1
|
Kalhor S, Sepehrmansourie H, Zarei M, Zolfigol MA, Shi H. Application of Functionalized Zn-Based Metal-Organic Frameworks (Zn-MOFs) with CuO in Heterocycle Synthesis via Azide-Alkyne Cycloaddition. Inorg Chem 2024; 63:4898-4914. [PMID: 38296524 DOI: 10.1021/acs.inorgchem.3c03988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The main goal of this article is to discuss the expansion of click chemistry. A new catalyst composed of CuO nanoparticles embedded in Zn-MOF with the ligand 2,4,6-tris(4-carboxyphenoxy)-1,3,5-triazine (H3L) is presented. The incorporation of CuO nanoparticles into the Zn-MOF structure led to desirable morphology and catalytic properties. The designed catalyst was evaluated for its catalytic role in the multicomponent reaction and copper-catalyzed azide-alkyne cycloaddition (CuAAC) for preparation of triazole rings with 80-91% yield. The catalyst demonstrated an appealing architecture and exhibited robustness, high efficiency, and environmental friendliness. Characterization of the catalyst was performed using various techniques, including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopes (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), elemental mapping, and X-ray diffraction (XRD). The results suggest that this novel catalyst has the potential to be a valuable tool in the development of new synthetic approaches for a wide range of applications.
Collapse
Affiliation(s)
- Sima Kalhor
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37161-46611, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
2
|
Safarkhani M, Moghaddam SS, Taghavimandi F, Bagherzadeh M, Fatahi Y, Park U, Radmanesh F, Huh YS, Rabiee N. Bioengineered Smart Nanocarriers for Breast Cancer Treatment: Adorned Carbon-Based Nanocomposites with Silver and Palladium Complexes for Efficient Drug Delivery. ACS OMEGA 2024; 9:1183-1195. [PMID: 38222665 PMCID: PMC10785617 DOI: 10.1021/acsomega.3c07432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Biocompatible and bioactive carbon-based nanocomposites are ingeniously designed and fabricated with the aim of enhancing drug delivery applicability in breast cancer treatment. Reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) are utilized as nanocarriers for increasing penetrability into cells and the loading capacity. What sets our study apart is the strategic incorporation of the two different complexes of silver (AgL2) and palladium (PdL2) with the carboxamide-based ligand C9H7N3OS (L), which have been synthesized and decorated on nanocarriers alongside doxorubicin (DOX) for stabilizing DOX by π-π interactions and hydrogen bonding. Although DOX is a well-known cancer therapy agent, the efficacy of DOX is hindered owing to drug resistance, poor internalization, and limited site specificity. Aside from stabilizing DOX on nanocarriers, our carbon-based nanocarriers are tailored to act as a precision-guided missile, strategically by adorning with target-sensitive complexes. Based on the literature, carboxamide ligands can connect to overexpressed receptors on cancerous cells and inhibit them from proliferation signaling. Also, the complexes have an antibacterial activity that can control the infection caused by decreasing white blood cells and necrosis of cancerous cells. A high-concentration cytotoxicity assay revealed that decorating PdL2 on a DOX-containing nanocarrier not only increased cytotoxicity to breast cancerous cell lines (MDA-MB-231 and MCF-7) but also revealed higher cell viability on a normal cell line (MCF-10A). The drug release screening results showed that the presence of PdL2 led to 72 h correlate release behavior in acidic and physiological pH profiles, while the AgL2-containing nanocomposite showed an analogue behavior for just 6 h and the release of DOX continued and after about 100 h hit the top.
