1
|
Jefferson de Arruda H, Almeida Ferreira L, Leonel S Sousa G, Terra Maia Y, Vitório F, Cirne-Santos CC, de Souza Barros C, Ribeiro Batista R, Christina N P Paixão I, Pereira Guedes G, Eugen Kümmerle A, Porto Neves A. Coumarin-imidazopyridine hybrids and their first-in-class Zn II metal complexes as potent dual entry and replication inhibitors of Zika viral infection. Bioorg Chem 2024; 153:107889. [PMID: 39427631 DOI: 10.1016/j.bioorg.2024.107889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
In this study, we synthesized and characterized a series of coumarin-imidazopyridine hybrid ligands (HL1-HL4) and their corresponding Zn(II) complexes (C1-C4). The ligands were synthesized via a two-step process in 56-90 % yields. The resulting ligands, were utilized to form Zn(II) complexes, characterized by conductivity measurements, HRMS, IR, 1H NMR spectroscopy and X-ray diffractions. Biological evaluations revealed that these compounds exhibited potent antiviral activity against Zika virus (ZIKV), with EC50 values ranging from 0.55 to 4.8 µM and SI of up to 1490. Notably, the complexes (the first-in-class Zn(II) anti-ZIKV complexes) generally displayed enhanced activity compared to their respective ligands, with some compounds outperforming the reference antiviral, ribavirin. The Time of Addition assay suggested that while some compounds interfere with both viral entry (with a virucidal component) and replication phases, other only acted in replication phases. These results together with molecular modeling studies on ZIKV Envelope protein and ZIKV NS2B-NS3 offered insights for their mode of actions and further optimizations.
Collapse
Affiliation(s)
- Henrique Jefferson de Arruda
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brasil
| | - Larissa Almeida Ferreira
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brasil
| | - Gleyton Leonel S Sousa
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brasil
| | - Yuri Terra Maia
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brasil
| | - Felipe Vitório
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brasil
| | | | | | | | | | | | - Arthur Eugen Kümmerle
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brasil.
| | - Amanda Porto Neves
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brasil.
| |
Collapse
|
2
|
Valla L, Pitrat D, Mulatier JC, Le Bahers T, Jeanneau E, Ali LMA, Nguyen C, Gary-Bobo M, Andraud C, Bretonnière Y. Imidazo[1,2- a]pyridine and Imidazo[1,5- a]pyridine: Electron Donor Groups in the Design of D-π-A Dyes. J Org Chem 2024; 89:8407-8419. [PMID: 38853362 DOI: 10.1021/acs.joc.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
This work investigates the electron-donating capabilities of two 10-π electron nitrogen bridgehead bicyclic [5,6]-fused ring systems, imidazo[1,2-a]pyridine and imidazo[1,5-a]pyridine rings. Eight compounds with varying positions of electron-withdrawing moieties (TCF or DCI) coupled to the imidazopyridine ring were synthesized and studied. DCI-containing compounds (Ib-IVb) exhibited a purely dipolar nature with broad absorption bands, weak fluorescence, large Stokes shifts, and strong solvatochromism. In contrast, TCF-containing compounds (Ia-IVa) demonstrated diverse properties. Imidazo[1,2-a]pyridine derivatives Ia and IIa were purely dipolar, while imidazo[1,5-a]pyridine derivatives IIIa and IVa displayed a cyanine-like character with intense absorption and higher quantum yields of emission. The observed gradual red shift in optical properties with changing electron-donor groups (IIb < Ib < IIIb < IVb) and (IIa < Ia < IIIa < IVa) underscores the stronger electron-donor character of imidazo[1,5-a]pyridine compared to that of imidazo[1,2-a]pyridine. Furthermore, crystalline powders of imidazo[1,2-a]pyridine derivatives exhibited fluorescence despite minimal emission in solution. Two compounds (Ib and IVa) were successfully formulated into nanoparticles for potential in vivo imaging applications in zebrafish embryos.
