1
|
Malik P, Yadav M, Bhushan R. Design, Synthesis and Application of 1,4-disubstituted 1,2,3-triazole Based Chemosensors: A Promising Avenue. CHEM REC 2025; 25:e202400195. [PMID: 39715732 DOI: 10.1002/tcr.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/07/2024] [Indexed: 12/25/2024]
Abstract
The 1,2,3-triazole-based chemosensors, synthesized through Cu(I)-catalyzed azide-alkyne cycloaddition via 'click chemistry', offer a straightforward yet highly effective method for detecting metal cations and anions with remarkable accuracy, selectivity and sensitivity, making them invaluable across various fields such as chemistry, pharmacology, environmental science and biology. The selective recognition of these ions is crucial due to their significant roles in biological and physiological processes, where even slight concentration variations can have major consequences. The article reviews literature from 2017 to 2024, highlighting advancements in the synthesis of 1,2,3-triazole-based ligands and their application (along with sensing mechanism) for detection of various ions causing health and environmental hazards. The detection aspects have been discussed sequentially for the transition-, inner transition-, and the metals from the s or p block of the periodic table.
Collapse
Affiliation(s)
- Poonam Malik
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Mona Yadav
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Ravi Bhushan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
2
|
Wu HM, Cheng HG, Zhu ZW, Cui L. Rapid Detection of Aluminium and Iron Impurities in Lithium Carbonate Using Water-Soluble Fluorescent Probes. Molecules 2024; 30:135. [PMID: 39795192 PMCID: PMC11721781 DOI: 10.3390/molecules30010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
The real-time measurement of the content of impurities such as iron and aluminium ions is one of the keys to quality evaluation in the production process of high-purity lithium carbonate; however, impurity detection has been a time-consuming process for many years, which limits the optimisation of the production of high-purity lithium carbonate. In this context, this work explores the possibility of using water-soluble fluorescent probes for the rapid detection of impurity ions. Salicylaldehyde was modified with the hydrophilic group dl-alanine to synthesise a water-soluble Al3+ fluorescent probe (Probe A). Moreover, a water-soluble Fe3+ fluorescent probe (Probe B) was synthesised from coumarin-3-carboxylic acid and 3-hydroxyaminomethane. Probe A and Probe B exhibited good stability in the pH range of 4-9 in aqueous solutions, high sensitivity, as well as high selectivity for Al3+ and Fe3+; the detection limits for Al3+ and Fe3+ were 1.180 and 1.683 μmol/L, whereas the response times for Al3+ and Fe3+ were as low as 10 and 30 s, respectively. Electrostatic potential (ESP) analysis and density functional theory calculations identified the binding sites and fluorescence recognition mechanism; theoretical calculations showed that the enhanced fluorescence emission of Probe A when detecting Al3+ was due to the excited intramolecular proton transfer (ESIPT) effect, whereas the fluorescence quenching of Probe B when detecting Fe3+ was due to the electrons turning off fluorescence when binding through the photoelectron transfer (PET) mechanism.
Collapse
Affiliation(s)
- Hong-Mei Wu
- Salt Lake Chemical Engineering Research Complex, Qinghai University, Xining 810016, China;
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030032, China; (Z.-W.Z.); (L.C.)
| | - Huai-Gang Cheng
- Salt Lake Chemical Engineering Research Complex, Qinghai University, Xining 810016, China;
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030032, China; (Z.-W.Z.); (L.C.)
| | - Zi-Wen Zhu
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030032, China; (Z.-W.Z.); (L.C.)
| | - Li Cui
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030032, China; (Z.-W.Z.); (L.C.)
| |
Collapse
|
3
|
Yu C, Huang J, Yang M, Zhang J. Construction of Chitosan-Modified Naphthalimide Fluorescence Probe for Selective Detection of Cu 2. SENSORS (BASEL, SWITZERLAND) 2024; 24:3425. [PMID: 38894218 PMCID: PMC11174907 DOI: 10.3390/s24113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
A chitosan-based Cu2+ fluorescent probe was designed and synthesized independently using the C-2-amino group of chitosan with 1, 8-naphthalimide derivatives. A series of experiments were conducted to characterize the optical properties of the grafted probe. The fluorescence quenching effect was investigated based on the interactions between the probe and common metals. It was found that the proposed probe displayed selective interaction with Cu2+ over other metal ions and anions, reaching equilibrium within 5 min.
Collapse
Affiliation(s)
| | | | | | - Jun Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (C.Y.); (J.H.); (M.Y.)
| |
Collapse
|
4
|
Maddeshiya T, Jaiswal MK, Tamrakar A, Mishra G, Awasthi C, Pandey MD. Pyrene Appendant Triazole-based Chemosensors for Sensing Applications. Curr Org Synth 2024; 21:421-435. [PMID: 37345247 DOI: 10.2174/1570179420666230621124119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 06/23/2023]
Abstract
Over the last two decades, the design and development of fluorescent chemosensors for the targeted detection of Heavy Transition-metal (HTM) ions, anions, and biological analytes, have drawn much interest. Since the introduction of click chemistry in 2001, triazole moieties have become an increasingly prominent theme in chemosensors. Triazoles generated via click reactions are crucial for sensing various ions and biological analytes. Recently, the number of studies in the field of pyrene appendant triazole moieties has risen dramatically, with more sophisticated and reliable triazole-containing chemosensors for various analytes of interest described. This tutorial review provides a general overview of pyrene appendant-triazole-based chemosensors that can detect a variety of metal cations, anions, and neutral analytes by using modular click-derived triazoles.