Collapse
Affiliation(s)
- Moein Safarkhani
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 402-751, Republic of Korea
- Department
of Chemistry, Sharif University of Technology, Tehran 11155-9465, Iran
| | | | - Fahimeh Taghavimandi
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 402-751, Republic of Korea
| | - Mojtaba Bagherzadeh
- Department
of Chemistry, Sharif University of Technology, Tehran 11155-9465, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 1416753955, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 1416753955, Iran
| | - Uichang Park
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 402-751, Republic of Korea
| | - Fatemeh Radmanesh
- Uro-Oncology
Research Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
- Department
of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology,
ACECR, Tehran 16635-14, Iran
| | - Yun Suk Huh
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 402-751, Republic of Korea
| | - Navid Rabiee
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
3
|
Facile synthesis of hexagonal-shaped CuO NPs from Cu(II)-Schiff base complex for enhanced visible-light-driven degradation of dyes and antimicrobial studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Bagherzadeh M, Safarkhani M, Daneshgar H, Radmanesh F, Taghavimandi F, Ghadiri AM, Kiani M, Fatahi Y, Safari-Alighiarloo N, Ahmadi S, Rabiee N. Magnetic carbon–based nanocomposite decorated with palladium complex for co-delivery of DOX/pCRISPR. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Mirdarvatan V, Bahramian B, Khalaji AD, Bakherad M, Charles C, Gómez‐García CJ, Rezaeifard A, Triki S. Part‐per‐million catalysis of azide‐alkyne cycloaddition reaction in water using a new ferromagnetic μ
1,1
‐N
3
bridged dinuclear Cu (II) complex. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vahid Mirdarvatan
- Department of Chemistry Shahrood University of Technology Shahrood Iran
| | - Bahram Bahramian
- Department of Chemistry Shahrood University of Technology Shahrood Iran
| | | | - Mohammad Bakherad
- Department of Chemistry Shahrood University of Technology Shahrood Iran
| | - Catherine Charles
- Univ Brest, CNRS, CEMCA, 6 Avenue Victor Le Gorgeu, C.S. 93837‐29238 Brest France
| | - Carlos J. Gómez‐García
- Departamento de Química Inorgánica. Universidad de Valencia, C/Dr. Moliner 50. 46100 Burjasot Spain
| | - Amin Rezaeifard
- Department of Chemistry Shahrood University of Technology Shahrood Iran
| | - Smail Triki
- Univ Brest, CNRS, CEMCA, 6 Avenue Victor Le Gorgeu, C.S. 93837‐29238 Brest France
| |
Collapse
|
6
|
Khashei Siuki H, Ghamari Kargar P, Bagherzade G. New Acetamidine Cu(II) Schiff base complex supported on magnetic nanoparticles pectin for the synthesis of triazoles using click chemistry. Sci Rep 2022; 12:3771. [PMID: 35260647 PMCID: PMC8904776 DOI: 10.1038/s41598-022-07674-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
In this project, the new catalyst copper defines as Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, FESEM, EDX, VSM, TGA, and ICP analysis. All results showed that copper was successfully supported on the polymer-coated magnetic nanoparticles. One of the most important properties of a catalyst is the ability to be prepared from simple materials such as pectin that's a biopolymer that is widely found in nature. The catalytic activity of Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was examined in a classical, one pot, and the three-component reaction of terminal alkynes, alkyl halides, and sodium azide in water and observed, proceeding smoothly and completed in good yields and high regioselectivity. The critical potential interests of the present method include high yields, recyclability of catalyst, easy workup, using an eco-friendly solvent, and the ability to sustain a variety of functional groups, which give economical as well as ecological rewards. The capability of the nanocomposite was compared with previous works, and the nanocomposite was found more efficient, economical, and reproducible. Also, the catalyst can be easily removed from the reaction solution using an external magnet and reused for five runs without reduction in catalyst activity.
Collapse
Affiliation(s)
- Hossein Khashei Siuki
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran
| | - Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran.
| |
Collapse
|
7
|
Wei H, Bu S, Zhang W, Ma L, Liu X, Wang Z, Li Z, Hao Z, He X, Wan J. An electrochemical biosensor for the detection of pathogenic bacteria based on dual signal amplification of Cu 3(PO 4) 2-mediated click chemistry and DNAzymes. Analyst 2021; 146:4841-4847. [PMID: 34223580 DOI: 10.1039/d1an00982f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel electrochemical biosensor for detecting pathogenic bacteria was designed based on specific magnetic separation and highly sensitive click chemistry. Instead of enzyme-antibody conjugates, organic-inorganic hybrid nanoflowers [concanavalin A (Con A)-Cu3(PO4)2] were used as the signal probe of the sandwich structure. The inorganic component, the copper ions of hybrid nanoflowers, was first used to amplify signal transduction for enzyme-free detection. Sodium ascorbate could dissolve Cu3(PO4)2 of the signal probe to produce Cu2+, which was subsequently converted to Cu+, triggering the Cu+-catalyzed alkyne-azide cycloaddition (CuAAC) reaction between azide-functionalized ssDNA (a fragment of the DNAzyme-containing sequence) and alkyne-functionalized ssDNA immobilized onto the electrode surface. As a result, the DNAzyme was immobilized onto the gold electrode, which produced a positive and stable electrical signal. An exceptional linear relationship was observed between the electrical signal and the concentration of Salmonella typhimurium (101-107 CFU mL-1) with a detection limit of 10 CFU mL-1. The developed electrochemical biosensor based on dual signal amplification of Cu3(PO4)2-mediated click chemistry and DNAzymes exhibited good results in detecting S. typhimurium in milk samples.
Collapse
Affiliation(s)
- Hongguo Wei
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China. and Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Shengjun Bu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Wenguang Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Li Ma
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Xiu Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Ze Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Zhongyi Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Zhuo Hao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Xiuxia He
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China.
| | - Jiayu Wan
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| |
Collapse
|
8
|
Reina A, Dang-Bao T, Guerrero-Ríos I, Gómez M. Palladium and Copper: Advantageous Nanocatalysts for Multi-Step Transformations. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1891. [PMID: 34443727 PMCID: PMC8401531 DOI: 10.3390/nano11081891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Metal nanoparticles have been deeply studied in the last few decades due to their attractive physical and chemical properties, finding a wide range of applications in several fields. Among them, well-defined nano-structures can combine the main advantages of heterogeneous and homogeneous catalysts. Especially, catalyzed multi-step processes for the production of added-value chemicals represent straightforward synthetic methodologies, including tandem and sequential reactions that avoid the purification of intermediate compounds. In particular, palladium- and copper-based nanocatalysts are often applied, becoming a current strategy in the sustainable synthesis of fine chemicals. The rational tailoring of nanosized materials involving both those immobilized on solid supports and liquid phases and their applications in organic synthesis are herein reviewed.