Collapse
Affiliation(s)
- Léa Valla
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342 Lyon, France
| | - Delphine Pitrat
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342 Lyon, France
| | - Jean-Christophe Mulatier
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342 Lyon, France
| | - Tangui Le Bahers
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342 Lyon, France
- Institut Universitaire de France 5 Rue Descartes, Paris 75005, France
| | - Erwann Jeanneau
- Univ Lyon, Centre de Diffractométrie Henri Longchambon, Université Lyon I, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Lamiaa M A Ali
- IBMM, Univ Montpellier, CNRS, ENSCM, 1919 Route de Mende, 34293 Montpellier, France
| | - Christophe Nguyen
- IBMM, Univ Montpellier, CNRS, ENSCM, 1919 Route de Mende, 34293 Montpellier, France
| | - Magali Gary-Bobo
- IBMM, Univ Montpellier, CNRS, ENSCM, 1919 Route de Mende, 34293 Montpellier, France
| | - Chantal Andraud
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342 Lyon, France
| | - Yann Bretonnière
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342 Lyon, France
| |
Collapse
|
3
|
Volpi G, Laurenti E, Rabezzana R. Imidazopyridine Family: Versatile and Promising Heterocyclic Skeletons for Different Applications. Molecules 2024; 29:2668. [PMID: 38893542 PMCID: PMC11173518 DOI: 10.3390/molecules29112668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, there has been increasing attention focused on various products belonging to the imidazopyridine family; this class of heterocyclic compounds shows unique chemical structure, versatile optical properties, and diverse biological attributes. The broad family of imidazopyridines encompasses different heterocycles, each with its own specific properties and distinct characteristics, making all of them promising for various application fields. In general, this useful category of aromatic heterocycles holds significant promise across various research domains, spanning from material science to pharmaceuticals. The various cores belonging to the imidazopyridine family exhibit unique properties, such as serving as emitters in imaging, ligands for transition metals, showing reversible electrochemical properties, and demonstrating biological activity. Recently, numerous noteworthy advancements have emerged in different technological fields, including optoelectronic devices, sensors, energy conversion, medical applications, and shining emitters for imaging and microscopy. This review intends to provide a state-of-the-art overview of this framework from 1955 to the present day, unveiling different aspects of various applications. This extensive literature survey may guide chemists and researchers in the quest for novel imidazopyridine compounds with enhanced properties and efficiency in different uses.
Collapse
Affiliation(s)
- Giorgio Volpi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (E.L.)
| | | | | |
Collapse
|
4
|
Sozzi M, Chierotti MR, Gobetto R, Gomila RM, Marzaroli V, Priola E, Volpi G, Zago S, Frontera A, Garino C. One-Dimensional and Two-Dimensional Zn(II) Coordination Polymers with Ditopic Imidazo[1,5- a]pyridine: A Structural and Computational Study. Molecules 2024; 29:653. [PMID: 38338397 PMCID: PMC10856496 DOI: 10.3390/molecules29030653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Zn(II) coordination polymers are being increasingly studied for their stability and properties. Similarly, there is a growing interest in imidazo[1,5-a]pyridine derivatives, which show great potential in luminescence and pharmaceutical applications. In this work, we successfully synthesized and crystallized three new coordination polymers, using Zn(II) as the metallic node, dicarboxylic acids of different length and nature as linkers, and a linear ditopic imidazo[1,5-a]pyridine derivative, to explore the role of this molecule as a propagator of the dimensionality of the structure or as an ancillary ligand. Our work demonstrates the structural capability of imidazo[1,5-a]pyridines in an unexplored domain for this family of ligands. Notably, we observed a pronounced ability of this heterocyclic scaffold to establish π···π interactions in the solid state. The supramolecular π-stacked assemblies were theoretically analyzed using DFT calculations based on model structures.
