1
|
Ramírez-Barroso S, Romeo-Gella F, Fernández-García JM, Feng S, Martínez-Fernández L, García-Fresnadillo D, Corral I, Martín N, Wannemacher R. Curved Nanographenes: Multiple Emission, Thermally Activated Delayed Fluorescence, and Non-Radiative Decay. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212064. [PMID: 37094332 DOI: 10.1002/adma.202212064] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The intriguing and rich photophysical properties of three curved nanographenes (CNG 6, 7, and 8) are investigated by time-resolved and temperature-dependent photoluminescence (PL) spectroscopy. CNG 7 and 8 exhibit dual fluorescence, as well as dual phosphorescence at low temperature in the main PL bands. In addition, hot bands are detected in fluorescence as well as phosphorescence, and, in the narrow temperature range of 100-140 K, thermally activated delayed fluorescence (TADF) with lifetimes on the millisecond time-scale is observed. These findings are rationalized by quantum-chemical simulations, which predict a single minimum of the S1 potential of CNG 6, but two S1 minima for CNG 7 and CNG 8, with considerable geometric reorganization between them, in agreement with the experimental findings. Additionally, a higher-lying S2 minimum close to S1 is optimized for the three CNG, from where emission is also possible due to thermal activation and, hence, non-Kasha behavior. The presence of higher-lying dark triplet states close to the S1 minima provides mechanistic evidence for the TADF phenomena observed. Non-radiative decay of the T1 state appears to be thermally activated with activation energies of roughly 100 meV and leads to disappearance of phosphorescence and TADF at T > 140 K.
Collapse
Affiliation(s)
- Sergio Ramírez-Barroso
- Department of Organic Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, Madrid, 28040, Spain
- Imdea Nanoscience, C/ Faraday 9, Cantoblanco, Madrid, 28049, Spain
| | | | - Jesús M Fernández-García
- Department of Organic Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, Madrid, 28040, Spain
| | - Siyang Feng
- Imdea Nanoscience, C/ Faraday 9, Cantoblanco, Madrid, 28049, Spain
| | - Lara Martínez-Fernández
- Department of Chemistry, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - David García-Fresnadillo
- Department of Organic Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, Madrid, 28040, Spain
| | - Inés Corral
- Department of Chemistry, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Nazario Martín
- Department of Organic Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, Madrid, 28040, Spain
- Imdea Nanoscience, C/ Faraday 9, Cantoblanco, Madrid, 28049, Spain
| | | |
Collapse
|
2
|
Cheng SL, Fan XY, Zhu JF, Wang BQ, Shi Y, Feng C, Xiang SK. Palladium-catalyzed annulative π-extension of o-halobiphenyls with o-chloropyridinecarboxylic acids to access azatriphenylenes. Org Biomol Chem 2022; 20:8657-8661. [DOI: 10.1039/d2ob01562e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A palladium-catalyzed bay-region annulative π-extension reaction of o-halobiphenyls with o-chloropyridinecarboxylic acids was developed. A variety of azatriphenylene derivatives could be synthesized by this approach.
Collapse
Affiliation(s)
- Shu-Lin Cheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Xin-Yue Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Ji-Fa Zhu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yingbo Shi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Chun Feng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Shi-Kai Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| |
Collapse
|
3
|
Jiang G, Ye H, Shi L, Dai H, Wu XX. Palladium-Catalyzed Sequential Vinyl C-H Activation/Dual Decarboxylation: Regioselective Synthesis of Phenanthrenes and Cyclohepta[1,2,3-de]naphthalenes. Org Lett 2021; 23:9398-9402. [PMID: 34822247 DOI: 10.1021/acs.orglett.1c03517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The application of a C(vinyl), C(aryl)-palladacycle from vinyl-containing substrates is challenging due to the interference of a reactive double bond in palladium catalysis. This Letter describes a [4 + 2] or [4 + 3] cyclization based on a C(vinyl), C(aryl)-palladacycle by employing α-oxocarboxylic acids as the insertion units under a palladium/air system. The reaction proceeded through the key vinyl C-H activation and dual decarboxylation sequence, forming phenanthrenes and cyclohepta[1,2,3-de]naphthalenes regioselectively in good yields. The synthetic versatility of this protocol is highlighted by the gram-scale synthesis and synthesizing functional material molecule.
