1
|
Ahmed S, Mahendiran D, Bhat AR, Rahiman AK. Theoretical, in Vitro Antiproliferative, and in Silico Molecular Docking and Pharmacokinetics Studies of Heteroleptic Nickel(II) and Copper(II) Complexes of Thiosemicarbazone-Based Ligands and Pefloxacin. Chem Biodivers 2023; 20:e202300702. [PMID: 37528701 DOI: 10.1002/cbdv.202300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Twelve new heteroleptic nickel(II) and copper(II) complexes of the type [M(L1-6 )(Pfx)2 ] (1-12), where L1-6 =2-benzylidenehydrazinecarbothioamide (L1 ), 2-benzylidene-N-methylhydrazinecarbothioamide (L2 ), 2-benzylidene-N-phenylhydrazinecarbothioamide (L3 ), 2-(4-methylbenzylidene)hydrazinecarbothioamide (L4 ), 2-(4-methylbenzylidene)-N-methylhydrazinecarbothioamide (L5 ) and 2-(4-methylbenzylidene)-N-phenylhydrazinecarbothioamide (L6 ), Pfx=pefloxacin and M=Ni(II) or Cu(II) have been synthesised, and their structures were confirmed by different spectral techniques. The spectral data and density functional theory (DFT) calculations supported the bonding of pefloxacin drug molecule via one of the carboxylate oxygen atoms and the pyridone oxygen atom, and the thiosemicarbazone ligand via the imine nitrogen and the thione sulfur atoms with the metal(II) ion, forming distorted octahedral geometry. In vitro antiproliferative activity of the synthesized complexes was evaluated against three human breast cancer (T47D, estrogen negative (MDA-MB-231) and estrogen positive (MCF-7)) as well as non-tumorigenic human breast epithelial (MCF-10a) cell lines, which showed the higher activity for the copper(II) complexes. The interaction of the synthesized complexes with an oncogenic protein H-ras (121 p) was explored by in silico molecular docking studies. Further, in silico pharmacokinetics and ADMET parameters were also analysed to predict the drug-likeness as well as non-toxic and non-carcinogenic behavior, and safe oral administration of the complexes.
Collapse
Affiliation(s)
- Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, 600 014, India
| | - Dharmasivam Mahendiran
- Center for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, 4111, Australia
| | - Ajmal Rashid Bhat
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, 600 014, India
| |
Collapse
|
2
|
Cavalcante CDQO, da Mota THA, de Oliveira DM, Nascimento ÉCM, Martins JBL, Pittella-Silva F, Gatto CC. Dithiocarbazate ligands and their Ni(II) complexes with potential biological activity: Structural, antitumor and molecular docking study. Front Mol Biosci 2023; 10:1146820. [PMID: 36968279 PMCID: PMC10034969 DOI: 10.3389/fmolb.2023.1146820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
In the search for new metal complexes with antitumor potential, two dithiocarbazate ligands derived from 1,1,1-trifluoro-2,4-pentanedione (H2L1) and (H2L2) and four Ni(II) complexes, [Ni(L1)PPh3] (1), [Ni(L1)Py] (2), [Ni(L2)PPh3] (3), and [Ni(L2)Py] (4), were successfully synthesized and investigated by physical-chemistry and spectroscopic methods. The crystal structure of the H2L1 and the Ni(II) complexes has been elucidated by single-crystal X-ray diffraction. The obtained structure from H2L1 confirms the cyclization reaction and formation of the pyrazoline derivative. The results showed square planar geometry to the metal centers, in which dithiocarbazates coordinated by the ONS donor system and a triphenylphosphine or pyridine molecule complete the coordination sphere. Hirshfeld surface analysis by dnorm function was investigated and showed π–π stacking interactions upon the molecular packing of H2L1 and non-classical hydrogen bonds for all compounds. Fingerprint plots showed the main interactions attributed to H⋅H C⋅H, O⋅H, Br⋅H, and F⋅H, with contacts contributing between 1.9% and 38.2%. The mass spectrometry data indicated the presence of molecular ions [M + H]+ and characteristic fragmentations of the compounds, which indicated the same behavior of the compounds in solution and solid state. Molecular docking simulations were studied to evaluate the properties and interactions of the free dithiocarbazates and their Ni(II) complexes with selected proteins and DNA. These results were supported by in vitro cytotoxicity assays against four cancer cell lines, showing that the synthesized metal complexes display promising biological activity.