Collapse
Affiliation(s)
- Mattia Sozzi
- Department of Chemistry and NIS Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Michele R. Chierotti
- Department of Chemistry and NIS Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Roberto Gobetto
- Department of Chemistry and NIS Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Rosa M. Gomila
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
| | - Vittoria Marzaroli
- Department of Chemistry and NIS Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Emanuele Priola
- Department of Chemistry and NIS Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Giorgio Volpi
- Department of Chemistry and NIS Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Stefano Zago
- Department of Chemistry and NIS Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
| | - Claudio Garino
- Department of Chemistry and NIS Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| |
Collapse
|
5
|
Peng J, Li S, Huang J, Meng Q, Wang L, Xin W, Li W, Zhou W, Zhang L. Construction of Imidazole-Fused-Ring Systems by Iron-Catalyzed C(sp 3)-H Amination-Cyclization under Aerobic Conditions. J Org Chem 2023; 88:16581-16588. [PMID: 37976463 DOI: 10.1021/acs.joc.3c02078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
An iron-catalyzed efficient C-H amination for the construction of imidazole-fused-ring systems was developed under aerobic conditions. Compared to previous studies, this work exhibited green features. The reaction was conducted in the green solvent anisole, with water as the only byproduct. Four C(sp3)-H bonds were cleaved and three C-N bonds were formed in this transformation. Imidazo[1,5-a]pyridine-, imidazo[5,1-b]oxazole-, imidazo[5,1-b]thiazole-, imidazo[1,5-a]pyrazine-, and imidazo[1,5-a]imidazole-related N-heterocycles were obtained in acceptable-to-excellent yield.
Collapse
Affiliation(s)
- Jiangling Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Shijia Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Junwei Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Qianli Meng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Lixin Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Wenlong Xin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Weini Li
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California91010, United States
| | - Wei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
6
|
Rashamuse TJ, Coyanis EM, Erasmus R, Magwa NP. Novel Fluorescent Tetrahedral Zinc (II) Complexes Derived from 4-Phenyl-1-octyl-1 H-imidazole Fused with Aryl-9 H-Carbazole and Triarylamine Donor Units: Synthesis, Crystal Structures, and Photophysical Properties. Int J Mol Sci 2023; 24:12260. [PMID: 37569639 PMCID: PMC10418610 DOI: 10.3390/ijms241512260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
We present here the design, synthesis, and photophysical properties of two novel fluorescent zinc (II) complexes, ZnCl2(ImL1)2 and ZnCl2(ImL2)2, containing 4-(1-octyl-1H-imidazol-4-yl)-N,N-diphenyl-[1,1-biphenyl]-4-yl)-4-amine ImL1 and 9-(4-(1-octyl-1H-imidazol-4-yl)-[1,1-biphenyl]-4-yl)-9H-carbazole ImL2 ligands. The newly synthesized free ligands and their zinc (II) complexes were characterized using several spectroscopic techniques; their structures were identified by single-crystal X-ray diffraction; and their photophysical properties have been studied in the context of their chemical structure. The ZnCl2(ImL1)2 and ZnCl2(ImL2)2 complexes showed good thermal stability at 341 °C and 365 °C, respectively. Photophysical properties, including UV-Vis absorption spectra in ethanol solution and photoluminescence (PL) in both solid state and ethanol solution, were determined. UV-Vis adsorption data indicated that both free ligands had similar UV-Vis absorption properties, while their Zn (II) complexes had distinctive absorption characteristics. The fluorescence spectra show that both ligands and their corresponding Zn (II) complexes emit violet to cyan luminescence in the solid state at room temperature, while in ethanol solution at the same temperature, they exhibit efficient photoluminescence properties in the UV-A emission spectral region. Because of these photophysical properties, the synthesized ligands and their cognate Zn (II) complexes can be used as scaffolds for the potential development of optoelectronic materials.
Collapse
Affiliation(s)
- Thompho Jason Rashamuse
- Nanotechnology Innovation Centre, Health Platform, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa;
| | - Elena Mabel Coyanis
- Nanotechnology Innovation Centre, Health Platform, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa;
| | - Rudolph Erasmus
- Materials for Energy Research Group, Material Physics Research Institute, School of Physics, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg 2050, South Africa;
| | - Nomampondo Penelope Magwa
- Department of Chemistry, University of South Africa, Private Bag X6, Florida, Roodepoort 1710, South Africa;
| |
Collapse
|
7
|
Rashamuse TJ, Mohlala RL, Coyanis EM, Magwa NP. A Review: Blue Fluorescent Zinc (II) Complexes for OLEDs-A Last Five-Year Recap. Molecules 2023; 28:5272. [PMID: 37446930 DOI: 10.3390/molecules28135272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Blue emissions in organic light-emitting diodes (OLEDs) are essential for their application in solid-state lighting and full-colour flat panel displays. On the other hand, high-power blue emitters are still uncommon, especially those that can achieve the Commission Internationale de l'Eclairage (CIE, X, Y) coordinates of (0.14, 0.08) in the National Television System Committee (NTSC) blue standard and have high external quantum efficiencies (EQE) of more than 5% because their molecular design presents an enormous challenge. Therefore, creating effective, stable, pure, and deep blue fluorescent materials is vital. Here, it is addressed how useful blue fluorescent Zn (II) complexes are for making organic light-emitting diodes (OLEDs). Utilizing Zn (II) complexes is appealing because of their favourable luminous characteristics, acceptance and mobility, and affordability. This mini-review article aims to provide an overview of Zn (II) complexes that emit blue fluorescent light and have been reported since 2018, while highlighting the unique qualities that make them appropriate OLED materials.