Collapse
Affiliation(s)
- Guomin Jiang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Hao Ye
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Lei Shi
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Hong Dai
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Xin-Xing Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
4
|
Fessner ND, Grimm C, Kroutil W, Glieder A. Late-Stage Functionalisation of Polycyclic ( N-Hetero-) Aromatic Hydrocarbons by Detoxifying CYP5035S7 Monooxygenase of the White-Rot Fungus Polyporus arcularius. Biomolecules 2021; 11:1708. [PMID: 34827706 PMCID: PMC8615681 DOI: 10.3390/biom11111708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/04/2022] Open
Abstract
Functionalisation of polycyclic aromatic hydrocarbons (PAHs) and their N-heteroarene analogues (NPAHs) is a tedious synthetic endeavour that requires diverse bottom-up approaches. Cytochrome P450 enzymes of white-rot fungi were shown to participate in the fungal detoxification of xenobiotics and environmental hazards via hydroxylation of PAH compounds. In this paper, the recently discovered activity of the monooxygenase CYP5035S7 towards (N)PAHs was investigated in detail, and products formed from the substrates azulene, acenaphthene, fluorene, anthracene, and phenanthrene by whole-cell biocatalysis were isolated and characterised. The observed regioselectivity of CYP5035S7 could be explained by a combination of the substrate's electron density and steric factors influencing the substrate orientation giving insight into the active-site geometry of the enzyme.
Collapse
Affiliation(s)
- Nico D. Fessner
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria;
| | - Christopher Grimm
- Institute of Chemistry, University of Graz, NAWI Graz, 8010 Graz, Austria; (C.G.); (W.K.)
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, 8010 Graz, Austria; (C.G.); (W.K.)
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria;
| |
Collapse
|
5
|
Vibrationally resolved absorption and emission spectral shapes of one 5-carbohelicene derivative: A theoretical study. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Biagiotti G, Perini I, Richichi B, Cicchi S. Novel Synthetic Approach to Heteroatom Doped Polycyclic Aromatic Hydrocarbons: Optimizing the Bottom-Up Approach to Atomically Precise Doped Nanographenes. Molecules 2021; 26:6306. [PMID: 34684887 PMCID: PMC8537472 DOI: 10.3390/molecules26206306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
The success of the rational bottom-up approach to nanostructured carbon materials and the discovery of the importance of their doping with heteroatoms puts under the spotlight all synthetic organic approaches to polycyclic aromatic hydrocarbons. The construction of atomically precise heteroatom doped nanographenes has evidenced the importance of controlling its geometry and the position of the doping heteroatoms, since these parameters influence their chemical-physical properties and their applications. The growing interest towards this research topic is testified by the large number of works published in this area, which have transformed a once "fundamental research" into applied research at the cutting edge of technology. This review analyzes the most recent synthetic approaches to this class of compounds.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Ilaria Perini
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Stefano Cicchi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
- Institute of Chemistry of Organometallic Compounds, ICCOM-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Huang L, Chen LP, Du Y, Fang MY, Wang BQ, Feng C, Xiang SK. Bay-Region Annulative π-Extension of o-Iodobiphenyls with Aliphatic Anhydrides Catalyzed by Pd(OAc) 2. Org Lett 2021; 23:7535-7539. [PMID: 34553944 DOI: 10.1021/acs.orglett.1c02746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bay-region annulative π-extension of o-iodobiphenyls with aliphatic anhydrides was developed. Many o-iodobiphenyls and aliphatic anhydrides can react well under the optimized conditions. A lot of phenanthrol derivatives can be efficiently prepared by this approach. The control experiments support that dibenzopalladacyclopentadienes may be the reaction intermediates.
