitro studies on Fc-(CO2-Ph-4-Py)2 and Fc-(CO2-Ph-4-Py)CO2H revealed that these two compounds have moderate anti-proliferative activity on MCF-7 breast cancer cell line. In contrast Fc-CH2CO2-Ph-4-Py which displayed low anti-proliferative activity. In the HT-29 colon cancer cell line, the new species showed low anti-proliferative activity. Cytokinesis-block micronucleus assay (CBMN) was performed on these ferrocenes and it was determined they induce micronucleus formation on binucleated cells and moderate genotoxic effects on the MCF-7 breast cancer cell line. There is a correlation between the IC50 values of the ferrocenes and the amount of micronucleus formation activity on binucleated cells and the reactive oxygen species (ROS) production on MCF-7 cell line.
Collapse
Affiliation(s)
- Wanda I Pérez
- Department of Chemistry, University of Puerto Rico, PO Box 9019, Mayagüez, PR 00681, United States
| | - Yarelys Soto
- Department of Biotechnology, University of Puerto Rico, PO Box 9019, Mayagüez, PR 00681, United States
| | - Carmen Ortíz
- Department of Pharmacology, Toxicology and Physiology, Ponce School of Medicine and Health Sciences, Ponce, PR 00732-7004, United States
| | - Jaime Matta
- Department of Pharmacology, Toxicology and Physiology, Ponce School of Medicine and Health Sciences, Ponce, PR 00732-7004, United States
| | - Enrique Meléndez
- Department of Chemistry, University of Puerto Rico, PO Box 9019, Mayagüez, PR 00681, United States.
| |
Collapse
|
38
|
Kowalski K, Hikisz P, Szczupak Ł, Therrien B, Koceva-Chyła A. Ferrocenyl and dicobalt hexacarbonyl chromones – New organometallics inducing oxidative stress and arresting human cancer cells in G2/M phase. Eur J Med Chem 2014; 81:289-300. [DOI: 10.1016/j.ejmech.2014.05.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/09/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
|
39
|
Hodík T, Lamač M, Červenková Št’astná L, Karban J, Koubková L, Hrstka R, Císařová I, Pinkas J. Titanocene Dihalides and Ferrocenes Bearing a Pendant α-d-Xylofuranos-5-yl or α-d-Ribofuranos-5-yl Moiety. Synthesis, Characterization, and Cytotoxic Activity. Organometallics 2014. [DOI: 10.1021/om500200r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Tomáš Hodík
- J. Heyrovský
Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 2155/3, 182
23 Prague 8, Czech Republic
| | - Martin Lamač
- J. Heyrovský
Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 2155/3, 182
23 Prague 8, Czech Republic
| | - Lucie Červenková Št’astná
- Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 135, 165 02 Prague 6, Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 135, 165 02 Prague 6, Czech Republic
| | - Lucie Koubková
- Regional Centre
for Applied and Molecular Oncology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 65653 Brno, Czech Republic
| | - Roman Hrstka
- Regional Centre
for Applied and Molecular Oncology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 65653 Brno, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Jiří Pinkas
- J. Heyrovský
Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 2155/3, 182
23 Prague 8, Czech Republic
| |
Collapse
|
40
|
Ceballos-Torres J, Virag P, Cenariu M, Prashar S, Fajardo M, Fischer-Fodor E, Gómez-Ruiz S. Anti-cancer applications of titanocene-functionalised nanostructured systems: an insight into cell death mechanisms. Chemistry 2014; 20:10811-28. [PMID: 24715574 DOI: 10.1002/chem.201400300] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Indexed: 12/20/2022]
Abstract
A series of alkenyl-substituted titanocene compounds have been supported on the mesoporous silica-based material KIT-6. The corresponding functionalised materials were completely characterised by different techniques (solid-state multinuclear NMR spectroscopy, IR spectroscopy, N2 adsorption-desorption isotherms, X-ray fluorescence and diffraction, SEM and TEM) to observe the incorporation of the titanocene derivatives on the external surface of the material KIT-6. Both the titanocene compounds and the materials were tested in vitro against a wide variety of human cancer and normal cell lines. A very high cytotoxicity of the synthesised titanocene derivatives (IC50 values in the range of those described in the literature for the most active cytotoxic titanocene compounds), with selectivity towards cancer cell lines was observed. The cytotoxic activity of the materials is the highest reported to date for titanocene-functionalised materials. In addition, higher Ti uptake (from 4 to 23% of the initial amount of Ti) of the cells treated with materials was observed with respect to those treated with "free" titanocene derivatives (which gave Ti uptake values from 0.4 to 4.6% of the initial amount of Ti). Additional experiments with the titanocene derivatives and the functionalised materials revealed that changes to the morphological and functional dynamics of apoptosis occurred when the active titanocene species were incorporated into mesoporous materials. In addition, the materials could induce programmed cell death in tumour cell populations by impairing the damaged DNA repair mechanisms and by upregulation of intrinsic and extrinsic apoptotic signalling pathways.