Collapse
Affiliation(s)
- Thompho Jason Rashamuse
- Nanotechnology Innovation Centre, Health Platform, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa
| | - Reagan Lehlogonolo Mohlala
- Nanotechnology Innovation Centre, Health Platform, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa
| | - Elena Mabel Coyanis
- Nanotechnology Innovation Centre, Health Platform, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa
| | - Nomampondo Penelope Magwa
- Department of Chemistry, University of South Africa, Private Bag X6, Florida, Roodepoort 1710, South Africa
| |
Collapse
|
8
|
Cerrato V, Volpi G, Priola E, Giordana A, Garino C, Rabezzana R, Diana E. Mono-, Bis-, and Tris-Chelate Zn(II) Complexes with Imidazo[1,5- a]pyridine: Luminescence and Structural Dependence. Molecules 2023; 28:molecules28093703. [PMID: 37175116 PMCID: PMC10179938 DOI: 10.3390/molecules28093703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
New mono-, bis-, and tris-chelate Zn(II) complexes have been synthesized starting from different Zn(II) salts and employing a fluorescent 1,3-substituted-imidazo[1,5-a]pyridine as a chelating ligand. The products have been characterized by single-crystal X-ray diffraction; mass spectrometry; and vibrational spectroscopy. The optical properties have been investigated to compare the performances of mono-, bis-, and tris-chelate forms. The collected data (in the solid state and in solution) elucidate an important modification of the ligand conformation upon metal coordination; which is responsible for a notable increase in the optical performance. An intense modification of the emission quantum yield along the series in the solid state is observed comparing mono-, bis-, and tris-chelate adducts; independently from the anionic ligand introduced by ionic exchange.
Collapse
Affiliation(s)
- Valerio Cerrato
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Giorgio Volpi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Emanuele Priola
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Alessia Giordana
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Claudio Garino
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Roberto Rabezzana
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Eliano Diana
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| |
Collapse
|
9
|
John NL, Abraham S, George J, Aswathy P, Sivasubramani V. Growth, Quantum Chemical Computations, NLO and Spectroscopic Studies of 2-Amino 5-Chloro Pyridine Single Crystal in Comparison with Certain Aminopyridine Derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Temerova D, Chou TC, Kisel KS, Eskelinen T, Kinnunen N, Jänis J, Karttunen AJ, Chou PT, Koshevoy IO. Hybrid Inorganic–Organic Complexes of Zn, Cd, and Pb with a Cationic Phenanthro-diimine Ligand. Inorg Chem 2022; 61:19220-19231. [DOI: 10.1021/acs.inorgchem.2c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Diana Temerova
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Tai-Che Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kristina S. Kisel
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Toni Eskelinen
- Department of Chemistry and Materials Science, Aalto University, Aalto 00076, Finland
| | - Niko Kinnunen
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Antti J. Karttunen
- Department of Chemistry and Materials Science, Aalto University, Aalto 00076, Finland
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Igor O. Koshevoy
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| |
Collapse
|
11
|
Imidazo[1,5- a]pyridine-Based Fluorescent Probes: A Photophysical Investigation in Liposome Models. Molecules 2022; 27:molecules27123856. [PMID: 35744979 PMCID: PMC9230927 DOI: 10.3390/molecules27123856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Imidazo[1,5-a]pyridine is a stable scaffold, widely used for the development of emissive compounds in many application fields (e.g., optoelectronics, coordination chemistry, sensors, chemical biology). Their compact shape along with remarkable photophysical properties make them suitable candidates as cell membrane probes. The study of the membrane dynamics, hydration, and fluidity is of importance to monitor the cellular health and to explore crucial biochemical pathways. In this context, five imidazo[1,5-a]pyridine-based fluorophores were synthesized according to a one-pot cyclization between an aromatic ketone and benzaldehyde in the presence of ammonium acetate and acetic acid. The photophysical features of prepared compounds were investigated in several organic solvents and probes 2–4 exhibited the greatest solvatochromic behavior, resulting in a higher suitability as membrane probes. Their interaction with liposomes as artificial membrane model was tested showing a successful intercalation of the probes in the lipid bilayer. Kinetic experiments were carried out and the lipidic phase influence on the photophysical features was evaluated through temperature-dependent experiments. The results herein reported encourage further investigations on the use of imidazo[1,5-a]pyridine scaffold as fluorescent membrane probes.
