1
|
Kotha S, Solanke BU. Construction of Unusual Amino Acid derivatives and Bis‐Fused Oxacycles via Ring‐Closing Metathesis. ChemistrySelect 2022. [DOI: 10.1002/slct.202203906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry Indian Institute of Technology–Bombay Powai Mumbai 400 076 India
| | - Balaji U. Solanke
- Department of Chemistry Indian Institute of Technology–Bombay Powai Mumbai 400 076 India
| |
Collapse
|
2
|
Jiang J, Teunens T, Tisaun J, Denuit L, Moucheron C. Ruthenium(II) Polypyridyl Complexes and Their Use as Probes and Photoreactive Agents for G-quadruplexes Labelling. Molecules 2022; 27:1541. [PMID: 35268640 PMCID: PMC8912042 DOI: 10.3390/molecules27051541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their optical and electrochemical properties, ruthenium(II) polypyridyl complexes have been used in a wide array of applications. Since the discovery of the light-switch ON effect of [Ru(bpy)2dppz]2+ when interacting with DNA, the design of new Ru(II) complexes as light-up probes for specific regions of DNA has been intensively explored. Amongst them, G-quadruplexes (G4s) are of particular interest. These structures formed by guanine-rich parts of DNA and RNA may be associated with a wide range of biological events. However, locating them and understanding their implications in biological pathways has proven challenging. Elegant approaches to tackle this challenge relies on the use of photoprobes capable of marking, reversibly or irreversibly, these G4s. Indeed, Ru(II) complexes containing ancillary π-deficient TAP ligands can create a covalently linked adduct with G4s after a photoinduced electron transfer from a guanine residue to the excited complex. Through careful design of the ligands, high selectivity of interaction with G4 structures can be achieved. This allows the creation of specific Ru(II) light-up probes and photoreactive agents for G4 labelling, which is at the core of this review composed of an introduction dedicated to a brief description of G-quadruplex structures and two main sections. The first one will provide a general picture of ligands and metal complexes interacting with G4s. The second one will focus on an exhaustive and comprehensive overview of the interactions and (photo)reactions of Ru(II) complexes with G4s.
Collapse
Affiliation(s)
- Julie Jiang
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
- Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Tisaun
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Laura Denuit
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| |
Collapse
|
3
|
Malik MS, Alsantali RI, Jassas RS, Alsimaree AA, Syed R, Alsharif MA, Kalpana K, Morad M, Althagafi II, Ahmed SA. Journey of anthraquinones as anticancer agents - a systematic review of recent literature. RSC Adv 2021; 11:35806-35827. [PMID: 35492773 PMCID: PMC9043427 DOI: 10.1039/d1ra05686g] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Anthraquinones are privileged chemical scaffolds that have been used for centuries in various therapeutic applications. The anthraquinone moiety forms the core of various anticancer agents. However, the emergence of drug-resistant cancers warrants the development of new anticancer agents. The research endeavours towards new anthraquinone-based compounds are increasing rapidly in recent years. They are used as a core chemical template to achieve structural modifications, resulting in the development of new anthraquinone-based compounds as promising anticancer agents. Mechanistically, most of the anthraquinone-based compounds inhibit cancer progression by targeting essential cellular proteins. Herein, we review new anthraquinone analogues that have been developed in recent years as anticancer agents. This includes a systematic review of the recent literature (2005-2021) on anthraquinone-based compounds in cell-based models and key target proteins such as kinases, topoisomerases, telomerases, matrix metalloproteinases and G-quadruplexes involved in the viability of cancer cells. In addition to this, the developments in PEG-based delivery of anthraquinones and the toxicity aspects of anthraquinone derivatives are also discussed. The review dispenses a compact background knowledge to understanding anthraquinones for future research on the expansion of anticancer therapeutics.
Collapse
Affiliation(s)
- M Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Abdulrahman A Alsimaree
- Department of Basic Science (Chemistry), College of Science and Humanities, Shaqra University Afif Saudi Arabia
| | - Riyaz Syed
- Centalla Discovery, JHUB, Jawaharlal Nehru Technological University Hyderabad Kukatpally Hyderabad 500085 India
| | - Meshari A Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Kulkarni Kalpana
- Department of Humanities and Sciences (Chemistry), Gokaraju Rangaraju Institute of Engineering and Technology Bachupally Hyderabad 500090 India
| | - Moataz Morad
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ismail I Althagafi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
4
|
Zeng L, Sirbu D, Waddell PG, Tkachenko NV, Probert MR, Benniston AC. Hydrogen peroxide assisted photorelease of an anthraquinone-based ligand from [Ru(2,2'-bipyridine) 2(9,10-dioxo-9,10-dihydroanthracen-1-olate)]Cl in aqueous solution. Dalton Trans 2020; 49:13243-13252. [PMID: 32845949 DOI: 10.1039/d0dt02339f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new class of light-activated ruthenium(ii) complex was designed as a potential blocker of biological functioning, especially for targeting redox reactions within mitochondria under light activation. Based on our concepts the complex [Ru(bipy)2(1-hydroxyanthra-9,10 quinone)]Cl (RU1) was prepared and studied to understand the preliminary reaction mechanisms and its excited state behaviour through a series of stability tests, electrochemistry, UV-Visible kinetics and femtosecond transient absorption spectroscopy experiments. Under white light in the presence of H2O2 two different reactions (fast and slow) appear to take place. The complex loses the quinone-based ligand and a resulting Ru(iii) or Ru(v) species is produced. The complex RU1 shows potential to consume H2O2 from the one carbon metabolism in mitochondria, and hence may cut the energy cycle pathway of tumor cells.
