1
|
Sánchez-Fernández R, Obregon-Gomez I, Sarmiento A, Vázquez ME, Pazos E. Luminescent lanthanide metallopeptides for biomolecule sensing and cellular imaging. Chem Commun (Camb) 2024; 60:12650-12661. [PMID: 39327864 PMCID: PMC11427887 DOI: 10.1039/d4cc03205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Lanthanide ions display unique luminescent properties that make them particularly attractive for the development of bioprobes, including long-lived excited states that allow the implementation of time-gated experiments and the elimination of background fluorescence associated with biological media, as well as narrow emission bands in comparison with typical organic fluorophores, which allow ratiometric and multiplex assays. These luminescent complexes can be combined with peptide ligands to endow them with additional targeting, responsiveness, and selectivity, thus multiplying the opportunities for creative probe design. In this feature article we will present some of the main strategies that researchers have used to develop lanthanide metallopeptide probes for the detection of proteins and nucleic acids, as well as for monitoring enzymatic activity and cellular imaging.
Collapse
Affiliation(s)
- Rosalía Sánchez-Fernández
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain.
| | - Ines Obregon-Gomez
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain.
| | - Axel Sarmiento
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Elena Pazos
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain.
| |
Collapse
|
2
|
Ru XM, Yang ZY, Ran SY. Lanthanide ions induce DNA compaction with ionic specificity. Int J Biol Macromol 2022; 210:292-299. [DOI: 10.1016/j.ijbiomac.2022.04.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/05/2022]
|
3
|
Demirci S, Sahiner N. Polyethyleneimine based Cerium(III) and Ce(NO3)3 metal-organic frameworks with blood compatible, antioxidant and antimicrobial properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Arrué L, Santoyo-Flores J, Pizarro N, Zarate X, Páez-Hernández D, Schott E. The role played by structural and energy parameters of β-Diketones derivatives as antenna ligands in Eu(III) complexes. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Bryleva YA, Artem'ev AV, Glinskaya LA, Komarov VY, Bogomyakov AS, Rakhmanova MI, Larionov SV. A series of bis(2-phenethyl)dithiophosphinate-based Ln(III) complexes: Synthesis, magnetic and photoluminescent properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Fremy G, Raibaut L, Cepeda C, Sanson M, Boujut M, Sénèque O. A novel DOTA-like building block with a picolinate arm for the synthesis of lanthanide complex-peptide conjugates with improved luminescence properties. J Inorg Biochem 2020; 213:111257. [DOI: 10.1016/j.jinorgbio.2020.111257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022]
|
7
|
Aramesh-Boroujeni Z, Jahani S, Khorasani-Motlagh M, Kerman K, Noroozifar M. Evaluation of parent and nano-encapsulated terbium(III) complex toward its photoluminescence properties, FS-DNA, BSA binding affinity, and biological applications. J Trace Elem Med Biol 2020; 61:126564. [PMID: 32485498 DOI: 10.1016/j.jtemb.2020.126564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND There is a crucial need for finding and developing new compounds as the anticancer and antimicrobial agents with better activity, specific target, and less toxic side effects. OBJECTIVES Base on the potential anticancer properties of lanthanide complexes, in the paper, the biological applications of terbium (Tb) complex, containing 2,9-dimethyl- 1,10-phenanthroline (Me2Phen) such as anticancer, antimicrobial, DNA cleavage ability, the interaction with FS-DNA (Fish-Salmon DNA) and BSA (Bovine Serum Albumin) was examined. METHODS The interaction of Tb-complex with BSA and DNA was studied by emission spectroscopy, absorption titration, viscosity measurement, CD spectroscopy, competitive experiments, and docking calculation. Also, the ability of this complex to cleave DNA was reported by gel electrophoresis. Tb-complex was concurrently screened for its antibacterial activities by different methods. Besides, the nanocarriers of Tb-complex (lipid nanoencapsulation (LNEP) and the starch nanoencapsulation (SNEP)), as active anticancer candidates, were prepared. MTT technique was applied to measure the antitumor properties of these compounds on human cancer cell lines. RESULTS The experimental and docking results suggest significant binding between DNA as well as BSA with terbium-complex. Besides, groove binding plays the main role in the binding of this compound with DNA and BSA. The competitive experiment with hemin demonstrated that the terbium complex was bound at site III of BSA, which was confirmed by the docking study. Also, Tb-complex was concurrently screened for its DNA cleavage, antimicrobial, and anticancer activities. The anticancer properties of LNEP and SNEP are more than the terbium compound. CONCLUSIONS Tb-complex can bond to DNA/BSA with high binding affinity. Base on biological applications of Tb-complex, it can be concluded that this complex and its nanocarriers can suggest as novel anticancer, antimicrobial candidates.