Collapse
|
12
|
Zeng K, Ye J, Meng X, Dechert S, Simon M, Gong S, Mata RA, Zhang K. Anomeric Stereoauxiliary Cleavage of the C-N Bond of d-Glucosamine for the Preparation of Imidazo[1,5-a]pyridines. Chemistry 2022; 28:e202200648. [PMID: 35319128 PMCID: PMC9325398 DOI: 10.1002/chem.202200648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/13/2022]
Abstract
The targeted cleavage of the C-N bonds of alkyl primary amines in sustainable compounds of biomass according to a metal-free pathway and the conjunction of nitrogen in the synthesis of imidazo[1,5-a]pyridines are still highly challenging. Despite tremendous progress in the synthesis of imidazo[1,5-a]pyridines over the past decade, many of them can still not be efficiently prepared. Herein, we report an anomeric stereoauxiliary approach for the synthesis of a wide range of imidazo[1,5-a]pyridines after cleaving the C-N bond of d-glucosamine (α-2° amine) from biobased resources. This new approach expands the scope of readily accessible imidazo[1,5-a]pyridines relative to existing state-of-the-art methods. A key strategic advantage of this approach is that the α-anomer of d-glucosamine enables C-N bond cleavage via a seven-membered ring transition state. By using this novel method, a series of imidazo[1,5-a]pyridine derivatives (>80 examples) was synthesized from pyridine ketones (including para-dipyridine ketone) and aldehydes (including para-dialdehyde). Imidazo[1,5-a]pyridine derivatives containing diverse important deuterated C(sp2 )-H and C(sp3 )-H bonds were also efficiently achieved.
Collapse
Affiliation(s)
- Kui Zeng
- Sustainable Materials and ChemistryGeorg-August-University of GöttingenBüsgenweg 437077GöttingenGermany
| | - Jin Ye
- Institute of Physical ChemistryGeorg-August-University of GöttingenTammannstraße 637077GöttingenGermany
| | - Xintong Meng
- Sustainable Materials and ChemistryGeorg-August-University of GöttingenBüsgenweg 437077GöttingenGermany
| | - Sebastian Dechert
- Institute of Inorganic ChemistryGeorg-August-University of GöttingenTammannstraße 437077GöttingenGermany
| | - Martin Simon
- Institute of Organic and Biomolecular ChemistryGeorg-August-University of GöttingenTammannstraße 237077GöttingenGermany
| | - Shuaiyu Gong
- Sustainable Materials and ChemistryGeorg-August-University of GöttingenBüsgenweg 437077GöttingenGermany
| | - Ricardo A. Mata
- Institute of Physical ChemistryGeorg-August-University of GöttingenTammannstraße 637077GöttingenGermany
| | - Kai Zhang
- Sustainable Materials and ChemistryGeorg-August-University of GöttingenBüsgenweg 437077GöttingenGermany
| |
Collapse
|
13
|
Volpi G. Luminescent imidazo[1,5‐a] pyridine scaffold: synthetic heterocyclization strategies overview and promising applications. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Giorgio Volpi
- University of Turin: Universita degli Studi di Torino Chemistry ITALY
| |
Collapse
|
14
|
