1
|
Suh JM, Kim M, Yoo J, Han J, Paulina C, Lim MH. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Rivillas‐Acevedo L, Grande‐Aztatzi R, Juaristi E, Vela A, Quintanar L. Reversible Stereoisomer‐Specific Cotton Effect of the Ligand Field Transitions at a Copper(II) Binding Site of the Prion Protein. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lina Rivillas‐Acevedo
- Centro de Investigación en Dinámica Celular Universidad Autónoma del Estado de Morelos Avenida Universidad #1001 62209 Cuernavaca, México
| | - Rafael Grande‐Aztatzi
- Escuela de Ingeniería y Ciencias Tecnológico de Monterrey Av. Eugenio Garza Sada 2501 64849 Monterrey Nuevo León, México
| | - Eusebio Juaristi
- Departamento de Química Centro de Investigación y de Estudios Avanzados (Cinvestav) Av. IPN #2508, Gustavo A. Madero 07360 Ciudad de México México
- El Colegio Nacional Donceles # 104, Centro Histórico 06020 Ciudad de México Mexico
| | - Alberto Vela
- Departamento de Química Centro de Investigación y de Estudios Avanzados (Cinvestav) Av. IPN #2508, Gustavo A. Madero 07360 Ciudad de México México
| | - Liliana Quintanar
- Departamento de Química Centro de Investigación y de Estudios Avanzados (Cinvestav) Av. IPN #2508, Gustavo A. Madero 07360 Ciudad de México México
| |
Collapse
|
4
|
Cukierman DS, Bodnár N, Diniz R, Nagy L, Kállay C, Rey NA. Full Equilibrium Picture in Aqueous Binary and Ternary Systems Involving Copper(II), 1-Methylimidazole-Containing Hydrazonic Ligands, and the 103-112 Human Prion Protein Fragment. Inorg Chem 2022; 61:723-737. [PMID: 34918515 DOI: 10.1021/acs.inorgchem.1c03598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we describe two novel 1-methylimidazole N-acylhydyrazonic ligands and their interaction with copper(II) in solution. Binary systems constituted by each of these hydrazones and the metal ion were studied by potentiometric titrations. The magnitude of their affinities for zinc(II) was also determined for the sake of comparison. Additionally, a full evaluation of the copper(II) chelation profile of the new ligands in ternary systems containing a human prion protein fragment was performed. Mixed ligand complexes comprising the HuPrP103-112 fragment, copper(II) ions, and an N-acylhydrazone were characterized by potentiometry, ultraviolet-visible spectroscopy, and circular dichroism. Some of these species were also identified by electrospray ionization mass spectrometry and unequivocally assigned through their isotopic distribution pattern. To the best of our knowledge, this is the first report concerning the stability of ternary complexes involving a hydrazonic metal-protein interaction modulator, copper, and a peptide. The ability of N-acylhydrazones to prevent peptide oxidation was also examined. Both ligands can partially prevent the formation of the doubly oxidized product, a process mediated by copper(II) ions. Oxidative stress is considered an important hallmark of neurodegenerative diseases such as prion-related spongiform encephalopathies. In this context, active intervention with respect to the deleterious copper-catalyzed methionine oxidation could represent an interesting therapeutic approach.
Collapse
Affiliation(s)
- Daphne S Cukierman
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - Nikolett Bodnár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen 4032, Hungary
| | - Renata Diniz
- Department of Chemistry, ICEx, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Lajos Nagy
- Department of Applied Chemistry, University of Debrecen, Debrecen 4032, Hungary
| | - Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen 4032, Hungary
| | - Nicolás A Rey
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| |
Collapse
|
5
|
Sánchez-López C, Quintanar L. β-cleavage of the human prion protein impacts Cu(II) coordination at its non-octarepeat region. J Inorg Biochem 2021; 228:111686. [PMID: 34929540 DOI: 10.1016/j.jinorgbio.2021.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/26/2022]
Abstract
The cellular prion protein (PrPC) is a membrane-anchored copper binding protein that undergoes proteolytic processing. β-cleavage of PrPC is associated with a pathogenic condition and it yields two fragments: N2 with residues 23-89, and C2 including residues 90-231. The membrane-bound C2 fragment retains the Cu binding sites at His96 and His111, but it also has a free N-terminal NH2 group. In this study, the impact of β-cleavage of PrPC in its Cu(II) binding properties was evaluated, using the peptide of the human prion protein hPrP(90-115) as a model for the C2 fragment. The Cu(II) coordination properties of hPrP(90-115) were studied using circular dichroism (CD) and electron paramagnetic resonance (EPR); while the H96A and H111A substitutions and its acetylated variants were also studied. Cu binding to hPrP(90-115) is dependent on metal ion concentration: At low copper concentrations the participation of His96 and free NH2-terminus is evident, while at high copper concentrations the His111 site is populated without participation of the N-terminal NH2 group. The presence of a free NH2-terminal group in the C2 fragment significantly impacts the Cu(II) coordination properties of the His96 site, where the NH2 group also anchors the metal ion. This study provides further insights into the impact of proteolytic processing of PrPC in the Cu binding properties of this important neuronal protein.
