1
|
Ersan RH, Alagoz MA, Ertan-Bolelli T, Duran N, Burmaoglu S, Algul O. Head-to-head bisbenzazole derivatives as antiproliferative agents: design, synthesis, in vitro activity, and SAR analysis. Mol Divers 2021; 25:2247-2259. [PMID: 32556804 DOI: 10.1007/s11030-020-10115-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
In the present work, a series of bisbenzazole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of these compounds was investigated using MTT assay. Bisbenzazole derivatives showed significant antiproliferative activity against all the four tested cancer cell lines. Among the various bisbenzazole derivatives, bisbenzoxazole derivatives exhibited the most promising anticancer activity followed by bisbenzimidazole and bisbenzothiazole derivatives. All the derivatives were found to be less toxic as compared to methotrexate (positive control) in normal human cells, indicating selective and efficient antiproliferative activity of these bisbenzazole derivatives. The structure-activity relationships of heteroaromatic systems and linkers present in bisbenzazole derivatives were analyzed in detail. In silico ADMET prediction revealed that bisbenzazole is a drug-like small molecule with a favorable safety profile. Compound 31 is a potential antiproliferative hit compound that exhibits unique cytotoxic activity distinct from methotrexate. Twenty-one bisbenzoxazole derivatives have been designed synthesized and evaluated to be an antiproliferative activity against four human tumor cell lines.
Collapse
Affiliation(s)
- Ronak Haj Ersan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, 33169, Mersin, Turkey
| | - Mehmet Abdullah Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey
| | - Tugba Ertan-Bolelli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey
| | - Nizami Duran
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, 31100, Antakya, Hatay, Turkey
| | - Serdar Burmaoglu
- Department of Chemistry, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey.
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, 33169, Mersin, Turkey.
| |
Collapse
|
2
|
Kretsch J, Kreyenschmidt A, Schillmöller T, Lõkov M, Herbst‐Irmer R, Leito I, Stalke D. Bis(4-benzhydryl-benzoxazol-2-yl)methane - from a Bulky NacNac Alternative to a Trianion in Alkali Metal Complexes. Chemistry 2021; 27:9858-9865. [PMID: 34036637 PMCID: PMC8361911 DOI: 10.1002/chem.202100616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 11/25/2022]
Abstract
A novel sterically demanding bis(4-benzhydryl-benzoxazol-2-yl)methane ligand 6 (4-BzhH2 BoxCH2 ) was gained in a straightforward six-step synthesis. Starting from this ligand monomeric [M(4-BzhH2 BoxCH)] (M=Na (7), K (81 )) and dimeric [{M(4-BzhH2 BoxCH)}2 ] (M=K (82 ), Rb (9), Cs (10)) alkali metal complexes were synthesised by deprotonation. Abstraction of the potassium ion of 8 by reaction with 18-crown-6 resulted in the solvent separated ion pair [{(THF)2 K@(18-crown-6)}{bis(4-benzhydryl-benzoxazol-2-yl)methanide}] (11), including the energetically favoured monoanionic (E,E)-(4-BzhH2 BoxCH) ligand. Further reaction of 4-BzhH2 BoxCH2 with three equivalents KH and two equivalents 18-crown-6 yielded polymeric [{(THF)2 K@(18-crown-6)}{K@(18-crown-6)K(4-Bzh BoxCH)}]n (n→∞) (12) containing a trianionic ligand. The neutral ligand and herein reported alkali complexes were characterised by single X-ray analyses identifying the latter as a promising precursor for low-valent main group complexes.
Collapse
Affiliation(s)
- Johannes Kretsch
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| | | | - Timo Schillmöller
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Märt Lõkov
- Institute of ChemistryUniversity of TartuRavila 14a50411TartuEstonia
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Ivo Leito
- Institute of ChemistryUniversity of TartuRavila 14a50411TartuEstonia
| | - Dietmar Stalke
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
3
|
Bisbenzimidazole Derivatives as Potential Antimicrobial Agents: Design, Synthesis, Biological Evaluation and Pharmacophore Analysis. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02389-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Ersan RH, Alagoz MA, Dogen A, Duran N, Burmaoglu S, Algul O. Bisbenzoxazole Derivatives: Design, Synthesis, in Vitro Antimicrobial, Antiproliferative Activity, and Molecular Docking Studies. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ronak Haj Ersan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Mehmet Abdullah Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Aylin Dogen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Nizami Duran
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, Antakya-Hatay, Turkey
| | - Serdar Burmaoglu
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
5
|
Algul O, Ersan RH, Alagoz MA, Duran N, Burmaoglu S. An efficient synthesis of novel di-heterocyclic benzazole derivatives and evaluation of their antiproliferative activities. J Biomol Struct Dyn 2020; 39:6926-6938. [PMID: 32772845 DOI: 10.1080/07391102.2020.1803966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of unsymmetrical nine di-heterocyclic compounds of benzazole derivatives were synthesized at one step via cyclization reaction. The compounds evaluated for in vitro cytotoxic activity against A549, A498, HeLa, and HepG2 cancer cell lines. The biological evaluation results show that 23, 26 and 29 exhibit better activity against HepG2 and HeLa cancer cell lines. Compound 23 also showed good activity against A549, and A498 cancer cell lines. The analogs were further performed molecular docking studies against human cytochrome P450 2C8 monooxygenase enzyme, calculated some theoretical quantum parameters, ADMET descriptor and molecular electrostatic potential analysis. The strategy applied in this research work may act as a perspective for the rational design of potential anticancer drugs. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Ronak Haj Ersan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Mehmet Abdullah Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Nizami Duran
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, Antakya-Hatay, Turkey
| | - Serdar Burmaoglu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
6
|
Titanium and Vanadium Catalysts with 2-Hydroxyphenyloxazoline and Oxazine Ligands for Ethylene-Norbornene (co)Polymerization. Catalysts 2019. [DOI: 10.3390/catal9121041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A series of titanium and vanadium complexes with oxazoline 2-(4,5-dihydro-1,3-oxazol-2-yl)phenol (L1), 2-(4-methyl-4,5-dihydro-1,3-oxazol-2-yl)phenol (L2), and oxazine 2-(5,6-dihydro-4H-1,3-oxazin-2-yl)phenol (L3) ligands were synthesized, and their structures were determined by NMR and MS methods as (L)2MtCl2. The vanadium complexes were found to be highly active in ethylene (7300 kgPE/(molV·h)) and ethylene/norbornene (5300 kgCop/(molV·h)) (co)polymerization. The polyethylene characteristics were melting temperature (123–142 °C), crystallinity degree (49–75%), molecular weight (5.7–8.5 × 105 g/mol), molecular weight distribution (1.5–2.4). The ethylene-norbornene (E-NB) copolymer characteristics were molecular weight (2.6–0.9 × 105 g/mol), molecular weight distribution (1.6–2.2), glass transition temperature (4–62 °C), norbornene incorporation (12.3–30.1 mol%) at initial concentration (0.5–1.5 mol/L). The microstructure of E-NB copolymers depends on the catalyst applied with the highest diads content for the (L3)2VCl2 and triads for the (L2)2VCl2 complexes.
Collapse
|
7
|
|
8
|
Rimkus AM, Alt HG. Dissymmetric ansa zirconocene complexes with di- and trisubstituted indenyl ligands as catalysts for homogeneous ethylene homo- and ethylene/1-hexene copolymerization reactions. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
|