Collapse
Affiliation(s)
- Antonio Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Trung Dang-Bao
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam
- Vietnam National University—Ho Chi Minh City (VNU—HCM), Ho Chi Minh City 700000, Vietnam
| | - Itzel Guerrero-Ríos
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Montserrat Gómez
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Toulouse 3—Paul Sabatier, UMR CNRS 5069, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| |
Collapse
|
9
|
Zohrevandi M, Mozafari R, Ghadermazi M. A nickel nanoparticle engineered CoFe 2O 4/SiO 2-NH 2@carboxamide composite as a novel scaffold for the oxidation of sulfides and oxidative coupling of thiols. RSC Adv 2021; 11:14717-14729. [PMID: 35424007 PMCID: PMC8697801 DOI: 10.1039/d1ra01592c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/04/2021] [Indexed: 11/21/2022] Open
Abstract
The purpose of this work was to prepare a new Ni-carboxamide complex supported on CoFe2O4 nanoparticles (CoFe2O4/SiO2-NH2@carboxamide-Ni). The carboxamide host material unit generated cavities that stabilized the nickel nanoparticles effectively and prevented the aggregation and separation of these particles on the surface. This compound was appropriately characterized using FT-IR spectroscopy, FE-SEM, ICP-OES, EDX, XRD, TGA analysis, VSM, and X-ray atomic mapping. The catalytic oxidation of sulfides and oxidative coupling of thiols in the presence of the designed catalyst was explored as a highly selective catalyst using hydrogen peroxide (H2O2) as a green oxidant. The easy separation, simple workup, excellent stability of the nanocatalyst, short reaction times, non-explosive materials as well as appropriate yields of the products are some outstanding advantages of this protocol.
Collapse
Affiliation(s)
- Mina Zohrevandi
- Department of Chemistry, University of Kurdistan P. O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| | - Roya Mozafari
- Department of Chemistry, University of Kurdistan P. O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| | - Mohammad Ghadermazi
- Department of Chemistry, University of Kurdistan P. O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| |
Collapse
|
10
|
Dubashynskaya NV, Bokatyi AN, Skorik YA. Dexamethasone Conjugates: Synthetic Approaches and Medical Prospects. Biomedicines 2021; 9:341. [PMID: 33801776 PMCID: PMC8067246 DOI: 10.3390/biomedicines9040341] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Dexamethasone (DEX) is the most commonly prescribed glucocorticoid (GC) and has a wide spectrum of pharmacological activity. However, steroid drugs like DEX can have severe side effects on non-target organs. One strategy to reduce these side effects is to develop targeted systems with the controlled release by conjugation to polymeric carriers. This review describes the methods available for the synthesis of DEX conjugates (carbodiimide chemistry, solid-phase synthesis, reversible addition fragmentation-chain transfer [RAFT] polymerization, click reactions, and 2-iminothiolane chemistry) and perspectives for their medical application as GC drug or gene delivery systems for anti-tumor therapy. Additionally, the review focuses on the development of DEX conjugates with different physical-chemical properties as successful delivery systems in the target organs such as eye, joint, kidney, and others. Finally, polymer conjugates with improved transfection activity in which DEX is used as a vector for gene delivery in the cell nucleus have been described.
Collapse
Affiliation(s)
| | | | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.V.D.); (A.N.B.)
| |
Collapse
|
11
|
Ghadiri AM, Rabiee N, Bagherzadeh M, Kiani M, Fatahi Y, Di Bartolomeo A, Dinarvand R, Webster TJ. Green synthesis of CuO- and Cu 2O-NPs in assistance with high-gravity: The flowering of nanobiotechnology. NANOTECHNOLOGY 2020; 31:425101. [PMID: 32604076 DOI: 10.1088/1361-6528/aba142] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study, for the first time, reports the synthesis of CuO- and Cu2O nanoparticles (NPs) using the Salvia hispanica extract by a high-gravity technique. The original green synthesis procedure led to the formation of nanoparticles with promising catalytic and biological properties. The synthesized nanoparticles were fully characterized and their catalytic activity was evaluated through a typical Azide-Alkyne Cycloaddition (AAC) reaction. The potential antibacterial activity against gram positive (S. aureus) and gram negative (E. coli) bacteria were investigated. It was shown that the antibacterial properties were independent of the NP morphology as well as of the texture of the synthesis media. As a result, the presently synthesized nanoparticles showed very good photocatalytic and catalytic activities in comparison with the literature. From a biological perspective, they showed lower cytotoxicity in comparison with the literature, and also showed higher antioxidant and antibacterial activities. Thus, these present green CuO and Cu2O nanoparticles deserve further attention to improve numerous medical applications.
Collapse
|