Collapse
Affiliation(s)
- L Zeng
- Molecular Photonics Laboratory, Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | | | | | | | | | | |
Collapse
|
5
|
Nadali S, Aghapour G, Rafieepour Z. Efficient and selective iron-mediated reductive Claisen rearrangement of propargyloxyanthraquinones to anthrafurandiones in ionic liquids. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An efficient and rapid method is described for the reductive Claisen rearrangement of different propargyloxyanthraquinones to anthra[1,2-b]furan-6,11-diones for first time using iron powder in a mixture of two ionic liquids, namely 1-methylimidazolium tetrafluoroborate [Hmim]BF4 and 1-benzyl-3-methylimidazolium chloride [Bzmim]Cl. The present method is able to execute single or double Claisen rearrangements of 1,4- or 1,5-bispropargyloxyanthraquinones selectively, so that the desired anthra(mono)furandiones or anthra(bis)furandiones are produced, respectively, as the major product.
Collapse
Affiliation(s)
- Samaneh Nadali
- School of Chemistry, Damghan University, Damghan, 36715-364, Iran
- School of Chemistry, Damghan University, Damghan, 36715-364, Iran
| | - Ghasem Aghapour
- School of Chemistry, Damghan University, Damghan, 36715-364, Iran
- School of Chemistry, Damghan University, Damghan, 36715-364, Iran
| | - Zahra Rafieepour
- School of Chemistry, Damghan University, Damghan, 36715-364, Iran
- School of Chemistry, Damghan University, Damghan, 36715-364, Iran
| |
Collapse
|
6
|
Wachter E, Moyá D, Glazer EC. Combining a Ru(II) "Building Block" and Rapid Screening Approach to Identify DNA Structure-Selective "Light Switch" Compounds. ACS COMBINATORIAL SCIENCE 2017; 19:85-95. [PMID: 28029775 DOI: 10.1021/acscombsci.6b00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A chemically reactive Ru(II) "building block", able to undergo condensation reactions with substituted diamines, was utilized to create a small library of luminescent "light switch" dipyrido-[3,2-a:2',3'-c] phenazine (dppz) complexes. The impact of substituent identity, position, and the number of substituents on the light switch effect was investigated. An unbiased, parallel screening approach was used to evaluate the selectivity of the compounds for a variety of different biomolecules, including protein, nucleosides, single stranded DNA, duplex DNA, triplex DNA, and G-quadruplex DNA. Combining these two approaches allowed for the identification of hit molecules that showed different selectivities for biologically relevant DNA structures, particularly triplex and quadruplex DNA.
Collapse
Affiliation(s)
- Erin Wachter
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexingon, Kentucky 40506, United States
| | - Diego Moyá
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexingon, Kentucky 40506, United States
| | - Edith C. Glazer
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexingon, Kentucky 40506, United States
| |
Collapse
|
7
|
Wachter E, Moyá D, Parkin S, Glazer EC. Ruthenium Complex "Light Switches" that are Selective for Different G-Quadruplex Structures. Chemistry 2016; 22:550-9. [PMID: 26560887 PMCID: PMC4703525 DOI: 10.1002/chem.201503203] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 01/03/2023]
Abstract
Recognition and regulation of G-quadruplex nucleic acid structures is an important goal for the development of chemical tools and medicinal agents. The addition of a bromo-substituent to the dipyridylphenazine (dppz) ligands in the photophysical "light switch", [Ru(bpy)2 dppz](2+) , and the photochemical "light switch", [Ru(bpy)2 dmdppz](2+) , creates compounds with increased selectivity for an intermolecular parallel G-quadruplex and the mixed-hybrid G-quadruplex, respectively. When [Ru(bpy)2 dppz-Br](2+) and [Ru(bpy)2 dmdppz-Br](2+) are incubated with the G-quadruplexes, they have a stabilizing effect on the DNA structures. Activation of [Ru(bpy)2 dmdppz-Br](2+) with light results in covalent adduct formation with the DNA. These complexes demonstrate that subtle chemical modifications of Ru(II) complexes can alter G-quadruplex selectivity, and could be useful for the rational design of in vivo G-quadruplex probes.
Collapse
Affiliation(s)
- Erin Wachter
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506 (USA)
| | - Diego Moyá
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506 (USA)
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506 (USA)
| | - Edith C Glazer
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506 (USA).
| |
Collapse
|