Collapse
Affiliation(s)
- Jesús Ceballos-Torres
- Departamento de Química Inorgánica y Analítica, E.S.C.E.T. Universidad Rey Juan Carlos, 28933 Móstoles, Madrid (Spain)
| | | | | | | | | | | | | |
Collapse
|
41
|
Vera JL, Rullán J, Santos N, Jiménez J, Rivera J, Santana A, Briggs J, Rheingold AL, Matta J, Meléndez E. Functionalized ferrocenes: The role of the para substituent on the phenoxy pendant group. J Organomet Chem 2014; 749:204-214. [PMID: 27453588 PMCID: PMC4957819 DOI: 10.1016/j.jorganchem.2013.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Six ferrocenecarboxylates with phenyl, 4-(1H-pyrrol-1-yl)phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, 4-iodophenyl as pendant groups were synthesized and fully characterized by spectroscopic, electrochemical and X-ray diffraction methods. The anti-proliferative activity of these complexes were investigated in hormone dependent MCF-7 breast cancer and MCF-10A normal breast cell lines, to determine the role of the para substituent on the phenoxy pendant group. The 4-fluorophenyl ferrocenecarboxylate is inactive in both cell lines while 4-(1H-pyrrol-1-yl)phenyl ferrocenecarboxylate is highly cytotoxic in both cell lines. 4-chlorophenyl and 4-bromophenyl ferrocenecarboxylates have moderate to good anti-proliferative activity in MCF-7 and low anti-proliferative activity on normal breast cell line, MCF-10A whereas the 4-iodophenyl analog is highly toxic on normal breast cell line. The phenyl ferrocenecarboxylate has proliferative effects on MCF-7 and is inactive in MCF-10A. Docking studies between the complexes and the alpha-estrogen receptor (ERα) were performed to search for key interactions which may explain the anti-proliferative activity of 4-bromophenyl ferrocenecarboxylate. Docking studies suggest the anti-proliferative activity of these ferrocenecarboxylates is attributed to the cytotoxic effects of the ferrocene group and not to anti-estrogenic effects.
Collapse
Affiliation(s)
- José L. Vera
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayagüez 00681, Puerto Rico
| | - Jorge Rullán
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayagüez 00681, Puerto Rico
| | - Natasha Santos
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayagüez 00681, Puerto Rico
| | - Jesús Jiménez
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayagüez 00681, Puerto Rico
| | - Joshua Rivera
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayagüez 00681, Puerto Rico
| | - Alberto Santana
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayagüez 00681, Puerto Rico
| | - Jon Briggs
- University of California-San Diego, Department of Chemistry, Urey Hall 5128, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Arnold L. Rheingold
- University of California-San Diego, Department of Chemistry, Urey Hall 5128, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Jaime Matta
- Department of Pharmacology, Toxicology and Physiology, Ponce School of Medicine and Health Sciences, Ponce 00732-7004, Puerto Rico
| | - Enrique Meléndez
- University of Puerto Rico, Department of Chemistry, PO Box 9019, Mayagüez 00681, Puerto Rico
| |
Collapse
|
42
|
Affiliation(s)
- Franck Le Bideau
- Institut de Chimie de Strasbourg (UMR 7177), CNRS-Université de Strasbourg , Strasbourg 67000, France
| | | |
Collapse
|