Collapse
Affiliation(s)
- Cássia de Q. O. Cavalcante
- University of Brasília, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília, DF, Brazil
| | - Tales H. A. da Mota
- University of Brasília, Faculdade UnB Ceilândia, Multidisciplinary Laboratory of Human Health, Brasília, DF, Brazil
| | - Diêgo M. de Oliveira
- University of Brasília, Faculdade UnB Ceilândia, Multidisciplinary Laboratory of Human Health, Brasília, DF, Brazil
| | - Érica C. M. Nascimento
- University of Brasília, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília, DF, Brazil
| | - João B. L. Martins
- University of Brasília, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília, DF, Brazil
| | - Fabio Pittella-Silva
- University of Brasília, Faculty of Health Sciences and Medicine, Laboratory of Molecular Cancer Pathology, Brasília, DF, Brazil
| | - Claudia C. Gatto
- University of Brasília, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília, DF, Brazil
- *Correspondence: Claudia C. Gatto,
| |
Collapse
|
3
|
Wang Z, Liu Y, Zhang W, Wang Y, Xu H, Yang L, Feng J, Hou B, Li M, Yan W. Selective mercury adsorption and enrichment enabled by phenylic carboxyl functionalized poly(pyrrole methane)s chelating polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159870. [PMID: 36328257 DOI: 10.1016/j.scitotenv.2022.159870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Mercury decontamination from water requires highly effective and efficient methods for maintaining public health and environmental protection. Herein, based on the coordination theory between functional groups and metal ions, we proposed phenylic carboxyl group-based poly(pyrrole methane)s (PPDCBAs) as highly efficient mercury removal materials for environmental remediation applications. It was found that PPDCBAs can efficiently adsorb and remove mercury(II) from aqueous solutions by functionalizing the molecular structure with phenylic carboxyl groups. Among the as-prepared PPDCBAs, poly[pyrrole-2, 5-diyl (4-carboxybenzylidane)] (PPD4CBA) with the carboxyl group at the para position can not only adsorb mercury over 1400 mg⋅g-1 but also achieve a 92.5 % mercury(II) uptake within 100 min by a very low dosage of 0.1 g⋅L-1. In addition, PPDCBAs exhibited excellent adsorption selectivity for mercury(II) compared with copper(II), cadmium(II), zinc(II) and lead(II). Furthermore, as determined by Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy (XPS) and the density functional theory (DFT) calculation, the mercury removal was found to be mainly dependent on the high density of chelating sites, the phenylic carboxyl moieties, which helped us to realize an ultra-trace amount mercury removal (from 10.8 μg⋅L-1 to 0.6-0.8 μg⋅L-1) for meeting drinking water standard requirements (1.0 μg⋅L-1).
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunpeng Liu
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenlong Zhang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Yubing Wang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Xu
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liu Yang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangtao Feng
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Jiangsu Engineering Laboratory of New Materials for Sewage Treatment and Recycling, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Bo Hou
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK.
| | - Mingtao Li
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wei Yan
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
Comparative investigation of Cu(II) complexes with dithiocarbazate: Structural design, theoretical calculation, and in vitro antitumor activity. J Inorg Biochem 2022; 237:112015. [PMID: 36191435 DOI: 10.1016/j.jinorgbio.2022.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 01/18/2023]
Abstract
The present work reports the synthesis and investigation by semi-empirical Density Functional Theory (DFT), physical chemistry, and spectroscopic methods of two dithiocarbazates, 2-acetylpyridine-S-p-bromobenzyl-dithiocarbazate (HL1) and 2-acetylpyridine-S-p-nitrobenzyl-dithiocarbazate (HL2) and their Cu(II) complexes, [Cu(L1)Cl] (1), [Cu(L1)Br] (2), [Cu(L2)Cl] (3) and [Cu(L2)Br] (4). Single crystal X-ray analyzes showed distorted square planar geometry to the metal centers, which tridentate ligands coordinated by the NNS system and an additional halogen (Cl- or Br-) to complete the coordination sphere. Mass spectrometry data indicated the presence of [Cu(L1)(DMF)]+ and [Cu(L2)(DMF)]+, due to the exchanging of chloride/bromide ions and characteristic fragmentations of the compounds. The DFT composite method B97-3c was employed to optimize the geometries of ligands and complexes and IR spectra were calculated revealing good agreement with experimental data. Hydrogen bonds and π⋅⋅⋅π stacking interactions upon the molecular packing were investigated by Hirshfeld surface and fingerprint plots with the main interactions attributed to the H⋅⋅⋅H contacts. The biological activity of the dithiocarbazates and their Cu(II) complexes were evaluated in vitro against the human glioma U251 cells. Results revealed that the free dithiocarbazates present great in vitro antitumor activity that is increased after the complexation with copper. The measurement of cytotoxicity of the compounds showed biological activity in a low range of concentration, which indicates high efficiency as potential drugs.