Ferraro V, Baggio F, Castro J, Bortoluzzi M. Green phosphorescent Zn(II) halide complexes with N,N,N',N'‐tetramethyl‐P‐indol‐1‐ylphosphonic diamide as ligand. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Valentina Ferraro
- Università Ca' Foscari Dipartimento di Scienze Molecolari e Nanosistemi Via Torino 155 30172 Venezia ITALY
| | - Filippo Baggio
- Università Ca' Foscari: Universita Ca' Foscari Dipartimento di Scienze Molecolari e Nanosistemi ITALY
| | - Jesús Castro
- Universidade de Vigo Departamento de Química Inorgánica 36310 Vigo SPAIN
| | - Marco Bortoluzzi
- CIRCC Consorzio Interuniversitario Reattività Chimica e Catalisi Via Celso Ulpiani 27 70126 Bari ITALY
| |
Collapse
|
15
|
Priola E, Conterosito E, Giordana A, Volpi G, Garino C, Andreo L, Diana E, Barolo C, Milanesio M. Polymorphism and solid state peculiarities in imidazo[1,5-a]pyridine core deriving compounds: An analysis of energetic and structural driving forces. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Colombo G, Attilio Ardizzoia G, Brenna S. Imidazo[1,5-a]pyridine-based derivatives as highly fluorescent dyes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Diana E, Priola E, Marabello D, Giordana A, Andreo J, Freire PTC, Benzi P, Operti L, Andreo L, Curetti N, Benna P. Crystal engineering of aurophilic supramolecular architectures and coordination polymers based on butterfly-like Copper-dicyanoaurate complexes: vapochromism, P-T behaviour and multi-metallic cocrystal formation. CrystEngComm 2022. [DOI: 10.1039/d1ce00964h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the equilibrium properties of CuII in the presence of the chelating ligand and the characteristics of the dicyanoaurate anion, we were able to obtain a family of 10 bimetallic...
Collapse
|
18
|
Dipyridylmethane Ethers as Ligands for Luminescent Ir Complexes. Molecules 2021; 26:molecules26237161. [PMID: 34885742 PMCID: PMC8659258 DOI: 10.3390/molecules26237161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
This work reports two new cationic heteroleptic cyclometalated iridium complexes, containing ether derivatives of di(pyridin-2-yl)methanol. The new ligands are based on dipyridin-2-ylmethane and are designed to obtain ether-based intermediates with extended electronic conjugation by insertion of π system such as phenyl, allyl and ethynyl. Different synthetic strategies were employed to introduce these units, as molecular wires, between the dipyridin-2-ylmethane chelating portion and the terminal N-containing functional group, such as amine and carbamide. The corresponding complexes show luminescence in the blue region of the spectrum, lifetimes between 0.6 and 2.1 μs, high quantum yield and good electrochemical behavior. The computational description (DFT) of the electronic structure highlights the key role of the conjugated π systems on optical and electrochemical properties of the final products.