Collapse
Affiliation(s)
- Zahra Aramesh-Boroujeni
- Isfahan University of Medical Sciences, Isfahan, Iran; Department of Chemistry, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran.
| | - Shohreh Jahani
- Nano Bioeletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
8
|
Alsaeedi MS, Babgi BA, Hussien MA, Abdellattif MH, Humphrey MG. DNA-Binding and Anticancer Activity of Binuclear Gold(I) Alkynyl Complexes with a Phenanthrenyl Bridging Ligand. Molecules 2020; 25:E1033. [PMID: 32106590 PMCID: PMC7179095 DOI: 10.3390/molecules25051033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
3,6-Diethynyl-9,10-diethoxyphenanthrene (4) was synthesized from phenanthrene and employed in the synthesis of the binuclear gold(I) alkynyl complexes (R3P)Au(C≡C-3-[C14H6-9,10-diethoxy]-6-C≡C)Au(PR3) (R = Ph (5a), Cy (5b)). The diyne 4 and complexes 5a and 5b were characterized by NMR spectroscopy, mass spectrometry, and elemental analysis. UV-Vis spectroscopy studies of the metal complexes and precursor diyne show strong p à p* transitions in the near UV region that red shift by ca. 50 nm upon coordination at the gold centers. The emission spectrum of 4 shows an intense fluorescence band centered at 420 nm which red shifts, slightly upon coordination of 4 to gold. Binding studies of 4, 5a, and 5b against calf thymus DNA were carried out, revealing that 4, 5a, and 5b have >40% stronger binding affinities than the commonly used intercalating agent ethidium bromide. The molecular docking scores of 4, 5a, and 5b with B-DNA suggest a similar trend in behavior to that observed in the DNA-binding study. Unlike the ligand 4, promising anticancer properties for 5a and 5b were observed against several cell lines; the DNA binding capability of the precursor alkyne was maintained, and its anticancer efficacy enhanced by the gold centers. Such phenanthrenyl complexes could be promising candidates in certain biological applications because the two components (phenanthrenyl bridge and metal centers) can be altered independently to improve the targeting of the complex, as well as the biological and physicochemical properties.
Collapse
Affiliation(s)
- Mona S. Alsaeedi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, Saudi Arabia; (M.S.A.); (M.A.H.)
- Department of Chemistry, Faculty of Science, Taif University, Al-Haweiah, P.O. Box 888, Taif 21974, Saudi Arabia;
| | - Bandar A. Babgi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, Saudi Arabia; (M.S.A.); (M.A.H.)
- Department of Chemistry, College of Science and Arts, King Abdulaziz University, P.O. Box 344 Rabigh 21911, Saudi Arabia
| | - Mostafa A. Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, Saudi Arabia; (M.S.A.); (M.A.H.)
| | - Magda H. Abdellattif
- Department of Chemistry, Faculty of Science, Taif University, Al-Haweiah, P.O. Box 888, Taif 21974, Saudi Arabia;
| | - Mark G. Humphrey
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
9
|
Conformational rearrangements of G-quadruplex topology promoted by Cu(II) 12-MC Cu(II)PyrAcHA-4 metallacrown. Int J Biol Macromol 2019; 156:1258-1269. [PMID: 31759020 DOI: 10.1016/j.ijbiomac.2019.11.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
Cu(II) 12-MCCu(II)PyrAcHA-4 metallacrown was studied by several spectroscopic techniques as an interacting ligand with G-quadruplex DNA structures. Investigations were performed on oligonucleotides bearing human telomeric and protooncogenic c-myc sequences in buffered solution mimicking ionic conditions in cellular environment. The planar square-based Cu(II) 12-MC-4 metallacrown interacts with GQ via an end-stacking mode with 1:1 stoichiometry. Circular dichroism (CD) titration revealed capability of this metallacrown to induce transformation of the GQ hybrid topology into the parallel form. Thermal melting experiment indicated higher thermal stability of both antiparallel (ΔTm = +15 °C) and parallel (ΔTm = ≥27 °C) G-quadruplexes in the presence of Cu (II) 12-MC-4. Indirect GQ FID assay let to determine high binding affinity of the Cu(II) 12-MC-4 to antiparallel 22Htel/Na+ GQ (KMC = 3.9 (±0.4) x 106 M-1). Comparing with lower binding constants previously reported for Ln (III) 15-MC-5 and Sm (III) 12-MC-4, one can conclude that the square planar geometry and the positive charge of metallacrown play an important role in MC/GQ interactions.