Collapse
Affiliation(s)
- Carolina Sánchez-López
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Liliana Quintanar
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
| |
Collapse
|
6
|
Posadas Y, Parra-Ojeda L, Perez-Cruz C, Quintanar L. Amyloid β Perturbs Cu(II) Binding to the Prion Protein in a Site-Specific Manner: Insights into Its Potential Neurotoxic Mechanisms. Inorg Chem 2021; 60:8958-8972. [PMID: 34043332 DOI: 10.1021/acs.inorgchem.1c00846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amyloid β (Aβ) is a Cu-binding peptide that plays a key role in the pathology of Alzheimer's disease. A recent report demonstrated that Aβ disrupts the Cu-dependent interaction between cellular prion protein (PrPC) and N-methyl-d-aspartate receptor (NMDAR), inducing overactivation of NMDAR and neurotoxicity. In this context, it has been proposed that Aβ competes for Cu with PrPC; however, there is no spectroscopic evidence to support this hypothesis. Prion protein (PrP) can bind up to six Cu(II) ions: from one to four at the octarepeat (OR) region, producing low- and high-occupancy modes, and two at the His96 and His111 sites. Additionally, PrPC is cleaved by α-secretases at Lys110/His111, yielding a new Cu(II)-binding site at the α-cleaved His111. In this study, the competition for Cu(II) between Aβ(1-16) and peptide models for each Cu-binding site of PrP was evaluated using circular dichroism and electron paramagnetic resonance. Our results show that the impact of Aβ(1-16) on Cu(II) coordination to PrP is highly site-specific: Aβ(1-16) cannot effectively compete with the low-occupancy mode at the OR region, whereas it partially removes the metal ion from the high-occupancy modes and forms a ternary OR-Cu(II)-Aβ(1-16) complex. In contrast, Aβ(1-16) removes all Cu(II) ions from the His96 and His111 sites without formation of ternary species. Finally, at the α-cleaved His111 site, Aβ(1-16) yields at least two different ternary complexes depending on the ratio of PrP/Cu(II)/Aβ. Altogether, our spectroscopic results indicate that only the low-occupancy mode at the OR region resists the effect of Aβ, while Cu(II) coordination to the high-occupancy modes and all other tested sites of PrP is perturbed, by either removal of the metal ion or formation of ternary complexes. These results provide important insights into the intricate effect of Aβ on Cu(II) binding to PrP and the potential neurotoxic mechanisms through which Aβ might affect Cu-dependent functions of PrPC, such as NMDAR modulation.
Collapse
|
7
|
Lukács M, Szunyog G, Grenács Á, Lihi N, Kállay C, Di Natale G, Campagna T, Lanza V, Tabbi G, Pappalardo G, Sóvágó I, Várnagy K. Copper(II) Coordination Abilities of the Tau Protein's N-Terminus Peptide Fragments: A Combined Potentiometric, Spectroscopic and Mass Spectrometric Study. Chempluschem 2020; 84:1697-1708. [PMID: 31943878 DOI: 10.1002/cplu.201900504] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/19/2019] [Indexed: 12/20/2022]
Abstract
Copper(II) complexes of the N-terminal peptide fragments of tau protein have been studied by potentiometric and various spectroscopic techniques (UV-vis, CD, ESR and ESI-MS). The octapeptide Tau(9-16) (Ac-EVMEDHAG-NH2 ) contains the H14 residue of the native protein, while Tau(26-33) (Ac-QGGYTMHQ-NH2 ) and its mutants Tau(Q26K-Q33K) (Ac-KGGYTMHK-NH2 ) and Tau(Q26K-Y29A-Q33K) (Ac-KGGATMHK-NH2 ) include the H32 residue. To compare the binding ability of H14 and H32 in a single molecule the decapeptide Ac-EDHAGTMHQD-NH2 (Tau(12-16)(30-34)) has also been synthesized and studied. The histidyl residue is the primary metal binding site for metal ions in all the peptide models studied. In the case of Tau(9-16) the side chain carboxylate functions enhance the stability of the M-Nim coordinated complexes compared to Tau(26-33) (logK(Cu-Nim )=5.04 and 3.78, respectively). Deprotonation and metal ion coordination of amide groups occur around the physiological pH range for copper(II). The formation of the imidazole- and amide-coordinated species changes the metal ion preference and the complexes formed with the peptides containing the H32 residue predominate over those of H14 at physiological pH values (90 %-10 %) and in alkaline samples (96 %-4 %).