Collapse
|
5
|
Chahra BOUCHAMENI, Ouahida ZEGHOUAN, Mahesha, Udaya Kumar A, Chahrazed BEGHIDJA, Richard WELTER, Lokanath N. Design and Structural Analysis of Centrosymmetric and Non-centrosymmetric Zn(II) complexes by the host-guest complexation method. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Nano-Azo Ligand and Its Superhydrophobic Complexes: Synthesis, Characterization, DFT, Contact Angle, Molecular Docking, and Antimicrobial Studies. J CHEM-NY 2020. [DOI: 10.1155/2020/6382037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metal complexes of the 2,2'-(1,3-phenylenebis(diazene-2,1-diyl))bis(4-aminobenzoic acid) diazo ligand (H2L) derived from m-phenylenediamine and p-aminobenzoic acid were synthesized and characterized by different spectral, thermal, and analytical tools. The H2L ligand reacted with the metal ions Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) as 1 : 1 stoichiometry. All complexes displayed an octahedral geometry according to the electronic and magnetic moment measurements. The IR spectra revealed the binding of the azo ligand to the metal ions via two azo nitrogen atoms and protonated carboxylate O in a neutral tetradentate manner. Both IR and 1H NMR spectra documented the involvement of the carboxylate group without proton displacement. The thermal studies pointed out that the complexes had higher thermal stability comparable with that of the free ligand. SEM images revealed the presence of the diazo ligand and its Cd(II) complex in a nanostructure form. The contact angle measurements proved that the Cd(II) complex can be considered as a superhydrophobic material. The molecular and electronic structure of H2L and [Cd(H2L)Cl2].H2O were optimized theoretically, and the quantum chemical parameters were calculated. The biological activities of the ligand, as well as its metal complexes, have been tested in vitro against some bacteria and fungi species. The results showed that all the tested compounds have significant biological activities with different sensitivity levels. The binding between H2L and its Cd(II) complex with receptors of the crystal structure of S. aureus (PDB ID: 3Q8U), crystal structure of protein phosphatase (PPZ1) of Candida albicans (PDB ID: 5JPE), receptors of breast cancer mutant oxidoreductase (PDB ID: 3HB5), and crystal structure of Escherichia coli (PDB ID: 3T88) was predicted and given in detail using molecular docking.
Collapse
|
7
|
Huentupil Y, Chung P, Novoa N, Klahn AH, Medina ME, Cisterna J, Brito I, Rivera A, López‐Muñoz R, Arancibia R. New multifunctional heterobinuclear palladium (II) complexes based on organometallic dithiocarbazate ligands. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yosselin Huentupil
- Laboratorio de Química Inorgánica y Organometálica, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - Patricio Chung
- Laboratorio de Química Inorgánica y Organometálica, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - Néstor Novoa
- Laboratorio de Química Inorgánica y Organometálica, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - A. Hugo Klahn
- Instituto de QuímicaPontificia Universidad Católica de Valparaíso Casilla Valparaíso 4059 Chile
| | - Manuela E. Medina
- Instituto de Ciencias de Materiales de MadridConsejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz 3 Madrid 28049 Spain
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias BásicasUniversidad de Antofagasta Casilla 170 Antofagasta Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias BásicasUniversidad de Antofagasta Casilla 170 Antofagasta Chile
| | - Andrés Rivera
- Instituto de Farmacología y MorfofisiologíaFacultad de Ciencias Veterinarias Universidad Austral de Chile Valdivia Chile
| | - Rodrigo López‐Muñoz
- Instituto de Farmacología y MorfofisiologíaFacultad de Ciencias Veterinarias Universidad Austral de Chile Valdivia Chile
| | - Rodrigo Arancibia
- Laboratorio de Química Inorgánica y Organometálica, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| |
Collapse
|
8
|
Yekke-ghasemi Z, Ramezani M, Mague JT, Takjoo R. Synthesis, characterization and bioactivity studies of new dithiocarbazate complexes. NEW J CHEM 2020. [DOI: 10.1039/d0nj01187h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Six new dithiocarbazate compounds are synthesized and characterized. HSA interaction and MTT assay are evaluated for all compounds.