Collapse
Affiliation(s)
- Lin Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Li-Ping Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yu Du
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Mao-Ying Fang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Chun Feng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Shi-Kai Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| |
Collapse
|
8
|
Ribar P, Valenta L, Šolomek T, Juríček M. Rules of Nucleophilic Additions to Zigzag Nanographene Diones*. Angew Chem Int Ed Engl 2021; 60:13521-13528. [PMID: 33645878 PMCID: PMC8251702 DOI: 10.1002/anie.202016437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/03/2022]
Abstract
Nucleophilic addition of carbon-centered nucleophiles to nanographene ketones represents a valuable late-stage method for the functionalization of zigzag nanographenes, but its use is rare in the chemical literature. Using two model systems, non-Kekulé triangulene-4,8-dione and Kekulé anthanthrone, we identify unexpected regioselectivities and uncover the rules that govern these reactions. Considering the large number of nanographene ketones that have been reported since the pioneering work of Eric Clar, this method enables synthesis and exploration of hitherto unknown functionalized nanographenes.
Collapse
Affiliation(s)
- Peter Ribar
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Leoš Valenta
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Tomáš Šolomek
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- Prievidza Chemical SocietyM. Hodžu 10/16971 01PrievidzaSlovak Republic
- Current address: Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Michal Juríček
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
- Prievidza Chemical SocietyM. Hodžu 10/16971 01PrievidzaSlovak Republic
| |
Collapse
|
9
|
Ribar P, Valenta L, Šolomek T, Juríček M. Rules of Nucleophilic Additions to Zigzag Nanographene Diones**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter Ribar
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Leoš Valenta
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Tomáš Šolomek
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
- Prievidza Chemical Society M. Hodžu 10/16 971 01 Prievidza Slovak Republic
- Current address: Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Michal Juríček
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
- Prievidza Chemical Society M. Hodžu 10/16 971 01 Prievidza Slovak Republic
| |
Collapse
|
10
|
Sarmah M, Sharma A, Gogoi P. Exploration of Kobayashi's aryne precursor: a potent reactive platform for the synthesis of polycyclic aromatic hydrocarbons. Org Biomol Chem 2021; 19:722-737. [PMID: 33432965 DOI: 10.1039/d0ob02063j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arynes due to their transient nature leads to remarkable and versatile applications in the synthetic world. Apparently, researchers have focused on the construction of simple to complex π-conjugated systems using arynes as the reactive platform. In this regard, Kobayashi's aryne precursor has shown a great extent of reactivity and afforded significant advancement in the synthesis of polycyclic aromatic systems with wide practical utility. This review emphasizes the extensive utilization of Kobayashi's aryne intermediates and their derivatives for the synthesis of different classes of polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Manashi Sarmah
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India.
| | - Abhilash Sharma
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
11
|
Zhao Q, Choy PY, Li L, Kwong FY. Recent explorations of palladium-catalyzed regioselective aromatic extension processes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Tsukamoto T, Dong G. Catalytic Dehydrogenative Cyclization of
o
‐Teraryls under pH‐Neutral and Oxidant‐Free Conditions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Guangbin Dong
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| |
Collapse
|
13
|
Tsukamoto T, Dong G. Catalytic Dehydrogenative Cyclization of
o
‐Teraryls under pH‐Neutral and Oxidant‐Free Conditions. Angew Chem Int Ed Engl 2020; 59:15249-15253. [DOI: 10.1002/anie.202004719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/09/2020] [Indexed: 01/07/2023]
Affiliation(s)
| | - Guangbin Dong
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| |
Collapse
|
14
|
Peng Q, Zhang W, Zhao K, Du Y, Feng C, Wang B, Fang D, Chen X, Ni H, Xiang S. Amide‐Directed Bay‐Region Two‐Step Annulative π‐Extension (APEX) of Biphenyls and Terphenyls with Diaryliodonium Salts: Efficient Access to Polycyclic Aromatic Hydrocarbons. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiong Peng
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Wen Zhang
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Ke Zhao
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Yu Du
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Chun Feng
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Bi‐Qin Wang
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Dong‐Mei Fang
- Chengdu Institute of BiologyChinese Academy of Sciences Chengdu 610041 P. R. of China
| | - Xiao‐Zhen Chen
- Chengdu Institute of BiologyChinese Academy of Sciences Chengdu 610041 P. R. of China
| | - Hai‐Liang Ni
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Shi‐Kai Xiang
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| |
Collapse
|
15
|
Liu MM, Sun L, Yu YZ, Wang YX, Zhang XM. A 3D spin canted coordination polymer with in situ direct C H iodination of 1-H-tetrazole. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|