Collapse
|
10
|
Aramesh-Boroujeni Z, Jahani S, Khorasani-Motlagh M, Kerman K, Aramesh N, Asadpour S, Noroozifar M. Experimental and theoretical investigations of Dy(III) complex with 2,2'-bipyridine ligand: DNA and BSA interactions and antimicrobial activity study. J Biomol Struct Dyn 2019; 38:4746-4763. [PMID: 31684852 DOI: 10.1080/07391102.2019.1689170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, the interactions of a novel metal complex [Dy(bpy)2Cl3.OH2] (bpy is 2,2'-bipyridine) with fish salmon DNA (FS-DNA) and bovine serum albumin (BSA) were investigated by experimental and theoretical methods. All results suggested significant binding between the Dy(III) complex with FS-DNA and BSA. The binding constants (Kb), Stern-Volmer quenching constants (KSV) of Dy(III)-complex with FS-DNA and BSA at various temperatures as well as thermodynamic parameters using Van't Hoff equation were obtained. The experimental results from absorption, ionic strength, iodide ion quenching, ethidium bromide (EtBr) quenching studies and positive ΔH˚ and ΔS˚ suggested that hydrophobic groove-binding mode played a predominant role in the binding of Dy(III)-complex with FS-DNA. Indeed, the molecular docking results for DNA-binding were in agreement with experimental data. Besides, the results found from experimental and molecular modeling indicated that the Dy(III)-complex bound to BSA via Van der Waals interactions. Moreover, the results of competitive tests by phenylbutazone, ibuprofen, and hemin (as a site-I, site-II and site-III markers, respectively) considered that the site-III of BSA is the most possible binding site for Dy(III)-complex. In addition, Dy(III) complex was concurrently screened for its antimicrobial activities. The presented data provide a promising platform for the development of novel metal complexes that target nucleic acids and proteins with antimicrobial activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zahra Aramesh-Boroujeni
- Department of Clinical Laboratory, AlZahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Shohreh Jahani
- Nano Bioeletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Nahal Aramesh
- Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj, Iran
| | - Saeid Asadpour
- Department of Chemistry, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Aramesh-Boroujeni Z, Jahani S, Khorasani-Motlagh M, Kerman K, Noroozifar M. Evaluation of DNA, BSA binding, DNA cleavage and antimicrobial activity of ytterbium(III) complex containing 2,2'-bipyridine ligand. J Biomol Struct Dyn 2019; 38:1711-1725. [DOI: 10.1080/07391102.2019.1617788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zahra Aramesh-Boroujeni
- Department of Clinical Laboratory, AlZahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Shohreh Jahani
- Nano Bioeletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Meissam Noroozifar
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Gholivand K, Hosseini M, Maghsoud Y, Valenta J, Ebrahimi Valmuzi AA, Owczarzak A, Kubicki M, Jamshidi M, Kahnouji M. Relations between Structural and Luminescence Properties of Novel Lanthanide Nitrate Complexes with Bis-phosphoramidate Ligands. Inorg Chem 2019; 58:5630-5645. [DOI: 10.1021/acs.inorgchem.8b03611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Mahdieh Hosseini
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Yazdan Maghsoud
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Jan Valenta
- Department of Chemical Physics & Optics, Faculty of Mathematics & Physics, Charles University, Ke Karlovu 3, Prague 2CZ-12116, Czechia
| | | | - Agata Owczarzak
- Department of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| | - Maciej Kubicki
- Department of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| | - Morteza Jamshidi
- Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, P.O. Box 6718997551, Kerman-shah 1477893855, Iran
| | - Mohammad Kahnouji
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
13
|
Beltrán-Leiva MJ, Fuenzalida-Valdivia I, Cantero-López P, Bulhões-Figueira A, Alzate-Morales J, Páez-Hernández D, Arratia-Pérez R. Classical and Quantum Mechanical Calculations of the Stacking Interaction of NdIII Complexes with Regular and Mismatched DNA Sequences. J Phys Chem B 2019; 123:3219-3231. [DOI: 10.1021/acs.jpcb.9b00703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- María J. Beltrán-Leiva