Collapse
Affiliation(s)
- Zahra Yekke-ghasemi
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center
- School of Pharmacy
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Joel T. Mague
- Department of Chemistry
- Tulane University
- New Orleans
- USA
| | - Reza Takjoo
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| |
Collapse
|
9
|
Arif Tawfeeq N, Kwong HC, Mohamed Tahir MI, Ravoof TBSA. Crystal structure of benzyl N'-[(1 E,4 E)-1,5-bis-(4-meth-oxy-phen-yl)penta-1,4-dien-3-yl-idene]hydrazine-1-carbodi-thio-ate. Acta Crystallogr E Crystallogr Commun 2019; 75:1613-1619. [PMID: 31709078 PMCID: PMC6829705 DOI: 10.1107/s2056989019013458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/01/2019] [Indexed: 11/29/2022]
Abstract
In the title hydrazinecarbodi-thio-ate derivative, C27H26N2O2S2, the asymmetric unit is comprised of four mol-ecules (Z = 8 and Z' = 4). The 4-meth-oxy-phenyl rings are slightly twisted away from their attached olefinic double bonds [torsion angles = 5.9 (4)-19.6 (4)°]. The azomethine double bond has an s-trans configuration relative to one of the C=C bonds and an s-cis configuration relative to the other [C=C-C= N = 147.4 (6)-175.7 (2) and 15.3 (3)-37.4 (7)°, respectively]. The torsion angles between the azomethine C=N double bond and hydrazine-1-carbodi-thio-ate moiety indicate only small deviations from planarity, with torsion angles ranging from 0.9 (3) to 6.9 (3)° and from 174.9 (3) to 179.7 (2)°, respectively. The benzyl ring and the methyl-enesulfanyl moiety are almost perpendicular to each other, as indicated by their torsion angles [range 93.7 (3)-114.6 (2)°]. In the crystal, mol-ecules are linked by C-H⋯O, N-H⋯S and C-H⋯π(ring) hydrogen-bonding inter-actions into a three-dimensional network. Structural details of related benzyl hydrazine-1-carbodi-thio-ate are surveyed and compared with those of the title compound.
Collapse
Affiliation(s)
- Nabeel Arif Tawfeeq
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- Department of Chemistry, College of Education for Women, University of Anbar, Iraq
| | - Huey Chong Kwong
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Mohamed Ibrahim Mohamed Tahir
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Thahira B. S. A. Ravoof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
10
|
Cavalcante CDQO, Arcanjo DDS, Silva GGD, Oliveira DMD, Gatto CC. Solution and solid behavior of mono and binuclear zinc(ii) and nickel(ii) complexes with dithiocarbazates: X-ray analysis, mass spectrometry and cytotoxicity against cancer cell lines. NEW J CHEM 2019. [DOI: 10.1039/c9nj01814j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and characterization of metal complexes with dithiocarbazates and the cytotoxicity against the breast cancer line MDA-MB-231.
Collapse
Affiliation(s)
| | | | | | | | - Claudia C. Gatto
- Laboratory of Inorganic Synthesis and Crystallography
- Institute of Chemistry
- University of Brasília
- Brazil
| |
Collapse
|
11
|
Yekke-Ghasemi Z, Takjoo R, Ramezani M, Mague JT. Molecular design and synthesis of new dithiocarbazate complexes; crystal structure, bioactivities and nano studies. RSC Adv 2018; 8:41795-41809. [PMID: 35558762 PMCID: PMC9091968 DOI: 10.1039/c8ra07100d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 09/24/2018] [Indexed: 01/09/2023] Open
Abstract
The syntheses of a new set of metal complexes MoO2L'(CH3OH), VOL'(CH3O)(CH3OH), , , SnL'Cl2 and SnL'I2 with a new ligand (L = (2,2'(disulfanediylbis((ethylthio)methylene)bis(hydrazin-2-yl-1-ylidene)bis(methanylylidene)) diphenol; L' = S-ethyl-3-(2-hydroxyphenyl)methylenedithiocarbazate are described along with characterization by elemental analysis, mass spectrometry, spectroscopic (IR, 1H- and 13C-NMR) and TGA techniques. The crystal structures of compounds were determined by single crystal X-ray diffraction analysis and compared to powder X-ray diffraction (PXRD) patterns of the nano complexes obtained using ultrasonic methods. The PXRD results indicate that the compounds synthesized by ultrasonic methods have high crystallinity. The compounds were evaluated in an in vitro cytotoxicity study with two human cancer cell lines. The results of this study revealed that all complexes exhibit good cytotoxic activity when compared to the clinical drug, cisplatin. Interaction of the samples with human serum albumin (HSA) was investigated using fluorescence spectrophotometric methods and the Stern-Volmer quenching constant (K SV) and free energy changes (ΔG) were calculated at 298 K. The fluorescence quenching method is used to determine the number of binding sites (n) and association constants (K a) at the same temperatures.
Collapse
Affiliation(s)
- Zahra Yekke-Ghasemi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran +98 513 880 5536
| | - Reza Takjoo
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran +98 513 880 5536
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Joel T Mague
- Department of Chemistry, Tulane University New Orleans LA 70118 USA
| |
Collapse
|
12
|
Mixed ligand complexes of cadmium(II) and copper(II) dithiocarbazate: Synthesis, spectral characterization, X-ray crystal structure. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.11.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Mahmoud W, Mahmoud N, Mohamed GG. Synthesis, physicochemical characterization, geometric structure and molecular docking of new biologically active ferrocene based Schiff base ligand with transition metal ions. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3858] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- W.H. Mahmoud
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - N.F. Mahmoud
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| |
Collapse
|