Collapse
Affiliation(s)
- Márton Lukács
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Györgyi Szunyog
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Ágnes Grenács
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Norbert Lihi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary.,MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Giuseppe Di Natale
- CNR-Istituto di Cristallografia (IC), s.s. Catania, Via Paolo Gaifami 18., 95126, Catania, Italy
| | - Tiziana Campagna
- CNR-Istituto di Cristallografia (IC), s.s. Catania, Via Paolo Gaifami 18., 95126, Catania, Italy
| | - Valeria Lanza
- CNR-Istituto di Cristallografia (IC), s.s. Catania, Via Paolo Gaifami 18., 95126, Catania, Italy
| | - Giovanni Tabbi
- CNR-Istituto di Cristallografia (IC), s.s. Catania, Via Paolo Gaifami 18., 95126, Catania, Italy
| | - Giuseppe Pappalardo
- CNR-Istituto di Cristallografia (IC), s.s. Catania, Via Paolo Gaifami 18., 95126, Catania, Italy
| | - Imre Sóvágó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Katalin Várnagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| |
Collapse
|
8
|
Impact of pyridine-2-carboxaldehyde-derived aroylhydrazones on the copper-catalyzed oxidation of the M112A PrP103–112 mutant fragment. J Biol Inorg Chem 2019; 24:1231-1244. [DOI: 10.1007/s00775-019-01700-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/23/2019] [Indexed: 12/30/2022]
|
9
|
Structural Consequences of Copper Binding to the Prion Protein. Cells 2019; 8:cells8080770. [PMID: 31349611 PMCID: PMC6721516 DOI: 10.3390/cells8080770] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Prion, or PrPSc, is the pathological isoform of the cellular prion protein (PrPC) and it is the etiological agent of transmissible spongiform encephalopathies (TSE) affecting humans and animal species. The most relevant function of PrPC is its ability to bind copper ions through its flexible N-terminal moiety. This review includes an overview of the structure and function of PrPC with a focus on its ability to bind copper ions. The state-of-the-art of the role of copper in both PrPC physiology and in prion pathogenesis is also discussed. Finally, we describe the structural consequences of copper binding to the PrPC structure.
Collapse
|
10
|
Wezynfeld NE, Vileno B, Faller P. Cu(II) Binding to the N-Terminal Model Peptide of the Human Ctr2 Transporter at Lysosomal and Extracellular pH. Inorg Chem 2019; 58:7488-7498. [PMID: 31083932 DOI: 10.1021/acs.inorgchem.9b00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It was shown that His3 of human copper transporter 1 (hCtr1) prompts the ATCUN-like Cu(II) coordination for model peptides of the hCtr1 N-terminus. Its high Cu(II) affinity is a potential driving force for the transfer of Cu(II) from extracellular Cu(II) carriers to hCtr1. Having a sequence similar to that of hCtr1, hCtr2 has been proposed as another human copper transporter. However, the N-terminal domain of hCtr2 is much shorter than that of hCtr1, with different copper binding motifs at its N-terminus. Employing a model peptide of the hCtr2 N-terminus, MAMHF-am, we demonstrated that His4 provides a unique pattern of Cu(II) complexes, involving Met sulfurs in their Cu(II) coordination sphere. The affinity of Cu(II) for MAMHF-am is a few orders of magnitude lower than that reported for the hCtr1 model peptides at the extracellular pH of 7.4, suggesting a maximal complementary role of Cu(II) binding to hCtr2 in the import of copper from the extracellular space to the cytoplasm. On the other hand, the ability of the hCtr2 model peptide to capture Cu(II) from amino acids and short peptides (potential degradation products of proteins) at pH 5.0 and the known predominant lysosomal localization of hCtr2 support an important potential role of the Cu(II)-hCtr2 interaction in the recovery of copper from lysosomes.
Collapse
Affiliation(s)
- Nina E Wezynfeld
- Institut de Chimie, UMR 7177 , CNRS-Université de Strasbourg , 4 rue Blaise Pascal , 67000 Strasbourg , France.,Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland
| | - Bertrand Vileno
- Institut de Chimie, UMR 7177 , CNRS-Université de Strasbourg , 4 rue Blaise Pascal , 67000 Strasbourg , France.,French EPR Federation of Research (REseau NAtional de Rpe interDisciplinaire (RENARD) Fédération IR-RPE CNRS #3443) , 67081 Strasbourg , France
| | - Peter Faller
- Institut de Chimie, UMR 7177 , CNRS-Université de Strasbourg , 4 rue Blaise Pascal , 67000 Strasbourg , France
| |
Collapse
|
11
|
Structural Determinants of the Prion Protein N-Terminus and Its Adducts with Copper Ions. Int J Mol Sci 2018; 20:ijms20010018. [PMID: 30577569 PMCID: PMC6337743 DOI: 10.3390/ijms20010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
The N-terminus of the prion protein is a large intrinsically disordered region encompassing approximately 125 amino acids. In this paper, we review its structural and functional properties, with a particular emphasis on its binding to copper ions. The latter is exploited by the region’s conformational flexibility to yield a variety of biological functions. Disease-linked mutations and proteolytic processing of the protein can impact its copper-binding properties, with important structural and functional implications, both in health and disease progression.
Collapse
|
12
|
Ottenwaelder X, Herres-Pawlis S. Bio-inorganic chemistry of copper. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|