Collapse
Affiliation(s)
- Tarkeshwar Maddeshiya
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Arpna Tamrakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Gargi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Chhama Awasthi
- Department of Science and Technology, Technology Bhavan, New Mehrauli Road, New Delhi, 110016, India
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
5
|
Boje D, Sahoo SK, Atta AK. Sugar-based carboxamidoquinoline conjugate for sensing Cu 2+ and Au 3+ ions in water through different binding modes and real application. Anal Chim Acta 2023; 1277:341539. [PMID: 37604604 DOI: 10.1016/j.aca.2023.341539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 06/16/2023] [Indexed: 08/23/2023]
Abstract
A simple water-soluble carboxamidoquinoline derivative of glucofuranose 1 exhibited reversible selectivity toward Cu2+ and Au3+ ions in different binding modes. Sensor 1 is an example of a dual sensor for identifying copper and gold ions in the water medium. Sensor 1 exhibited excellent selection ability and sensitivity for Cu2+ and Au3+ ions rather than several metal ions and anions with a wide pH range (5-10). The association constants for both ions were determined to be 3.58 × 104 M-1 and 1.84 × 104 M-1, respectively. The 1:1 binding chemistry of the complexes was verified from the Job method and again validated through mass spectra. Sensor 1 can detect Cu2+ and Au3+ ions at very low concentrations, such as 0.014 μM for Cu2+ and 0.058 μM for Au3+. The different sensing strategies of sensor 1 towards Cu2+ and Au3+ were manifested from the photophysical properties of sensor 2 with metal ions, FT-IR spectra, and theoretical (DFT) observations. The useful relevance of the sensor for Cu2+ and Au3+ ions was tested in different water samples.
Collapse
Affiliation(s)
- Domngam Boje
- Department of Basic & Applied Science, National Institute of Technology, Arunachal Pradesh, Jote, 791113, India
| | - Suban K Sahoo
- Department of Applied Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| | - Ananta Kumar Atta
- Department of Basic & Applied Science, National Institute of Technology, Arunachal Pradesh, Jote, 791113, India.
| |
Collapse
|
6
|
Dey B, Pahari P, Sahoo SK, Kumar Atta A. Triazole-based pyrene-sugar analogues for selective detection of picric acid in water medium and paper strips. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
7
|
Loya M, Ghosh S, Atta AK. A review on dual detection of Cu2+ and Ni2+ ions by using single fluorometric and colorimetric organic molecular probes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Chopra T, Sasan S, Devi L, Parkesh R, Kapoor KK. A comprehensive review on recent advances in copper sensors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
A Ratiometric Selective Fluorescent Probe Derived from Pyrene for Cu2+ Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
A novel ratiometric Cu2+-selective probe was rationally constructed based on pyrene derivative. Compared to other tested metal ions, the probe presented the selective recognition for Cu2+ which could be detected by a significant turn-on fluorescent response at 393 nm and 415 nm. Under the optimized conditions, a detection limit of 0.16 μM Cu2+ in aqueous media was found. Besides this, a 1:1 metal–ligand complex was confirmed by MS spectra and Job’s plot experiment, and the binding mode was also studied by 1H NMR experiment. Meanwhile, the fluorescence imaging in living cells was performed to detect Cu2+ with satisfactory results.
Collapse
|
10
|
Loya M, Hazarika SI, Pahari P, Atta AK. Fluorometric detection of Cu2+ and Ni2+ by a quinoline-based glucopyranose derivative via the excimer of quinoline subunit. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
12
|
Zheng AQ, Hao YN, Guo TT, Shu Y, Wang JH. A fluorescence imaging protocol for correlating intracellular free cationic copper to the total uptaken copper by live cells. Talanta 2020; 220:121355. [PMID: 32928391 DOI: 10.1016/j.talanta.2020.121355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/26/2023]
Abstract
A variety of fluorescence probes have been developed for fluorescence imaging of metals in biological cells. However, accurate quantification of metals with fluorescent approaches is challenging due to the difficulty in establishing a standard calibration curve in living cells. Herein, a fluorescence imaging protocol is developed for imaging intracellular Cu2+ and its correlation with the cellular uptake of copper. The total amount of intracellular Cu is detected by inductively coupled plasma mass spectrometry (ICP-MS) in parallel. Fluorescence imaging of Cu2+ is accomplished with Rhodamine B derivative modified carbon dots (CDs-Rbh) based on fluorescence resonance energy transfer (FRET) from CDs to rhodamine. Intracellular Cu2+ is correlated with fluorescence ratio at λem 500-600 nm (rhodamine) to λem 425-475 nm (CDs) with excitation at λex 405 nm. It is found that Cu2+ is linearly correlated with the total intracellular uptaken copper content, with a linear correlation between the relative fluorescence ratio in fluorescence imaging and intracellular Cu derived from ICP-MS, including both Cu(I) and Cu(II) species. The linear calibration equation is lg(F2/F1) = 0.00148 m[Cu]-0.3622. This approach facilitates further investigation and elucidation of copper transition in live cells and the evaluation of their cytotoxicity.
Collapse
Affiliation(s)
- An-Qi Zheng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ya-Nan Hao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ting-Ting Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|