Collapse
|
19
|
Loftus LM, Olson EC, Stewart DJ, Phillips AT, Arumugam K, Cooper TM, Haley JE, Grusenmeyer TA. Zn Coordination and the Identity of the Halide Ancillary Ligand Dramatically Influence the Excited-State Dynamics and Bimolecular Reactions of 2,3-Di(pyridin-2-yl)benzo[ g]quinoxaline. Inorg Chem 2021; 60:16570-16583. [PMID: 34662517 DOI: 10.1021/acs.inorgchem.1c02484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The optical properties of coordination complexes with ligands containing nitrogen heterocycles have been extensively studied for decades. One subclass of these materials, metal complexes utilizing substituted pyrazines and quinoxalines as ligands, has been employed in a variety of photochemical applications ranging from photodynamic therapy to organic light-emitting diodes. A vast majority of this work focuses on characterization of the metal-to-ligand charge-transfer states in these metal complexes; however, literature reports rarely investigate the photophysics of the parent pyrazine or quinoxaline ligand or perform control experiments utilizing metal complexes that lack low-lying charge-transfer (CT) states in order to determine how metal-atom coordination influences the photophysical properties of the ligand. With this in mind, we examined the steady-state and time-resolved photophysics of 2,3-di(pyridin-2-yl)benzo[g]quinoxaline (dpb) and explored how the coordination of ZnX2 (X = Cl-, Br-, I-) affects the photophysical properties of dpb. In dpb, we find that the dominant mode of deactivation from the singlet excited state is intersystem crossing (ISC). Coordination of ZnX2 perturbs the relative energies of the ππ* and nπ* excited states of dpb, leading to drastically different rates of ISC as well as radiative and nonradiative decay in the [Zn(dpb)X2] complexes compared to dpb. These differences in the rates change the dominant singlet-excited-state decay pathway from ISC in dpb to a mixture of ISC and fluorescence in [Zn(dpb)Cl2] and [Zn(dpb)Br2] and to nonradiative decay in [Zn(dpb)I2]. Coordination of ZnX2 and the choice of the halide ligand also have profound effects on the rate constants for excited-state bimolecular reactions, including triplet-triplet annihilation and oxygen quenching. These results demonstrate that metal coordination, even in complexes lacking low-lying CT states, and the choice of the ancillary ligand can dramatically alter the photophysical properties of chromophores containing nitrogen heterocycles.
Collapse
Affiliation(s)
- Lauren M Loftus
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,General Dynamics Information Technology, 5100 Springfield Pike, Dayton, Ohio 45431, United States
| | - Emma C Olson
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,Southwestern Ohio Council for Higher Education, Dayton, Ohio 45420, United States
| | - David J Stewart
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Alexis T Phillips
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,Southwestern Ohio Council for Higher Education, Dayton, Ohio 45420, United States
| | - Kuppuswamy Arumugam
- Wright State University, Department of Chemistry, 3640 Colonel Glenn Highway, Dayton, Ohio 45435, United States
| | - Thomas M Cooper
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Joy E Haley
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Tod A Grusenmeyer
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| |
Collapse
|
20
|
Colombo G, Attilio Ardizzoia G, Furrer J, Therrien B, Brenna S. Driving the Emission Towards Blue by Controlling the HOMO-LUMO Energy Gap in BF 2 -Functionalized 2-(Imidazo[1,5-a]pyridin-3-yl)phenols. Chemistry 2021; 27:12380-12387. [PMID: 34160858 PMCID: PMC8456857 DOI: 10.1002/chem.202101520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 01/25/2023]
Abstract
Several boron compounds with 2-(imidazo[1,5-a]pyridin-3-yl)phenols, differentiated by the nature of the substituent (R) in the para position of the hydroxy group, have been synthesized and thoroughly characterized both in solution (1 H, 13 C, 11 B, 19 F NMR) and in the solid state (X-ray). All derivatives displayed attractive photophysical properties like very high Stokes shift, high fluorescence quantum yields and a good photostability in solution. Time-Dependent Density Functional Theory (TD-DFT) calculations allowed to define the main electronic transitions as intra ligand transitions (1 ILT), which was corroborated by the Natural Transition Orbitals (NTOs) shapes. The HOMO-LUMO energy gap was correlated to the electronic properties of the substituent R on the phenolic ring, as quantified by its σp Hammett constant.
Collapse
Affiliation(s)
- Gioele Colombo
- Department of Science and High TechnologyUniversity of InsubriaVia Valleggio, 922100ComoItaly
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC)BariItaly
| | - G. Attilio Ardizzoia
- Department of Science and High TechnologyUniversity of InsubriaVia Valleggio, 922100ComoItaly
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC)BariItaly
| | - Julien Furrer
- Department für ChemieBiochemie und PharmazieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Bruno Therrien
- Institute of ChemistryUniversité de NeuchâtelAvenue de Bellevaux 512000NeuchâtelSwitzerland
| | - Stefano Brenna
- Department of Science and High TechnologyUniversity of InsubriaVia Valleggio, 922100ComoItaly
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC)BariItaly
| |
Collapse
|
21
|
Microwave-Assisted Synthesis, Optical and Theoretical Characterization of Novel 2-(imidazo[1,5-a]pyridine-1-yl)pyridinium Salts. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the last few years, imidazo[1,5-a]pyridine scaffolds and derivatives have attracted growing attention due to their unique chemical structure and optical behaviors. In this work, a series of pyridylimidazo[1,5-a]pyridine derivatives and their corresponding pyridinium salts were synthesized and their optical properties investigated to evaluate the effect of the quaternization on the optical features both in solution and polymeric matrix. A critical analysis based on the spectroscopic data, chemical structures along with density functional theory calculation is reported to address the best strategies to prevent aggregation and optimize the photophysical properties. The obtained results describe the relationship between chemical structure and optical behaviors, highlighting the role of pendant pyridine. Finally, the presence of a positive charge is fundamental to avoid any possible aggregation process in polymeric films.
