1
|
Szekeres L, Maldivi P, Lebrun C, Gateau C, Mesterházy E, Delangle P, Jancsó A. Tristhiolato Pseudopeptides Bind Arsenic(III) in an AsS 3 Coordination Environment Imitating Metalloid Binding Sites in Proteins. Inorg Chem 2023; 62:6817-6824. [PMID: 37071818 PMCID: PMC10155180 DOI: 10.1021/acs.inorgchem.3c00563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Indexed: 04/20/2023]
Abstract
The AsIII binding of two NTA-based tripodal pseudopeptides, possessing three cysteine (ligand L1) or d-penicillamine residues (ligand L2) as potential coordinating groups for soft semimetals or metal ions, was studied by experimental (UV, CD, NMR, and ESI-MS) and theoretical (DFT) methods. All of the experimental data, obtained with the variation of the AsIII:ligand concentration ratios or pH values in some instances, evidence the exclusive formation of species with an AsS3-type coordination mode. The UV-monitored titration of the ligands with arsenous acid at pH = 7.0 provided an absorbance data set that allowed for the determination of apparent stability constants of the forming species. The obtained stabilities (logK' = 5.26 (AsL1) and logK' = 3.04 (AsL2)) reflect high affinities, especially for the sterically less restricted cysteine derivative. DFT calculated structures correlate well with the spectroscopic results and, in line with the 1H NMR data, indicate a preference for the all-endo conformers resembling the AsIII environment at the semimetal binding sites in various metalloproteins.
Collapse
Affiliation(s)
- Levente
I. Szekeres
- Department
of Inorganic and Analytical Chemistry, University
of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Pascale Maldivi
- CEA,
CNRS, Grenoble INP, IRIG, SyMMES, Universite
Grenoble Alpes, Grenoble 38000, France
| | - Colette Lebrun
- CEA,
CNRS, Grenoble INP, IRIG, SyMMES, Universite
Grenoble Alpes, Grenoble 38000, France
| | - Christelle Gateau
- CEA,
CNRS, Grenoble INP, IRIG, SyMMES, Universite
Grenoble Alpes, Grenoble 38000, France
| | - Edit Mesterházy
- Department
of Inorganic and Analytical Chemistry, University
of Szeged, Dóm tér 7, Szeged H-6720, Hungary
- CEA,
CNRS, Grenoble INP, IRIG, SyMMES, Universite
Grenoble Alpes, Grenoble 38000, France
| | - Pascale Delangle
- CEA,
CNRS, Grenoble INP, IRIG, SyMMES, Universite
Grenoble Alpes, Grenoble 38000, France
| | - Attila Jancsó
- Department
of Inorganic and Analytical Chemistry, University
of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| |
Collapse
|
2
|
Patel EN, Lin L, Sneller MM, Eubanks LM, Tepp WH, Pellett S, Janda KD. Investigation of Salicylanilides as Botulinum Toxin Antagonists. ACS Infect Dis 2022; 8:1637-1645. [PMID: 35877209 PMCID: PMC9592073 DOI: 10.1021/acsinfecdis.2c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Botulinum neurotoxin serotype A (BoNT/A) is recognized by the Centers for Disease Control and Prevention (CDC) as the most potent toxin and as a Tier 1 biowarfare agent. The severity and longevity of botulism stemming from BoNT/A is of significant therapeutic concern, and early administration of antitoxin-antibody therapy is the only approved pharmaceutical treatment for botulism. Small molecule therapeutic strategies have targeted both the heavy chain (HC) and the light chain (LC) catalytic active site and α-/β-exosites. The LC translocation mechanism has also been studied, but an effective, nontoxic inhibitor remains underexplored. In this work, we screened a library of salicylanilides as potential translocation inhibitors. Potential leads following a primary screen were further scrutinized to identify sal30, which has a cellular minimal concentration of a drug that is required for 50% inhibition (IC50) value of 141 nM. The inquiry of salicylanilide sal30's mechanism of action was explored through a self-quenched fluorogenic substrate conjugated to bovine serum albumin (DQ-BSA) fluorescence, confocal microscopy, and vacuolar H+-ATPase (V-ATPase) inhibition assays. The summation of these findings imply that endolysosomal proton translocation through the protonophore mechanism of sal30 causes endosome pH to increase, which in turn prevents LC translocation into cytosol, a process that requires an acidic pH. Thus, the inhibition of BoNT/A activity by salicylanilides likely occurs through disruption of pH-dependent endosomal LC translocation. We further probed BoNT inhibition by sal30 using additivity analysis studies with bafilomycin A1, a known BoNT/A LC translocation inhibitor, which indicated the absence of synergy between the two ionophores.
Collapse
Affiliation(s)
- Ealin N. Patel
- Department of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California, 92037, United States
| | - Lucy Lin
- Department of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California, 92037, United States
| | - Molly M. Sneller
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, Wisconsin, 53706, United States
| | - Lisa M. Eubanks
- Department of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California, 92037, United States
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, Wisconsin, 53706, United States
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, Wisconsin, 53706, United States
| | - Kim D. Janda
- Department of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California, 92037, United States
| |
Collapse
|