- Relativistic Molecular Physics Group, Universidad Andres Bello, República 275, Santiago 8370146, Chile
| | - Isabel Fuenzalida-Valdivia
- Facultad de Ciencias Biológicas, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago 8370146, Chile
| | - Plinio Cantero-López
- Relativistic Molecular Physics Group, Universidad Andres Bello, República 275, Santiago 8370146, Chile
- Center for Applied Nanosciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago, 8370146, Chile
| | - Ana Bulhões-Figueira
- Centro Universitário Estácio de Ribeirão Preto, Rua Abrahão Issa Halach 980, Ribeirãnia, Ribeirão Preto, Sao Paulo 14096-160, Brazil
| | - Jans Alzate-Morales
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente 1141, Talca, Chile
| | - Dayán Páez-Hernández
- Relativistic Molecular Physics Group, Universidad Andres Bello, República 275, Santiago 8370146, Chile
- Center for Applied Nanosciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago, 8370146, Chile
| | - Ramiro Arratia-Pérez
- Relativistic Molecular Physics Group, Universidad Andres Bello, República 275, Santiago 8370146, Chile
- Center for Applied Nanosciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago, 8370146, Chile
| |
Collapse
|
14
|
Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Synthesis, characterization and antitumor activity of two new dipyridinium ylide based lanthanide(III) complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Roux A, Isaac M, Chabert V, Denisov SA, McClenaghan ND, Sénèque O. Influence of amino acid sequence in a peptidic Cu+-responsive luminescent probe inspired by the copper chaperone CusF. Org Biomol Chem 2018; 16:5626-5634. [DOI: 10.1039/c8ob01044g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Amino acid sequence influences the luminescence behavior of a family of bio-inspired Cu+-responsive probes.
Collapse
Affiliation(s)
- A. Roux
- Univ. Grenoble Alpes
- CNRS
- CEA
- BIG
- LCBM (UMR 5249)
| | - M. Isaac
- Univ. Grenoble Alpes
- CNRS
- CEA
- BIG
- LCBM (UMR 5249)
| | - V. Chabert
- Univ. Grenoble Alpes
- CNRS
- CEA
- BIG
- LCBM (UMR 5249)
| | | | | | - O. Sénèque
- Univ. Grenoble Alpes
- CNRS
- CEA
- BIG
- LCBM (UMR 5249)
| |
Collapse
|
17
|
Silva AS, Lima NBD, Simas AM, Gonçalves SMC. Europium Complexes: Luminescence Boost by a Single Efficient Antenna Ligand. ACS OMEGA 2017; 2:6786-6794. [PMID: 31457266 PMCID: PMC6644999 DOI: 10.1021/acsomega.7b00647] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/18/2017] [Indexed: 05/17/2023]
Abstract
We advance the concept that a single efficient antenna ligand substituted in or added to an otherwise weakly luminescent europium complex is enough to significantly boost its luminescence. Our results, on the basis of photophysical measurements on 5 novel europium complexes and 15 known ones, point in the direction that ligand dissimilarity and ligand diversity are all concepts that clearly play a fundamental role in the luminescence of europium complexes. We show that it is important that a symmetry breaker ligand exists in the complex to enhance ligand dissimilarity and ligand diversity, all mainly affecting the nonradiative decay rate by reducing it. Because the presence of at least one antenna ligand is also obviously necessary, the optimal and the most cost-effective situation can be achieved by adding a single coordination symmetry breaker that is also an efficient antenna, such as 1-(2-thenoyl)-3,3,3-trifluoroacetone or 4,4,4-trifluoro-1-phenyl-1,3-butanedione. In such cases the quantum efficiency, η, is decidedly boosted, as can be verified by going from complex [EuCl2(TPPO)4]Cl·3H2O with η = 0% to the novel complex [EuCl2(BTFA)(TPPO)3], where TPPO stands for triphenylphosphine oxide, with η = 62%.
Collapse
|
18
|
Rajczak E, Pecoraro VL, Juskowiak B. Sm(iii)[12-MCGa(III)shi-4] as a luminescent probe for G-quadruplex structures. Metallomics 2017; 9:1735-1744. [DOI: 10.1039/c7mt00232g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The luminescent anionic metallacrown Sm12-MC-4 exhibits similarity in shape and size to the guanine tetrad and is able to form complexes with G-quadruplex assembly.
Collapse
Affiliation(s)
- Ewa Rajczak
- Faculty of Chemistry
- Adam Mickiewicz University in Poznan
- 61-614 Poznan
- Poland
| | | | - Bernard Juskowiak
- Faculty of Chemistry
- Adam Mickiewicz University in Poznan
- 61-614 Poznan
- Poland
| |
Collapse
|