Collapse
|
22
|
Ejarque D, Calvet T, Font-Bardia M, Pons J. Steric crowding of a series of pyridine based ligands influencing the photophysical properties of Zn( II) complexes. CrystEngComm 2021. [DOI: 10.1039/d1ce00833a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The combination of α-acetamidocinnamic acid (HACA) and different N, N,N and N,N,N pyridines (dPy) leads to crowded Zn(ii) metal centers. The increasing bulkiness competes with the chelation enhanced effect (CHEF) in the resulting quantum yields.
Collapse
Affiliation(s)
- Daniel Ejarque
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Teresa Calvet
- Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raig-X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Josefina Pons
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
23
|
Temerova D, Kisel KS, Eskelinen T, Melnikov AS, Kinnunen N, Hirva P, Shakirova JR, Tunik SP, Grachova EV, Koshevoy IO. Diversifying the luminescence of phenanthro-diimine ligands in zinc complexes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00149c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Strongly blue fluorescent 1-phenyl-2-(pyridin-2-yl)-1H-phenanthro[9,10-d]imidazole (L1) is a facile block for the construction of multichromophore organic molecules, and simultaneously serves as a chelating diimine ligand.
Collapse
Affiliation(s)
- Diana Temerova
- Department of Chemistry
- University of Eastern Finland
- Joensuu
- Finland
| | - Kristina S. Kisel
- Department of Chemistry
- University of Eastern Finland
- Joensuu
- Finland
- St Petersburg State University
| | - Toni Eskelinen
- Department of Chemistry
- University of Eastern Finland
- Joensuu
- Finland
| | - Alexei S. Melnikov
- Centre for Nano- and Biotechnologies
- Peter the Great St Petersburg Polytechnic University
- Russia
| | - Niko Kinnunen
- Department of Chemistry
- University of Eastern Finland
- Joensuu
- Finland
| | - Pipsa Hirva
- Department of Chemistry
- University of Eastern Finland
- Joensuu
- Finland
| | | | | | | | - Igor O. Koshevoy
- Department of Chemistry
- University of Eastern Finland
- Joensuu
- Finland
| |
Collapse
|
24
|
Volpi G, Rabezzana R. Imidazo[1,5- a]pyridine derivatives: useful, luminescent and versatile scaffolds for different applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj00322d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last few years, imidazo[1,5-a]pyridine nuclei and derivatives have attracted growing attention due to their unique chemical structure and versatility, optical behaviours, and biological properties.
Collapse
Affiliation(s)
- Giorgio Volpi
- Department of Chemistry
- University of Turin
- 7 - 10125 Turin
- Italy
| | | |
Collapse
|
25
|
Giordano M, Volpi G, Bonomo M, Mariani P, Garino C, Viscardi G. Methoxy-substituted copper complexes as possible redox mediators in dye-sensitized solar cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj02577e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Methoxy-substituted aromatic diimines and corresponding homoleptic copper(i) and copper(ii) complexes as possible redox mediators in dye-sensitized solar cells.
Collapse
Affiliation(s)
- Marco Giordano
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Turin, Italy
| | - Giorgio Volpi
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Turin, Italy
| | - Matteo Bonomo
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Turin, Italy
| | - Paolo Mariani
- CHOSE and Department of Electronic Engineering, University of Rome “Tor Vergata”, Rome, Italy
| | - Claudio Garino
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Turin, Italy
| | - Guido Viscardi
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Turin, Italy
| |
Collapse
|